KR100495765B1 - Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby - Google Patents

Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby Download PDF

Info

Publication number
KR100495765B1
KR100495765B1 KR10-2002-0080565A KR20020080565A KR100495765B1 KR 100495765 B1 KR100495765 B1 KR 100495765B1 KR 20020080565 A KR20020080565 A KR 20020080565A KR 100495765 B1 KR100495765 B1 KR 100495765B1
Authority
KR
South Korea
Prior art keywords
iron
hydrogen peroxide
reaction
iron oxide
treatment
Prior art date
Application number
KR10-2002-0080565A
Other languages
Korean (ko)
Other versions
KR20040052386A (en
Inventor
박윤창
이시훈
Original Assignee
학교법인 성균관대학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 성균관대학 filed Critical 학교법인 성균관대학
Priority to KR10-2002-0080565A priority Critical patent/KR100495765B1/en
Publication of KR20040052386A publication Critical patent/KR20040052386A/en
Application granted granted Critical
Publication of KR100495765B1 publication Critical patent/KR100495765B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 펜톤산화처리에 효과적인 산화철 촉매를 제조하는 방법에 있어서, 이온성 철을 알칼리제로 처리하여 수산화철을 제조한 후 100 내지 1000℃ 사이의 온도에서 2 내지 8시간 동안 소성시키는 것을 특징으로 하는 펜톤산화처리용 철산화물 촉매의 제조방법 및 이에 의해 제조된 철산화물 촉매를 제공한다. 또한, 본 발명은 이와 같이 제조된 철산화물 촉매를 난분해성 유기물을 함유하는 폐수처리 또는 음용수처리에 이용하는 방법을 제공한다. The present invention is a method for producing an iron oxide catalyst effective for fenton oxidation treatment, the ionic iron is treated with an alkali agent to produce iron hydroxide and then fired for 2 to 8 hours at a temperature between 100 to 1000 ℃ Provided are a method for preparing an iron oxide catalyst for oxidation treatment and an iron oxide catalyst produced thereby. The present invention also provides a method of using the iron oxide catalyst prepared in this way for wastewater treatment or drinking water treatment containing hardly decomposable organic substances.

이와 같은 본 발명의 산화철 촉매를 이용한 펜톤산화처리법은 촉매가 이온성 철이 아니므로 pH 5 이상에서도 철수산화물 슬러리를 발생시키지 않으며, 산 조건뿐만 아니라 중성 조건에서도 우수한 폐기물 처리효과를 나타내고 과량의 과산화수소를 사용하지 않으므로, 처리 후 과산화수소의 잔류를 방지할 수 있어 펜톤공정에 의한 폐수처리를 가능하게 하고 슬러리 처리비를 발생시키지 않음은 물론 과산화수소 사용량의 감소, 불수용성으로 인한 촉매 재활용 등에 의한 비용절감의 효과를 얻을 수 있다. The Fenton oxidation treatment method using the iron oxide catalyst of the present invention does not generate an iron hydroxide slurry even at pH 5 or higher because the catalyst is not ionic iron, and exhibits an excellent waste treatment effect not only in acidic conditions but also in neutral conditions and using excess hydrogen peroxide. Since it is possible to prevent residual hydrogen peroxide after treatment, it is possible to treat wastewater by the Fenton process, not to generate slurry treatment costs, and to reduce costs such as reduction of hydrogen peroxide usage and catalyst recycling due to insoluble water. Can be.

Description

펜톤산화처리용 산화철 촉매의 제조방법 및 이에 의해 제조된 산화철 촉매의 용도{METHOD OF PREPARING IRON OXIDE CATALYSTS FOR FENTON OXIDATION AND USE OF IRON OXIDE CATALYSTS PREPARED THEREBY}METHOD OF PREPARING IRON OXIDE CATALYSTS FOR FENTON OXIDATION AND USE OF IRON OXIDE CATALYSTS PREPARED THEREBY}

본 발명은 펜톤산화처리에 유용한 산화철 촉매의 개선된 제조방법, 이에 의해 제조된 산화철 촉매 및 이 촉매를 난분해성 유기물을 함유하는 폐수 또는 음용수의 펜톤산화처리에 이용하는 방법에 관한 것이다.The present invention relates to an improved process for the production of iron oxide catalysts useful for fenton oxidation, and to methods for producing iron oxide catalysts and their use in fenton oxidation of waste water or drinking water containing hardly decomposable organic matter.

