JP3171912B2 - Detoxification method for waste liquid containing hexavalent chromium - Google Patents

Detoxification method for waste liquid containing hexavalent chromium

Info

Publication number
JP3171912B2
JP3171912B2 JP06151292A JP6151292A JP3171912B2 JP 3171912 B2 JP3171912 B2 JP 3171912B2 JP 06151292 A JP06151292 A JP 06151292A JP 6151292 A JP6151292 A JP 6151292A JP 3171912 B2 JP3171912 B2 JP 3171912B2
Authority
JP
Japan
Prior art keywords
hexavalent chromium
waste liquid
waste
chloride
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06151292A
Other languages
Japanese (ja)
Other versions
JPH05228478A (en
Inventor
一生 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13173215&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3171912(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP06151292A priority Critical patent/JP3171912B2/en
Publication of JPH05228478A publication Critical patent/JPH05228478A/en
Application granted granted Critical
Publication of JP3171912B2 publication Critical patent/JP3171912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、少なくともクロムを含
有する鉄合金鋼帯製造工程にて発生する6価クロム含有
廃水溶液を、同じく鉄合金鋼帯製造工程にて発生する廃
液を主として使用して無害化処理する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly uses a waste aqueous solution containing hexavalent chromium generated in a manufacturing process of an iron alloy steel strip containing at least chromium, and a waste solution generated in a manufacturing process of an iron alloy steel strip. And detoxification methods.

【0002】[0002]

【従来の技術】ステンレス鋼帯製造工程で代表される少
なくともクロムを含有する鉄合金から成る鋼帯又はこれ
を剪断した鋼板(以下、これらを総称して単に鉄合金鋼
帯と言う)の製造過程には、一般に環境上有害な6価ク
ロムを発生する工程がある。即ち、一般に塩基度の高い
環境下において鉄合金鋼帯を加熱したり電解酸化した場
合に、鉄合金鋼帯に含有されるクロムが6価の価数まで
酸化され、更にこの6価のクロムが生成した鉄合金鋼帯
を水に接触させることで6価クロム含有廃液が生じる。
このような6価クロム含有廃液が生じる場所は、例えば
鉄合金鋼帯の冷間圧延工程においては、酸洗工程におけ
る塩浴槽,硫酸ソーダ電解槽,苛性ソーダ電解槽及びこ
れらの槽に後続して位置する洗浄槽等である。従来この
6価クロム含有廃液を無害化処理する方法としては、比
較的安価で確実な処理を行うことが出来且つ生成スラッ
ジの有効利用が図れることから下記の方法が行われてい
た。
2. Description of the Related Art A manufacturing process of a steel strip made of an iron alloy containing at least chromium or a steel plate obtained by shearing the steel strip (hereinafter, these are collectively simply referred to as an iron alloy steel strip) represented by a stainless steel strip manufacturing process. Has a step of generating hexavalent chromium which is generally harmful to the environment. That is, in general, when an iron alloy steel strip is heated or electrolytically oxidized in a highly basic environment, chromium contained in the iron alloy steel strip is oxidized to a hexavalent valence, and the hexavalent chromium is further converted to hexavalent chromium. By contacting the produced iron alloy steel strip with water, a hexavalent chromium-containing waste liquid is generated.
The place where such hexavalent chromium-containing waste liquid is generated is, for example, in a cold rolling process of an iron alloy steel strip, a salt bath, a sodium sulfate electrolytic bath, a caustic soda electrolytic bath in the pickling process, and a position subsequent to these baths. Cleaning tank. Conventionally, the following method has been used as a method of detoxifying the hexavalent chromium-containing waste liquid because it can perform a relatively inexpensive and reliable treatment and can effectively utilize the generated sludge.

【0003】即ち、pHを2〜3の範囲に維持するよう
に硫酸を添加する工程(pH調製工程)を経た6価クロ
ム含有廃液を、還元剤として主として硫酸第一鉄を含有
する水溶液を使用してその6価クロム含有廃液の示す酸
化還元電位が塩化銀参照電極に対して500±10mv
の範囲を維持するように添加する工程(還元処理工程)
に供給し、次いで6価クロム含有廃液の示すpHを6〜
8の範囲を維持するように中和剤として水酸化マグネシ
ウムを含有する水溶液を添加して主として金属水酸化物
と硫酸塩とを生成させる工程(中和処理工程)に供給し
た後に、重力沈降法を原理としたシックナー等で固液分
離して水分を含む固形物については脱水乾燥後に製鋼原
料として再利用し、分離液は無害であるため公共水域に
放流する工程(固液分離工程)という多くの工程を経て
6価クロム含有廃液を無害化処理する方法である。
That is, a hexavalent chromium-containing waste liquid that has undergone a step of adding sulfuric acid so as to maintain the pH within a range of 2 to 3 (pH adjusting step) is used as an reducing agent, and an aqueous solution mainly containing ferrous sulfate is used as a reducing agent. The oxidation-reduction potential of the waste liquid containing hexavalent chromium is 500 ± 10 mv with respect to the silver chloride reference electrode.
(Reduction treatment step) to maintain the above range
And then adjust the pH of the waste liquid containing hexavalent chromium to 6 to
After adding the aqueous solution containing magnesium hydroxide as a neutralizing agent so as to maintain the range of 8 and supplying the aqueous solution mainly to the step of generating metal hydroxide and sulfate (neutralization treatment step), gravity sedimentation Solid-liquid separation using a thickener or the like based on the principle of water-recycling and solids containing water are reused as steelmaking raw materials after dehydration and drying, and the separated liquid is harmless and is discharged into public waters (solid-liquid separation step). And detoxifying the hexavalent chromium-containing waste liquid through the above step.

【0004】このような6価クロム含有廃液を無害化処
理する方法において、pH調製工程で使用される硫酸は
購入新酸が主であるが、鉄合金鋼帯の表面処理に使用さ
れる硫酸廃液が使用されることもあった。しかしなが
ら、還元処理工程において使用される硫酸第一鉄及び中
和処理工程において使用される水酸化マグネシウムは購
入品であった。この中和処理工程において中和剤として
高価な水酸化マグネシウムを使用する理由は、中和処理
時に生成する硫酸塩(硫酸マグネシウム)の水への溶解
度が比較的大きいためである。即ち、中和用アルカリと
して汎用される安価な水酸化カルシウムや水酸化ナトリ
ウムを使用したのでは、中和処理時に生成する硫酸カル
シウム(石膏),硫酸ナトリウムの水への溶解度が低い
ことから下記の如き問題を起こすためである。
In such a method for detoxifying a hexavalent chromium-containing waste liquid, the sulfuric acid used in the pH adjusting step is mainly purchased fresh acid, but the sulfuric acid waste liquid used for surface treatment of the iron alloy steel strip is used. Was sometimes used. However, ferrous sulfate used in the reduction treatment step and magnesium hydroxide used in the neutralization treatment step were purchased. The reason why expensive magnesium hydroxide is used as a neutralizing agent in the neutralization treatment step is that the sulfate (magnesium sulfate) generated during the neutralization treatment has a relatively high solubility in water. In other words, if inexpensive calcium hydroxide or sodium hydroxide, which is widely used as a neutralizing alkali, is used, the solubility of calcium sulfate (gypsum) and sodium sulfate generated in the neutralization treatment in water is low, so that This is to cause such a problem.