유기물을 함유하는 폐수는 각종 화합물을 이용한 제조과정에서 발생되어 강이나 바다로 흘러 자연환경을 저해하는 주요인으로, 폐수에 함유된 유기물은 그 종류가 매우 다양하다. 근원적으로 유기물이란 탄소, 산소, 질소, 수소, 황 등의 원소로 이루어진 물질을 뜻하는 것으로, 탄소간 결합 형태에 따라 알칸, 알켄, 알킨의 세가지로 크게 구분될 수 있으며, 각 분자들에는 작용기들이 결합되어 폐수에 함유된 유기물의 특성을 나타낸다. 작용기의 형태에 따라 폐수 등에 함유된 유기물은 알데히드, 니트릴, 알코올, 아민, 아마이드, 방향족, 산 등으로 구분되어진다. Wastewater containing organic matter is generated in the manufacturing process using various compounds and flows to rivers and seas and is a major factor that inhibits the natural environment. The organic matter contained in the wastewater is very diverse. Basically, organic substance means a substance composed of elements such as carbon, oxygen, nitrogen, hydrogen, and sulfur, and can be classified into three kinds of alkanes, alkenes, and alkynes according to the carbon-to-carbon bond type. Combined to characterize the organics contained in the wastewater. Depending on the form of the functional group, the organic matter contained in the waste water is classified into aldehyde, nitrile, alcohol, amine, amide, aromatic, acid, and the like.

이와 같이 폐수에 함유된 유기물의 종류가 매우 다양하므로 폐수 등의 처리는 매우 어렵다.As such, since the types of organic matter contained in the wastewater are very diverse, it is very difficult to treat the wastewater.

폐수 중에 질소가 함유된 화합물, 예를 들어 아민화합물, 아미드화합물, 아미노산화합물 등을 포함한 폐수는 음이온 고분자응집제를 이용하여 응집 처리하나 방출되는 슬러지에 아민을 함유하게 되므로 후속처리가 필요하다. 또한, 흡착방법을 사용할 경우에도 흡착제의 효율이 아민으로 인해 저하되기 때문에 곤란하다.Wastewater containing nitrogen-containing compounds, such as amine compounds, amide compounds, amino acid compounds, etc., in the wastewater is flocculated using an anionic polymer coagulant, but subsequent treatment is necessary because the sludge is released. In addition, even when the adsorption method is used, it is difficult because the efficiency of the adsorbent is lowered due to the amine.

황화합물을 함유한 폐수 등의 경우 생물학적 처리와 연소법 중 하나 또는 두가지를 병행하여 처리하는 것이 일반적이다. 상기 생물학적 처리의 경우 유기체가 나쁘게 영향을 받지 않도록 폐수용액을 희석시키는 것이 필요하며, 상기 연소법은 별도의 연료가 필요하며 폐수 등에 황이 많이 함유되어 있기 때문에 다량의 이산화황이 형성되므로 탈황장치가 필요하다.In the case of wastewater containing sulfur compounds, it is common to treat one or both of the biological treatment and the combustion method in parallel. In the case of the biological treatment, it is necessary to dilute the wastewater solution so that the organism is not adversely affected, and the combustion method requires a separate fuel, and since sulfuric acid is contained in the wastewater in a large amount, a desulfurization device is required.

유기 할로겐 화합물이 함유된 폐수 등의 경우 유기 할로겐 화합물이 분해가 어렵기 때문에 자연환경에서 심하게 축적되어 그 결과로 지하수 오염이 여러 곳에서 나타난다. 더구나, 유기 할로겐화합물은 발암물질로 판명되어 트리클로로에틸렌, 테트라클로로에틸렌, 1,1,1-트리클로로에탄 등이 수질오염방지법의 규제품목으로 지정되어 있다. 이러한 유기 할로겐화합물을 함유한 폐수를 처리하는 방법으로는 증발법, 흡착법 등이 있으나 근본적인 환경오염방지가 곤란하거나 흡착제 처리공정 등이 필요하다. In the case of wastewater containing organic halogen compounds, organic halogen compounds are difficult to decompose, so they accumulate severely in the natural environment, and as a result, groundwater contamination appears in many places. Moreover, organic halogen compounds have been found to be carcinogens, and trichloroethylene, tetrachloroethylene, 1,1,1-trichloroethane and the like have been designated as regulated items of the Water Pollution Prevention Act. Methods of treating wastewater containing organic halogen compounds include evaporation and adsorption, but it is difficult to prevent fundamental environmental pollution or an adsorbent treatment.