【0005】 前記還元処理工程及び中和処理工程を
終了した廃液をその処理設備から離れた場所に位置する
シックナーまで配管で移送して固液分離する場合、硫酸
カルシウムを多く含む廃液にあっては配管内にスケール
を生成して配管を閉塞させる結果、時として生産活動の
停止を招くことがある。 前記還元処理工程及び中和処理工程を終了した廃液
をシックナー等で固液分離したスラリー中には多量の硫
酸カルシウムを含有することから、これを脱水乾燥後に
製鋼原料として利用した場合、製鋼原料として有用な金
属水酸化物を多量の硫酸カルシウムと共に処理すること
になるため、それに要する労力,エネルギーが無駄であ
る。 以上の如く、6価クロム含有廃液の無害化処理方法とし
て、pH調製剤として硫酸をまた還元剤として硫酸第一
鉄を使用した場合、中和剤として安価な中和剤である水
酸化カルシウム等を使用すると固形生成物の量が増加す
ることからその処理に要する労力,コストは多大のもの
となるために、中和後の固形生成物の量を減少させるた
めに高価な水酸化マグネシウムの使用が必要であったの
である。
When the waste liquid after the reduction treatment step and the neutralization treatment step is transferred by a pipe to a thickener located at a location distant from the treatment equipment for solid-liquid separation, a waste liquid containing a large amount of calcium sulfate may be used. As a result of the generation of scale in the piping and the blockage of the piping, production activities sometimes stop. Since a large amount of calcium sulfate is contained in the slurry obtained by solid-liquid separation of the waste liquid after the reduction treatment step and the neutralization treatment step using a thickener or the like, when this is used as a steelmaking raw material after dehydration and drying, it is used as a steelmaking raw material. Since a useful metal hydroxide is treated together with a large amount of calcium sulfate, labor and energy required for the treatment are wasted. As described above, as a method of detoxifying a hexavalent chromium-containing waste liquid, when sulfuric acid is used as a pH adjusting agent and ferrous sulfate is used as a reducing agent, calcium hydroxide, which is an inexpensive neutralizing agent, is used as a neutralizing agent. Since the amount of solid product increases with the use of, the labor and cost required for the treatment become enormous, so use of expensive magnesium hydroxide to reduce the amount of solid product after neutralization Was necessary.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、鉄合
金鋼帯製造工程にて発生する6価クロム含有廃液を、同
じく鉄合金鋼帯製造工程にて発生し従来主として単独に
処理されていた種々の廃液をそれぞれの特質を利用して
相互の処理を行うことで無害化処理し、もって廃棄物廃
棄量を低減すると共に高価な水酸化マグネシウムの使用
を排除して廃棄物処理コストの低減を図ることを課題と
する。
SUMMARY OF THE INVENTION Accordingly, in the present invention, a hexavalent chromium-containing waste liquid generated in an iron alloy steel strip manufacturing process is also generated in an iron alloy steel strip manufacturing process and conventionally mainly treated alone. Various waste liquids are treated to make them harmless by utilizing their respective properties to reduce the amount of waste and reduce the cost of waste treatment by eliminating the use of expensive magnesium hydroxide. The task is to achieve this.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記した従
来技術の問題点を解消し、6価クロム含有廃液の無害化
処理に鉄合金鋼帯製造工程で発生する廃液を利用するこ
とで廃液相互の無害化処理を図る方法として、鉄合金鋼
帯製造工程において発生する6価クロム含有廃液に同じ
く鉄合金鋼帯製造工程において発生する廃塩酸を添加し
てpH≦1とした後、同じく鉄合金鋼帯製造工程におい
て発生する主として塩化第一鉄と塩化第二鉄とから成る
廃水溶液に鉄屑を添加して主として塩化第一鉄から成る
溶液を製造し該溶液に同じく鉄合金鋼帯製造工程におい
て発生する廃塩酸を添加してpH≦1まで酸性にする工
程を順次経て製造された塩酸酸性の塩化第一鉄水溶液を
還元剤として添加して前記pH≦1とした6価クロム含
有廃液の示す酸化還元電位が塩化銀参照電極に対して50
0±10mvの範囲を維持するように還元処理し、同じく
鉄合金鋼帯製造工程において発生する廃アルカリで該還
元処理した6価クロム含有廃液がpH7〜8の範囲を維
持するように中和処理した後に、該中和処理した6価ク
ロム含有廃液を遠心分離機で固液分離すれば6価クロム
含有廃液の無害化処理が可能であることを究明して本発
明を完成したのである。
Means for Solving the Problems The present inventor has solved the above-mentioned problems of the prior art, and has utilized the waste liquid generated in the iron alloy steel strip manufacturing process for the detoxification treatment of the hexavalent chromium-containing waste liquid. As a method for mutual harmless treatment of the waste liquids, after adding waste hydrochloric acid also generated in the iron alloy steel strip manufacturing process to the hexavalent chromium-containing waste liquid generated in the iron alloy steel strip manufacturing process to adjust the pH to ≦ 1, Iron waste is added to a waste aqueous solution mainly composed of ferrous chloride and ferric chloride generated in an iron alloy steel strip manufacturing process to produce a solution mainly composed of ferrous chloride. Hexavalent chromium containing hydrochloric acid adjusted to pH ≤ 1 by adding, as a reducing agent, an aqueous solution of ferrous chloride acidic with hydrochloric acid produced through a process of sequentially adding waste hydrochloric acid generated in the production process to acidify to pH ≤ 1 as a reducing agent. Oxidation of waste liquid Source potential 50 of silver chloride reference electrode
A reduction treatment is performed so as to maintain the range of 0 ± 10 mv, and a neutralization treatment is performed so that the hexavalent chromium-containing waste liquid similarly reduced with the waste alkali generated in the iron alloy steel strip manufacturing process maintains the range of 7 to 8. After that, the present inventors completed the present invention by investigating that it is possible to detoxify the hexavalent chromium-containing waste liquid by solid-liquid separation of the neutralized hexavalent chromium-containing waste liquid using a centrifuge.

【0008】以下、鉄合金鋼帯製造工程で発生する廃液
の現状の処理方法と、これを6価クロム含有廃液の無害
化処理に利用する方法について述べる。 (1)塩化第二鉄廃液 鉄合金鋼帯の表面処理用や脱スケール処理用として、近
年塩化第二鉄水溶液が広く使用されるようになってきて
いる。この塩化第二鉄水溶液に鉄合金鋼帯を浸漬した場
合、鉄合金鋼帯は酸化溶解作用を受けるが、一方塩化第
二鉄は還元作用を受け次第に塩化第一鉄を多く含むもの
となる(以下、この塩化第一鉄を多く含むようになった
溶液を単に老化塩化鉄水溶液と言うことがある)。この
老化塩化鉄水溶液の廃液処理も厄介である。即ち、塩化
第二鉄水溶液単独であれば安価な水酸化カルシウムでの
中和処理で鉄水酸化物と水に可溶な塩化カルシウムと
し、鉄水酸化物は固液分離した後に製鋼原料として再利
用し、塩化カルシウム水溶液は無害なためそのまま公共
水域に放流出来る。しかし、老化塩化鉄水溶液は塩化第
一鉄を多く含むため、一旦この第一鉄イオンを空気曝気
等で第二鉄イオンに酸化した後に中和処理を行う必要が
ある。これは、第二鉄イオンの水酸化物の生成が約pH
2から起こり始めて約pH7で終了するのに対して、第
一鉄イオンの水酸化物の生成は約pH6から起こり始め
約pH10で終了するため、排水基準に適合したpH6
〜8の範囲では第一鉄イオンの水酸化物化による溶液か
らの分離が出来ないためである。なお、第一鉄イオンは
有害なものではないが、排水中に残存したまま公共水域
に排出した場合、水中や空気中の酸素の酸化作用を受け
て第二鉄イオンに変化し、公共水域を茶褐色に変色させ
るという不具合を生じる。このように老化塩化鉄水溶液
の処理にかかる労力と経費は多大なものであった。
The following describes a current treatment method for waste liquid generated in the iron alloy steel strip manufacturing process, and a method of using the waste liquid for detoxifying a hexavalent chromium-containing waste liquid. (1) Ferric chloride waste liquid In recent years, ferric chloride aqueous solution has been widely used for surface treatment and descaling treatment of iron alloy steel strip. When the iron alloy steel strip is immersed in this ferric chloride aqueous solution, the iron alloy steel strip is subjected to the oxidizing dissolution action, while the ferric chloride is gradually reduced in ferrous chloride by the reduction action ( Hereinafter, the solution containing a large amount of ferrous chloride may be simply referred to as aged iron chloride aqueous solution). Waste liquid treatment of the aged iron chloride aqueous solution is also troublesome. That is, if the aqueous ferric chloride solution alone is used, it is neutralized with inexpensive calcium hydroxide to obtain iron hydroxide and water-soluble calcium chloride, and the iron hydroxide is solid-liquid separated and then reused as a steelmaking raw material. Utilizing it, the aqueous solution of calcium chloride is harmless and can be discharged directly into public waters. However, since the aged iron chloride aqueous solution contains a large amount of ferrous chloride, it is necessary to once neutralize the ferrous ion into ferric ion by air aeration or the like, and then perform a neutralization treatment. This is because the formation of hydroxide of ferric ion is about pH
2 and ends at about pH 7, whereas the formation of ferrous ion hydroxide starts at about pH 6 and ends at about pH 10, so the pH 6 that meets drainage standards
This is because in the range of 88, it is impossible to separate ferrous ions from the solution by hydroxide conversion. Ferrous ions are not harmful, but when discharged into public waters while remaining in wastewater, they are converted to ferric ions due to the oxidizing action of oxygen in water and air, and the public waters The problem of discoloration to brown occurs. Thus, the labor and cost involved in treating the aged iron chloride aqueous solution were enormous.

【0009】そこで塩化第一鉄の強力な還元力に注目
し、この老化塩化鉄水溶液の還元剤への利用を検討し
た。即ち、老化塩化鉄水溶液は塩化第一鉄と塩化第二鉄
との混合水溶液であるため、この塩化第二鉄の塩化第一
鉄への還元を試みたのである。還元剤としては、鉄合金
鋼帯の製造を行う鉄鋼業では豊富にある鉄屑を利用し
た。この老化塩化鉄水溶液への鉄屑添加による塩化第一
鉄濃度とその還元効率とを図3に示す。この図3は、10
0g/lの塩化第一鉄と100g/lの塩化第二鉄とから成
る調製水溶液に塩化第二鉄と等量の鉄屑を添加した時の
塩化第二鉄濃度の経時変化を示すものであり、溶液の撹
拌の有無の条件別に鉄屑添加前後の塩化第二鉄濃度変化
より計算される還元効率を示している。鉄屑添加後5分
以内で還元効率が90%以上であることが判る。
Therefore, attention was paid to the strong reducing power of ferrous chloride, and the use of this aged aqueous solution of iron chloride as a reducing agent was examined. That is, since the aged iron chloride aqueous solution is a mixed aqueous solution of ferrous chloride and ferric chloride, an attempt was made to reduce this ferric chloride to ferrous chloride. As a reducing agent, abundant iron scraps were used in the steel industry, which manufactures iron alloy steel strips. FIG. 3 shows the concentration of ferrous chloride due to the addition of iron scrap to the aged iron chloride aqueous solution and its reduction efficiency. This FIG.
This graph shows the change over time in the concentration of ferric chloride when an equivalent amount of ferric chloride is added to a prepared aqueous solution composed of 0 g / l ferrous chloride and 100 g / l ferric chloride. In addition, the graph shows the reduction efficiency calculated from the change in the concentration of ferric chloride before and after the addition of iron scrap, depending on whether or not the solution was stirred. It can be seen that the reduction efficiency is 90% or more within 5 minutes after the addition of iron scrap.

【0010】(2)塩酸廃液 昨今、鉄合金鋼帯の表面処理や脱スケール処理のため、
塩酸が使用されるようになった。この塩酸は鉄合金鋼帯
のうちクロム系ステンレス鋼に主に使用されているが、
この処理過程においても浴内に鉄分が増加してくる結
果、その処理能力が低下するという老化現象が起こる。
従って、塩酸の再生装置が設置されることも多いが、そ
の使用量が少ない場合は廃棄されることも多かった。こ
の老化塩酸廃液も塩化第一鉄を多く含むものであり、廃
液処理上は前記老化塩化鉄水溶液と同じ問題があった。
(2) Hydrochloric acid waste liquid Recently, for surface treatment and descaling treatment of iron alloy steel strip,
Hydrochloric acid came to be used. This hydrochloric acid is mainly used for chromium stainless steel among iron alloy steel strips,
Also in this treatment process, as the iron content increases in the bath, an aging phenomenon occurs in which the treatment capacity is reduced.
Therefore, a regenerating device for hydrochloric acid is often installed, but when the amount used is small, it is often discarded. This aging hydrochloric acid waste liquid also contains a large amount of ferrous chloride, and has the same problem as the aging iron chloride aqueous solution in terms of waste liquid treatment.

【0011】一方、塩化第一鉄の還元能力を引き出すた
めには、塩化第一鉄水溶液を塩酸酸性とする必要があ
る。この理由は塩化第一鉄の鉄イオンと塩素イオンとを
引き離し、2価の鉄イオンと6価のクロムイオンとの接
触を容易化するためである。6価クロム含有廃液のpH
の塩化第一鉄還元能力に及ぼす影響を図4に示す。この
図4は同じ6価クロム含有廃液を対象に、種々の量の塩
酸を添加した還元剤としての塩化第一鉄を添加してOR
P(酸化還元電位)の変化並びにORPの変化のあった
時点での残存6価クロム濃度を調査したものである。こ
れより、塩化第一鉄の還元能力を引き出すためには、少
なくとも6価クロム含有廃液のpHを1以下にする必要
があることが判る。
On the other hand, in order to bring out the reducing ability of ferrous chloride, it is necessary to make the aqueous ferrous chloride solution acidic with hydrochloric acid. The reason for this is to separate the iron ion and the chloride ion of ferrous chloride and to facilitate the contact between the divalent iron ion and the hexavalent chromium ion. PH of waste liquid containing hexavalent chromium
FIG. 4 shows the effect of ferrous chloride on the ability to reduce ferrous chloride. FIG. 4 shows that the same hexavalent chromium-containing waste liquid was subjected to OR by adding ferrous chloride as a reducing agent to which various amounts of hydrochloric acid had been added.
It is a result of investigating the concentration of residual hexavalent chromium at the time when there is a change in P (redox potential) and a change in ORP. This indicates that at least the pH of the hexavalent chromium-containing waste liquid needs to be 1 or less in order to bring out the reducing ability of ferrous chloride.

【0012】(3)アルカリ廃液 また、鉄合金鋼帯の製造過程においては脱脂処理が行わ
れる。この脱脂剤としては、トリクロロエタンで代表さ
れる塩素系有機溶剤や水酸化ナトリウム又は珪酸ナトリ
ウムに代表されるアルカリが一般的に使用されている。
しかし、環境問題から徐々にアルカリの使用が主流とな
りつつある。このアルカリを使用した脱脂原理は、鉱物
油の脱脂にあっては油分の脱脂溶液中への分散又はアル
カリコロイドへの吸着によるものである。従って、脱脂
溶液中に鉱物油が飽和してくると脱脂能力の低下や、被
脱脂材に油分や汚れが再付着するという逆汚染の問題が
起こる。このためこの時点で脱脂溶液の更新が行われる
が、この廃アルカリの処理も厄介である。即ち、廃アル
カリは多量の油分を含有してるため、排水規制上の油
分,COD(化学的酸素要求量)の低減処理が必要とな
る。廃アルカリ中の油分除去方法として、酸を使用した
塩析法,静電気を利用した集油法,空気曝気をする加圧
浮上法が知られているが、昨今遠心分離機を使用した油
分除去処理が行われるようになり、アルカリの廃棄量は
低減化されてきた。しかし、長期間に亘り再生使用した
アルカリには細かい油分と金属摩耗粉(圧延工程で発生
し圧延油に混入しているもの等)の蓄積が起こる。従っ
て、やはり定期的な脱脂溶液の更新が必要となる。
(3) Alkaline Waste Liquid In the process of producing an iron alloy steel strip, a degreasing treatment is performed. As the degreasing agent, a chlorine-based organic solvent represented by trichloroethane and an alkali represented by sodium hydroxide or sodium silicate are generally used.
However, the use of alkali is gradually becoming mainstream due to environmental problems. The principle of degreasing using an alkali is based on dispersion of a mineral oil in a degreasing solution or adsorption on an alkali colloid in degreasing mineral oil. Therefore, when the mineral oil becomes saturated in the degreasing solution, there arises a problem of a decrease in the degreasing ability and a problem of reverse contamination such that oil and dirt are re-adhered to the degreasing material. Therefore, at this point, the degreasing solution is renewed, but the treatment of the waste alkali is also troublesome. That is, since waste alkali contains a large amount of oil, it is necessary to reduce oil content and COD (chemical oxygen demand) under drainage regulations. As a method for removing oil from waste alkali, a salting-out method using an acid, an oil collection method using static electricity, and a pressurized flotation method using air aeration are known. Recently, oil removal processing using a centrifugal separator has been known. And the amount of waste of alkali has been reduced. However, in the alkali recycled for a long period of time, accumulation of fine oil and metal abrasion powder (such as those generated in the rolling process and mixed in the rolling oil) occurs. Therefore, it is necessary to periodically renew the degreasing solution.

【0013】従来、この廃アルカリの中和処理は、鉄合
金鋼帯の製造工程で発生する他の洗浄廃液や廃酸(硝
酸,ふっ酸,硫酸等)と一緒に行われていた。しかし、
この若干の油分を含有する廃アルカリを希釈すると油分
が拡散する結果、排水中に残ったまま排水されることが
あった。即ち、廃酸は溶解金属を有しており、これを中
和処理する過程で多量の水酸化物を形成する。しかし、
この廃液を希釈するとその濃度が下がる結果、水酸化物
の油分吸着量が低下する。従って、金属水酸化物による
油分包含作用を利用して廃アルカリ中の油分除去を行う
場合は、金属水酸化物濃度が高い方が好ましいのであ
る。そこで、この廃アルカリを前述の塩化第一鉄と塩酸
を使用した6価クロム含有廃液の無害化処理の終了後の
中和用アルカリとして使用することで、酸の無害化と同
時に廃アルカリに含有される油分の除去を行い得る。こ
の時、金属イオンを含むこれらの処理液をむやみに水で
希釈しないことが好ましい条件である。
Conventionally, the neutralization treatment of waste alkali has been performed together with other cleaning waste liquid and waste acid (such as nitric acid, hydrofluoric acid, and sulfuric acid) generated in the manufacturing process of the iron alloy steel strip. But,
When the waste alkali containing a small amount of oil is diluted, the oil is diffused, and as a result, the waste alkali is sometimes drained while remaining in the waste water. That is, the waste acid has a dissolved metal and forms a large amount of hydroxide in the process of neutralizing the same. But,
When the waste liquid is diluted, the concentration of the waste liquid decreases, and as a result, the amount of oil adsorbed by the hydroxide decreases. Therefore, when the oil content in waste alkali is removed by utilizing the oil inclusion effect of the metal hydroxide, the higher the metal hydroxide concentration, the better. Therefore, by using this waste alkali as a neutralizing alkali after the detoxification treatment of the hexavalent chromium-containing waste liquid using ferrous chloride and hydrochloric acid, the acid is detoxified and contained in the waste alkali at the same time. Oil removal can be performed. At this time, it is a preferable condition that these treatment liquids containing metal ions are not unnecessarily diluted with water.

【0014】[0014]

【作用】本発明は以上に述べた如く、鉄合金鋼帯の製造
工程で発生する6価クロム含有廃水溶液を無害化処理す
るに当り、主として同じく鉄合金鋼帯の製造工程での廃
棄物である老化塩化鉄水廃液,老化塩酸及び廃アルカリ
を利用することを特徴とするものであり、以下に本発明
方法を実施するのに好適な装置及び条件について説明す
る。
According to the present invention, as described above, the detoxification treatment of the hexavalent chromium-containing waste aqueous solution generated in the manufacturing process of the iron alloy steel strip is mainly performed by the waste in the manufacturing process of the iron alloy steel strip. The present invention is characterized by utilizing a certain aging iron chloride water waste liquid, aging hydrochloric acid and waste alkali. The apparatus and conditions suitable for carrying out the method of the present invention will be described below.

【0015】図1は塩化第二鉄廃液を利用した塩化第一
鉄の製造装置を示す説明図である。鉄合金鋼帯製造工程
より排出される各廃液は、一旦貯蔵タンク1a,2aに貯蔵
される。これは、鉄合金鋼帯製造工程より排出される各
廃液排出量と6価クロム含有廃液の無害化処理装置への
供給量とを調節するためのバッファーとしての役目をこ
れら貯蔵タンク1a,2aに果たさせるためである。老化塩
化鉄水溶液用の貯蔵タンク1aから供給される老化塩化鉄
水溶液1は反応槽3にポンプ1bを介して供給される。こ
の老化塩化鉄水溶液1の濃度は特に限定しないが反応槽
3の容量を大きくさせないために高い方が好ましく、ま
た含有される塩化第一鉄の濃度も高い方が塩化第二鉄の
還元に要する鉄屑の使用量が少なくて済み経済的であ
る。この老化塩化鉄水溶液1としては、発生源での廃棄
条件を加味して、100g/l〜650g/lの塩化第二鉄を
含み、且つ塩化第一鉄濃度との和が650g/l以下であ
れば充分利用可能なことが発明者の調査で確認済みであ
る。ここで、塩化第一鉄の濃度を最大650g/lと限定
した理由は、これ以上であると塩化第一鉄が鉄水酸化物
又は鉄酸化物となって配管等を閉塞して移送困難となる
ためである。液温は高い方が鉄屑との反応が盛んで好ま
しいが、余り高いと老化塩化鉄水溶液1に鉄屑を添加し
て主として塩化第一鉄から成る溶液としたものに後述の
如く塩酸を添加した時、塩化水素ガスが多量に発生する
ため好ましくない。好ましい液温は25〜85℃である。
FIG. 1 is an explanatory view showing an apparatus for producing ferrous chloride using a ferric chloride waste liquid. Each waste liquid discharged from the iron alloy steel strip manufacturing process is temporarily stored in the storage tanks 1a and 2a. These storage tanks 1a and 2a serve as buffers for adjusting the discharge amount of each waste liquid discharged from the iron alloy steel strip manufacturing process and the supply amount of the hexavalent chromium-containing waste liquid to the detoxification processing device. It is to fulfill. The aged iron chloride aqueous solution 1 supplied from the storage tank 1a for the aged iron chloride aqueous solution is supplied to the reaction tank 3 via the pump 1b. The concentration of the aging iron chloride aqueous solution 1 is not particularly limited, but is preferably higher in order not to increase the capacity of the reaction tank 3, and the higher the concentration of ferrous chloride contained is required for the reduction of ferric chloride. It is economical because less iron scrap is used. The aging iron chloride aqueous solution 1 contains 100 g / l to 650 g / l of ferric chloride in consideration of the disposal conditions at the generation source, and the sum of the ferrous chloride concentration and 650 g / l or less. It has been confirmed by the inventor's investigation that it can be sufficiently used. Here, the reason for limiting the concentration of ferrous chloride to a maximum of 650 g / l is that if the concentration is higher than this, ferrous chloride becomes iron hydroxide or iron oxide, which blocks pipes and the like and makes transfer difficult. It is because it becomes. The higher the liquid temperature, the more favorable the reaction with iron scrap is. However, if the temperature is too high, hydrochloric acid is added to a solution mainly composed of ferrous chloride by adding iron scrap to the aged iron chloride aqueous solution 1 as described later. In this case, a large amount of hydrogen chloride gas is generated, which is not preferable. Preferred liquid temperature is 25-85 ° C.

【0016】供給用ホッパ4aには、鉄屑置場4cからベル
トコンベヤ4bによって鉄屑4が補給される。鉄屑4の形
態は細かい方が表面積が大きく酸との反応性が高いが、
余り細か過ぎると風等により飛散してしまうため好まし
くない。本発明者の調査では、鉄合金鋼帯製造工程の焼
鈍酸洗設備で使用されるショットブラストの廃棄ショッ
ト(粒径は0.1〜0.6mm)が適当であった。しかし、この
廃ショットの発生量は変動するため安定供給は難しい。
その他ダライ粉等の鉄屑の使用も試みたが、ホッパ4a内
で詰まったり未溶解分が残るという不具合があった。種
々調査の結果、10mm角以内の大きさまで鉄屑をチョッパ
ー等で剪断したものであれば、ホッパ4aでの移送の問題
や反応槽3での未溶解等の問題もなかった。
The supply hopper 4a is replenished with iron scraps 4 from a steel scrap storage area 4c by a belt conveyor 4b. The finer the form of the iron scraps 4, the greater the surface area and the higher the reactivity with acid,
If it is too fine, it will be scattered by wind and the like, which is not preferable. In the investigation of the inventor, a waste shot (particle size: 0.1 to 0.6 mm) of shot blast used in an annealing and pickling facility in a ferrous alloy steel strip manufacturing process was appropriate. However, since the amount of the waste shot varies, stable supply is difficult.
Attempts to use iron scraps such as Dalai powder were also found, but there was a problem that clogging or undissolved components remained in the hopper 4a. As a result of various investigations, there was no problem such as transfer in the hopper 4a or undissolved in the reaction tank 3 as long as iron chips were sheared with a chopper or the like to a size of 10 mm square or less.

【0017】反応槽3に供給された老化塩化鉄水溶液1
と鉄屑4とは、反応槽3内の撹拌機3aで撹拌されつつ反
応し塩化第一鉄の濃厚な溶液となり、オーバーフロー液
は次の貯槽5に送られる。貯槽5を設ける理由は、未溶
解の鉄屑4の混入を避けるためである。更に、この塩化
第一鉄溶液には未溶解の鉄屑4の残存や塩化第一鉄変質
によるスラッジの含有される危険性があるため、遠心分
離機6を設ける。遠心分離機6で固液分離された固形分
は反応槽3へ戻される。固液分離され浄化された塩化第
一鉄溶液はポンプ7aを介して希釈槽7に供給され、ここ
で鉄合金鋼帯製造工程において発生し貯蔵タンク2aに貯
蔵されていた廃塩酸2がポンプ2bを介して添加されると
共に希釈用の水7bが添加され、希釈槽7内で各溶液は撹
拌機7cで撹拌される。この廃塩酸2の添加量は、希釈槽
7内の溶液のpHが1以下となるよう添加する。この添
加量の調製は、後述するpH計7dで計測しこの出力をも
とに調節計7eを介してバルブ7fによって行われる。更
に、希釈槽7内の溶液中の塩化第一鉄濃度を計測してこ
の出力をもとに希釈用の水7bの添加量を制御することが
望ましい。これは、塩化第一鉄濃度を大きく変動させな
い方が後述する6価クロム含有廃液の無害化処理装置に
おける制御がやり易いためである。この希釈槽7内の溶
液中の塩化第一鉄濃度を計測する方法としては、超音波
伝播速度の測定を原理としたもの、一般に使用されてい
る酸化還元電位を計測する方法等が適当である。製造さ
れた塩酸酸性の塩化第一鉄溶液8は貯蔵タンク8aに貯蔵
された後、次に説明する6価クロム含有廃液の無害化処
理装置へ供給される。
Aged iron chloride aqueous solution 1 supplied to reaction tank 3
The iron scraps 4 react with each other while being stirred by the stirrer 3a in the reaction tank 3 to form a concentrated solution of ferrous chloride, and the overflow liquid is sent to the next storage tank 5. The reason for providing the storage tank 5 is to avoid mixing of undissolved iron scraps 4. Further, since the ferrous chloride solution has a risk of remaining undissolved iron scraps 4 and containing sludge due to alteration of ferrous chloride, a centrifuge 6 is provided. The solid content separated by the centrifuge 6 is returned to the reaction tank 3. The ferrous chloride solution purified by solid-liquid separation is supplied to a dilution tank 7 via a pump 7a, where the waste hydrochloric acid 2 generated in the iron alloy steel strip manufacturing process and stored in the storage tank 2a is removed by a pump 2b. , And water 7b for dilution is added, and each solution is stirred in the dilution tank 7 by the stirrer 7c. The amount of the waste hydrochloric acid 2 is added so that the pH of the solution in the dilution tank 7 becomes 1 or less. The adjustment of the addition amount is performed by a valve 7f via a controller 7e based on the output measured by a pH meter 7d described later. Further, it is desirable to measure the concentration of ferrous chloride in the solution in the dilution tank 7 and control the amount of the water 7b for dilution based on this output. This is because it is easier to control the hexavalent chromium-containing waste liquid detoxification processing apparatus described later without greatly changing the ferrous chloride concentration. As a method for measuring the concentration of ferrous chloride in the solution in the dilution tank 7, a method based on the principle of measuring the ultrasonic wave propagation velocity, a method for measuring a generally used oxidation-reduction potential, and the like are appropriate. . The produced hydrochloric acid-ferrous chloride solution 8 is stored in a storage tank 8a, and then supplied to a detoxification treatment apparatus for hexavalent chromium-containing waste liquid described below.

【0018】図2は6価クロム含有廃液の無害化処理装
置の構成を示す説明図である。6価クロム含有廃液の無
害化処理装置は、pH調製槽10,還元槽11,中和槽12及
び固液分離装置14より構成される。pH調製槽10には、
6価クロム含有廃液9を連続的又は間欠的に投入される
と共に、pH計10bの計測pHが1以下を維持するよう
に廃塩酸2が貯蔵タンク2aよりポンプ2bを介して自動的
に添加される。ここでpHを1以下に調製する理由は、
6価クロム含有廃液のpHが高いまま次の還元槽11に送
液したのでは、塩化第一鉄の鉄イオンと塩素イオンとを
引き離し、2価の鉄イオンと6価のクロムイオンとの接
触を容易化して充分な還元作用が期待出来ないためであ
り、これは前記図4の結果から判明している。pH調製
後の6価クロム含有廃液は還元槽11に連続的又は間欠的
に投入され、ORP計(酸化還元電位計)11bでの計測
出力が500±10mvを維持するように塩酸酸性の塩化第
一鉄溶液8が貯蔵タンク8aからポンプ8bを介して自動的
に添加される。ORP計11bでの計測出力を500±10mv
とした理由は、6価クロム含有廃液の性状,使用する還
元剤等により異なるが、本発明者の実験によると処理廃
液中の6価クロムが充分還元され、且つ残留する2価の
鉄イオンが少ない条件となるこの制御値が適正であった
からである。
FIG. 2 is an explanatory view showing the structure of a detoxifying apparatus for a hexavalent chromium-containing waste liquid. The detoxification apparatus for the hexavalent chromium-containing waste liquid includes a pH adjustment tank 10, a reduction tank 11, a neutralization tank 12, and a solid-liquid separator 14. In the pH adjustment tank 10,
The hexavalent chromium-containing waste liquid 9 is continuously or intermittently charged, and the waste hydrochloric acid 2 is automatically added from the storage tank 2a via the pump 2b so that the pH measured by the pH meter 10b is maintained at 1 or less. You. Here, the reason for adjusting the pH to 1 or less is as follows.
If the waste liquid containing hexavalent chromium was sent to the next reduction tank 11 while the pH was high, the iron ion of ferrous chloride and the chloride ion were separated, and the contact between divalent iron ion and hexavalent chromium ion was made. This is because it is not possible to expect a sufficient reduction action by simplifying the above, which is clear from the results of FIG. The hexavalent chromium-containing waste liquid after the pH adjustment is continuously or intermittently charged into the reduction tank 11, and the hydrochloric acid acid chloride is added so that the measurement output of the ORP meter (oxidation-reduction potentiometer) 11b maintains 500 ± 10 mv. Ferrous solution 8 is automatically added from storage tank 8a via pump 8b. Measured output of ORP meter 11b is 500 ± 10mv
The reason for this depends on the properties of the hexavalent chromium-containing waste liquid, the reducing agent used, and the like. However, according to experiments performed by the present inventors, hexavalent chromium in the treated waste liquid is sufficiently reduced, and the remaining divalent iron ions are removed. This is because this control value, which is a small condition, was appropriate.

【0019】かくして還元槽11で塩化第一鉄の2価の鉄
イオンと6価のクロムイオンとを接触させて還元された
6価クロム無害化後の廃液は、中和槽12に連続的又は間
欠的に投入され、pH計12bでの計測pHが6〜8を維
持するように廃アルカリ13が貯蔵タンク13aよりポンプ1
3bを介して自動的に添加される。ここで、廃液中の3価
のクロム,3価の鉄及びその他の溶解金属のイオンは水
酸化物となるが、その生成過程で廃アルカリに含有され
る油分を吸着する結果、処理廃液中の油分は極めて少な
いものとなる。中和処理後の廃液は、自然重力沈降を原
理とするシックナーや強制的に固液分離を行う遠心分離
機より成る固液分離装置14(図示した実施例はシックナ
ー)を使用して固液分離が行われる。液体である廃液は
無害のため、このまま公共水域等に排出される。一方、
主として金属水酸化物から成る固形分は、脱水乾燥の後
に鉄合金鋼帯製造用原料として再利用される。なお、廃
アルカリ供給量が不足の場合は、水酸化カルシウム溶液
を使用する。これは中和処理対象液の陰イオンが主とし
て塩素イオンであるため生成する塩は水への溶解度が高
い塩化カルシウムであり、従来の硫酸カルシウム如く固
形物を発生することは少ないからである。
The waste liquid after detoxification of hexavalent chromium reduced by contacting ferrous chloride divalent iron ions and hexavalent chromium ions in the reduction tank 11 is continuously or neutralized in the neutralization tank 12. The waste alkali 13 is pumped from the storage tank 13a into the pump 1 so as to be intermittently charged and maintain the pH measured by the pH meter 12b at 6 to 8.
Added automatically via 3b. Here, ions of trivalent chromium, trivalent iron, and other dissolved metals in the waste liquid become hydroxides, and in the production process, adsorb the oil contained in the waste alkali, and as a result, the treated waste liquid contains The oil content will be very low. The waste liquid after the neutralization treatment is subjected to solid-liquid separation using a thickener based on the principle of natural gravity sedimentation or a solid-liquid separator 14 (thickener in the illustrated embodiment) comprising a centrifuge for forcibly performing solid-liquid separation. Is performed. Since the liquid waste liquid is harmless, it is discharged to public water bodies as it is. on the other hand,
The solid content mainly composed of metal hydroxide is reused as a raw material for producing an iron alloy steel strip after dehydration drying. When the supply amount of waste alkali is insufficient, a calcium hydroxide solution is used. This is because the anions in the solution to be neutralized are mainly chloride ions, so that the generated salt is calcium chloride having high solubility in water, and rarely generates solids unlike conventional calcium sulfate.

【0020】以上の6価クロム含有廃液の無害化処理は
連続的に行っても良いが、より確実に行うためには間欠
的に行うことが望ましい。即ち、6価クロム含有廃液処
理量が少なくその濃度が高い場合には、pH調製槽10で
のpH調製後、還元槽11に送液してORPの変化を見な
がら還元剤(塩酸酸性の塩化第一鉄水溶液)の添加を行
いORPの変化が急激に変化した時点で還元剤の添加を
停止することにより、6価クロムを還元するのに要する
還元剤の添加が節約出来ると同時に残留する2価の鉄イ
オンの量が少なく出来る。なお、ORPの変化が急激な
変化をより明瞭にするためには、この変化量を微分する
演算を行いその時点で還元剤の添加中止を行うことでそ
の作業は容易となる。
The detoxification treatment of the hexavalent chromium-containing waste liquid described above may be performed continuously, but is preferably performed intermittently for more reliable processing. That is, when the treatment amount of the waste liquid containing hexavalent chromium is small and the concentration is high, after adjusting the pH in the pH adjusting tank 10, the liquid is sent to the reducing tank 11 and the reducing agent (hydrochloric acid chloride) By adding ferrous aqueous solution and stopping the addition of the reducing agent when the change in ORP changes sharply, the addition of the reducing agent required for reducing hexavalent chromium can be saved, and at the same time, the remaining 2 The amount of valence iron ions can be reduced. In addition, in order to make the change of ORP abruptly clearer, the operation is facilitated by performing an operation of differentiating the amount of change and stopping the addition of the reducing agent at that time.

【0021】[0021]

【実施例】図1に示す装置の反応槽3に老化塩化鉄水溶
液1(塩化第二鉄濃度が180g/l,塩化第一鉄濃度が1
80g/l,比重が1.2,液温が40℃)500lを送液し、鉄
屑(廃ショット)4を17kg(廃液中の塩化第二鉄量に対
して等モル量)添加して約10分間撹拌機3aで撹拌した。
この時、この溶液中の塩化第一鉄の濃度は約300g/l
であった。この溶液を希釈用の水7bで10倍に希釈した
後、これに廃塩酸2を750l添加してpHを1とした。
なお、この廃塩酸2は、60g/lの遊離塩酸,10g/l
の溶解金属を含有していた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Aged iron chloride solution 1 (ferric chloride concentration 180 g / l, ferrous chloride concentration 1
500 g of 80 g / l, specific gravity 1.2, liquid temperature 40 ° C.) was sent, and 17 kg (equimolar amount of ferric chloride in waste liquid) of iron scrap (waste shot) 4 was added to about 10 kg. The mixture was stirred with the stirrer 3a for minutes.
At this time, the concentration of ferrous chloride in this solution was about 300 g / l.
Met. After diluting this solution 10-fold with 7b of water for dilution, 750 l of waste hydrochloric acid 2 was added thereto to adjust the pH to 1.
The waste hydrochloric acid 2 is composed of 60 g / l free hydrochloric acid and 10 g / l
Of dissolved metal.

【0022】次に図2に示す装置のpH調製槽10に6価
クロム含有廃液9として硫酸ソーダ電解液(6価クロム
濃度が21g/l,pHが5.2,液温が50℃)を500l送液
した。これに上記廃塩酸2を添加してpHを0.1とし
た後、更に先の塩酸酸性の塩化第一鉄溶液8を添加して
ORP計出力が500mvとなった時点でこの廃液を分析
したところ、6価クロムイオン濃度が0.5mg/l,2価
の鉄イオン濃度が1mg/1以下であった。この時の還元
剤(塩酸酸性の塩化第一鉄溶液8)の添加量に対するO
RPの変化量及び還元後の廃液の性状を図5に示す。次
に、この溶液に廃アルカリを添加してpHを7とした。
この廃アルカリは、50g/lのNaOH,100mg/lの
油分を含有していた。中和処理後の廃液中の油分濃度は
5mg/lであり、金属水酸化物濃度は10g/lであっ
た。
Next, 500 l of sodium sulfate electrolyte (hexavalent chromium concentration: 21 g / l, pH: 5.2, liquid temperature: 50 ° C.) was sent to the pH adjusting tank 10 of the apparatus shown in FIG. Liquid. The waste hydrochloric acid 2 was added to the mixture to adjust the pH to 0.1, and the hydrochloric acid-acidic ferrous chloride solution 8 was further added. When the ORP meter output reached 500 mv, the waste liquid was analyzed. However, the hexavalent chromium ion concentration was 0.5 mg / l, and the divalent iron ion concentration was 1 mg / 1 or less. At this time, the amount of O added to the amount of the reducing agent (hydrochloric acid ferrous chloride solution 8) added
FIG. 5 shows the amount of change in RP and the properties of the waste liquid after reduction. Next, a waste alkali was added to the solution to adjust the pH to 7.
The waste alkali contained 50 g / l NaOH, 100 mg / l oil. The oil concentration in the waste liquid after the neutralization treatment was 5 mg / l, and the metal hydroxide concentration was 10 g / l.

【0023】[0023]

【発明の効果】以上に詳述した如く本発明に係る6価ク
ロム含有廃液の無害化処理方法は、ステンレス鋼帯製造
工程で代表される鉄合金鋼帯製造工程にて発生する6価
クロム含有廃液を従来単独で廃棄無害化処理されていた
同じく鉄合金鋼帯製造工程にて発生する廃液を主として
利用して相互に無害化することが出来るのでこの処理に
かかる費用が低減出来るばかりでなく、従来使用されて
いた高価な硫酸第一鉄/硫酸系の還元剤に替えて鉄合金
鋼帯製造工程にて発生する廃液である塩化第一鉄/塩酸
系の還元剤を使用することで最終的な中和処理に使用す
るアルカリとして安価な消石灰の使用が容易となるので
あり、その工業的価値は非常に大きなものがある。
As described in detail above, the method for detoxifying a hexavalent chromium-containing waste liquid according to the present invention includes a hexavalent chromium-containing waste liquid generated in a steel alloy steel strip manufacturing process represented by a stainless steel strip manufacturing process. Since waste liquids can be mutually detoxified mainly by using waste liquids generated in the iron alloy steel strip manufacturing process, which has been conventionally treated as a waste detoxification treatment alone, not only can the cost of this treatment be reduced, By replacing the expensive ferrous sulfate / sulfuric acid type reducing agent used conventionally with the ferrous chloride / hydrochloric acid type reducing agent which is a waste liquid generated in the iron alloy steel strip manufacturing process, This makes it easy to use slaked lime which is inexpensive as an alkali used for a neutralization treatment, and its industrial value is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】塩化第二鉄廃液を利用した塩化第一鉄の製造装
置を示す説明図である。
FIG. 1 is an explanatory diagram showing an apparatus for producing ferrous chloride using a ferric chloride waste liquid.

【図2】6価クロム含有廃液の無害化処理装置の構成を
示す説明図である。
FIG. 2 is an explanatory view showing a configuration of a detoxification treatment apparatus for a hexavalent chromium-containing waste liquid.

【図3】老化塩化鉄水溶液への鉄屑添加による塩化第一
鉄濃度とその還元効率を示す説明図である。
FIG. 3 is an explanatory diagram showing the concentration of ferrous chloride by adding iron scrap to an aged iron chloride aqueous solution and its reduction efficiency.

【図4】6価クロム含有廃液のpHの塩化第一鉄還元能
力に及ぼす影響を示す説明図である。
FIG. 4 is an explanatory diagram showing the effect of the pH of a waste liquid containing hexavalent chromium on the ability to reduce ferrous chloride.

【図5】還元剤としての塩酸酸性の塩化第一鉄溶液の添
加量に対するORPの変化量及び還元後の廃液の性状を
示す図である。
FIG. 5 is a diagram showing a change amount of ORP with respect to an added amount of a hydrochloric acid-acidic ferrous chloride solution as a reducing agent, and a property of a waste liquid after reduction.

【符号の説明】[Explanation of symbols]

1 老化塩化鉄水溶液 1a 貯蔵タンク 1b ポンプ 2 廃塩酸 2a 貯蔵タンク 2b ポンプ 3 反応槽 3a 撹拌機 4 鉄屑 4a ホッパ 4b ベルトコンベヤ 4c 屑鉄置き場 5 貯槽 6 遠心分離機 7 希釈槽 7a ポンプ 7b 水 7c 撹拌機 7d pH計 7e 調節計 7f バルブ 8 塩酸酸性の塩化第一鉄溶液 8a 貯蔵タンク 8b ポンプ 9 6価クロム含有廃液 10 pH調製槽 10a 撹拌機 10b pH計 11 還元槽 11a 撹拌機 11b ORP計 12 中和槽 12a 撹拌機 12b pH計 13 廃アルカリ 13a 貯蔵タンク 13b ポンプ 14 固液分離装置 1 Aged iron chloride aqueous solution 1a Storage tank 1b pump 2 Waste hydrochloric acid 2a Storage tank 2b pump 3 Reaction tank 3a Stirrer 4 Iron scrap 4a Hopper 4b Belt conveyor 4c Scrap iron storage 5 Storage tank 6 Centrifugal separator 7 Dilution tank 7a Pump 7b Water 7c Stirring 7d pH meter 7e Controller 7f Valve 8 Hydrochloric acid ferrous chloride solution 8a Storage tank 8b Pump 9 Hexavalent chromium-containing waste liquid 10 pH adjustment tank 10a Stirrer 10b pH meter 11 Reduction tank 11a Stirrer 11b ORP meter 12 Medium Japanese tank 12a Stirrer 12b pH meter 13 Waste alkali 13a Storage tank 13b Pump 14 Solid-liquid separator

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくともクロムを含有する鉄合金鋼帯
製造工程において発生する6価クロム含有廃液に同じく
鉄合金鋼帯製造工程において発生する廃塩酸を添加して
pH≦1とした後、同じく鉄合金鋼帯製造工程において
発生する主として塩化第一鉄と塩化第二鉄とから成る廃
水溶液に鉄屑を添加して主として塩化第一鉄から成る溶
液を製造し該溶液に同じく鉄合金鋼帯製造工程において
発生する廃塩酸を添加してpH≦1まで酸性にする工程
を順次経て製造された塩酸酸性の塩化第一鉄水溶液を還
元剤として添加して前記pH≦1とした6価クロム含有
廃液の示す酸化還元電位が塩化銀参照電極に対して500
±10mvの範囲を維持するように還元処理し、同じく鉄
合金鋼帯製造工程において発生する廃アルカリで該還元
処理した6価クロム含有廃液がpH7〜8の範囲を維持
するように中和処理した後に、該中和処理した6価クロ
ム含有廃液を遠心分離機で固液分離することを特徴とす
る6価クロム含有廃液の無害化処理方法。
Claims: 1. A solution containing hexavalent chromium containing at least chromium-containing iron alloy steel strip, to which waste hydrochloric acid also generated in the iron alloy steel strip manufacturing step is added to adjust the pH to ≤1. Iron scrap is added to a waste aqueous solution mainly composed of ferrous chloride and ferric chloride generated in the alloy steel strip production process to produce a solution mainly composed of ferrous chloride, and the iron alloy steel strip is similarly produced in the solution. Hexavalent chromium-containing waste liquor having pH ≤ 1 by adding, as a reducing agent, an aqueous solution of ferrous chloride acidic with hydrochloric acid produced by sequentially adding waste hydrochloric acid generated in the process to acidify to pH ≤ 1 Oxidation-reduction potential of 500 with respect to silver chloride reference electrode
Reduction treatment was performed so as to maintain the range of ± 10 mv, and neutralization treatment was also performed using the waste alkali generated in the iron alloy steel strip manufacturing process so that the hexavalent chromium-containing waste liquid that had been reduced was maintained in the pH range of 7 to 8. A method for detoxifying hexavalent chromium-containing waste liquid, wherein the neutralized hexavalent chromium-containing waste liquid is subsequently subjected to solid-liquid separation with a centrifuge.
【請求項2】 塩化第一鉄と塩化第二鉄とから成る廃水
溶液として、100g/l〜650g/lの塩化第二鉄を含
み、且つ塩化第一鉄濃度との和が650g/l以下である
廃水溶液を使用する請求項1に記載の6価クロム含有廃
液の無害化処理方法。
2. A waste aqueous solution comprising ferrous chloride and ferric chloride, which contains 100 g / l to 650 g / l of ferric chloride, and whose sum with the ferrous chloride concentration is 650 g / l or less. The method for detoxifying hexavalent chromium-containing waste liquid according to claim 1, wherein a waste aqueous solution is used.
【請求項3】 塩化第一鉄と塩化第二鉄とから成る廃水
溶液に添加する鉄屑として10mm角以内の大きさの鉄屑を
使用する請求項1又は2に記載の6価クロム含有廃液の
無害化処理方法。
3. The hexavalent chromium-containing waste liquid according to claim 1, wherein iron scrap having a size of 10 mm square or less is used as the iron scrap added to the waste aqueous solution comprising ferrous chloride and ferric chloride. Detoxification method.
【請求項4】 6価クロム含有廃液がpH7〜8の範囲
を維持するように中和処理する廃アルカリ供給量が不足
の場合に、水酸化カルシウム溶液を使用する請求項1か
ら3までのいずれか1項に記載の6価クロム含有廃液の
無害化処理方法。
4. The method according to claim 1, wherein a calcium hydroxide solution is used when the supply amount of waste alkali for neutralizing the hexavalent chromium-containing waste liquid so as to maintain the pH in the range of 7 to 8 is insufficient. The method for detoxifying a hexavalent chromium-containing waste liquid according to claim 1 or 2.
JP06151292A 1992-02-17 1992-02-17 Detoxification method for waste liquid containing hexavalent chromium Expired - Fee Related JP3171912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06151292A JP3171912B2 (en) 1992-02-17 1992-02-17 Detoxification method for waste liquid containing hexavalent chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06151292A JP3171912B2 (en) 1992-02-17 1992-02-17 Detoxification method for waste liquid containing hexavalent chromium

Publications (2)

Publication Number Publication Date
JPH05228478A JPH05228478A (en) 1993-09-07
JP3171912B2 true JP3171912B2 (en) 2001-06-04

Family

ID=13173215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06151292A Expired - Fee Related JP3171912B2 (en) 1992-02-17 1992-02-17 Detoxification method for waste liquid containing hexavalent chromium

Country Status (1)

Country Link
JP (1) JP3171912B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308827B1 (en) * 1996-05-16 2001-12-17 이구택 Heavy metal wastewater treatment system
KR100345296B1 (en) * 1998-12-11 2002-11-18 재단법인 포항산업과학연구원 Treatment method of waste water containing hexavalent chromium compound_
KR100388033B1 (en) * 1998-12-21 2003-08-19 주식회사 포스코 Method for Extracting Hexavalent Chromium from Trivalent Chromium-Containing Wastewater Sludge
JP2001293485A (en) * 2000-04-12 2001-10-23 Kurita Water Ind Ltd Method and device for treating hexavalent chromium- containing waste water
JP2006289336A (en) * 2004-09-27 2006-10-26 Mitsubishi Materials Corp Apparatus for treating heavy metal-containing water
RU2573531C2 (en) * 2013-10-14 2016-01-20 Алексей Сергеевич Ахлюстин Recovery of chromium-bearing and etchant effluents (versions)
JP5843921B2 (en) * 2014-05-20 2016-01-13 三菱重工業株式会社 Desalination apparatus and desalination method

Also Published As

Publication number Publication date
JPH05228478A (en) 1993-09-07

Similar Documents

Publication Publication Date Title
JP5579414B2 (en) Treatment method for wastewater containing reducing selenium
JP4947640B2 (en) Waste acid solution treatment method
CN104310647A (en) Recycling method for treating stainless steel pickling acid pickle and wastewater
JPS5840192A (en) Treatment of industrial waste water
JP5431998B2 (en) Method and apparatus for recovering copper from acidic waste liquid containing copper
CN108358409A (en) A kind of steel wire rope sludge and spent acid method for innocent treatment
Rezaee et al. Simultaneous removal of hexavalent chromium and nitrate from wastewater using electrocoagulation method
JP3171912B2 (en) Detoxification method for waste liquid containing hexavalent chromium
JP2009066570A (en) Method for reducing cement-based turbid water-derived chromium
CN108793652B (en) Pickling sludge recycling treatment device and technology
US11008221B2 (en) Polyferric sulphate solution
JP2018083172A (en) Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation equipment with the same
JP4678599B2 (en) Treatment method for wastewater containing phosphoric acid
JP4735359B2 (en) Treatment method of iron-containing waste liquid
DENffiL et al. Removal of arsenic from wastewaters using electrocoagulation
JPH10113678A (en) Method for making nitrate ion-containing waste liquid harmless and device therefor
RU2517507C2 (en) Method of treating cyanide-containing pulp with "active" chlorine
JPH0699181A (en) Method for treating waste liquid containing decomposition-resistant organic substance
JPH09155368A (en) Treatment process for flue gas desulfurization drain
JP2008264654A (en) Waste liquid treatment method and apparatus using iron-oxidizing bacteria
JP2005313112A (en) Method for treating waste water containing cyanogen
KR100482204B1 (en) Waste water treatment agent and a method for treating waste water using it
JP2005177647A (en) Method and apparatus for removing selenium in wastewater
JP3129561B2 (en) Neutral salt electrolytic treatment method and apparatus for descaling of chromium iron alloy strip
JPS6178491A (en) Treatment of pickling rinse waste liquid

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010313

LAPS Cancellation because of no payment of annual fees