지금까지 알려진 난분해성 유기물의 처리방법으로는 활성오니법이라 불리는 생물학적 방법과 화학적 방법이 있다. 활성오니법은 유기화합물을 분해시키는데 긴 시간이 걸리며 폐수를 조류 및 박테리아의 성장에 적합한 농도로 희석시켜야 한다. 따라서, 이 방법은 처리시설을 갖추는데 넓은 공간이 요구되며 난분해성 물질인 방향족 유기물이 함유된 폐수의 경우 활성오니가 쇼크를 받거나 잘 처리되지 않아서 분해되지 않은 채 방류되는 단점을 가지고 있다.Known methods for treating hardly decomposable organic matter include biological and chemical methods called activated sludge methods. Activated sludge takes a long time to decompose organic compounds and the wastewater must be diluted to a concentration suitable for the growth of algae and bacteria. Therefore, this method has a disadvantage in that a large space is required to prepare a treatment facility, and wastewater containing aromatic organic matter, which is a hardly decomposable substance, is discharged without being decomposed due to shock or poor treatment.

현재 가장 일반적으로 사용되는 화학적 처리법으로는 철산화법, 오존산화법, 펜톤(Fenton)산화법 등이 있다.Currently, the most commonly used chemical treatment methods include iron oxidation, ozone oxidation, and Fenton oxidation.

철산화법은 제1철과 제2철을 이용하여 단순한 산화와 응집을 이용하는 방법으로 가격이 저렴하고 처리방식이 용이하며 응집이 우수하나 처리효율이 저조하다.The iron oxidation method uses simple oxidation and agglomeration using ferrous iron and ferric iron, which is inexpensive, easy to process, and excellent in coagulation, but poor in processing efficiency.

오존산화법은 최근에 음용수 처리에 널리 사용되고 있는데, 처리비용이 높고 오존제에 대한 이차 오염이 우려되며, 오존 처리 후 발생되는 가스를 활성탄으로 흡착 처리해야 하고 오존 발생기의 장치가 복잡하며 음용수 처리는 용이하지만 여러 가지 유기물질이 함유된 폐수의 처리효율에는 적합하지 못하다. Recently, ozone oxidation method is widely used for drinking water treatment, which has high treatment cost and concerns about secondary pollution to ozone agent, and it is necessary to adsorb and treat the gas generated after ozone treatment with activated charcoal, and complicated equipment of ozone generator. However, it is not suitable for the treatment efficiency of wastewater containing various organic substances.

펜톤산화법은 1894년 펜톤(H.J.H Fenton)에 의해 발표된 반응으로, 과산화수소와 2가 철이온을 이용하여 유기물을 산화시키는 반응이다. 구체적으로, 과산화수소수에 FeSO4, Fe2(SO4)3, FeCl2, FeCl3 등과 같은 철염을 촉매로 하여 강력한 산화력을 갖고 있는 유리기(OH)를 발생시켜 폐수중에 잔존해 있는 유기물을 분해시키는 방법이다. 이 방법은 비교적 처리효율이 우수한 것으로 나타나고 있으나 반응의 촉매로 사용되는 철로 인하여 철수산화물 형태의 슬러지가 다량 발생하는 문제점을 안고 있다.Fenton oxidation is a reaction published by HJH Fenton in 1894 that oxidizes organic matter using hydrogen peroxide and divalent iron ions. Specifically, hydrogen peroxide water is used as a catalyst for iron salts such as FeSO 4 , Fe 2 (SO 4 ) 3 , FeCl 2 , FeCl 3 to generate free radicals (OH) having strong oxidizing power to decompose organic matter remaining in the waste water. Way. This method has been shown to be relatively excellent in processing efficiency, but has a problem in that a large amount of sludge in the form of iron hydroxide due to the iron used as a catalyst of the reaction.

이외에도 고온고압법, 자외선과 오존 및 과산화수소를 이용한 산화법이 알려져 있으나, COD 농도가 100ppm 이하인 폐수에서만 이용되고 있어 실폐수처리 방법으로는 적합하지 않다. In addition, high temperature, high pressure, ultraviolet, ozone, and oxidation using hydrogen peroxide are known, but are only used in wastewater having a COD concentration of 100 ppm or less, and thus are not suitable as a method for treating wastewater.

본 발명자들은 전술한 여러 화학적 처리법 중에서도 폐수처리효율이 비교적 우수하고, 최근 들어 산업폐수 처리에 적용하려는 시도가 비교적 활발하게 검토되고 있으며, 생물학적으로 난분해성 물질을 생분해가 가능한 물질로 전환한다든지, 독성을 함유하고 있어서 미생물에 악영향을 끼치는 폐수의 독성감소, 생물학적 처리 후 미생물에 의해 처리되지 않은 물질을 처리하는 폴리싱(polishing) 개념의 후처리 등 적용 목적 또한 다양화되어가는 펜톤산화법을 개선시키기 위한 목적으로 지속적인 연구노력을 기울이고 있다. The inventors of the present invention show that the wastewater treatment efficiency is relatively excellent among the various chemical treatment methods described above, and in recent years, attempts to apply industrial wastewater treatment have been relatively actively studied, and biologically degradable substances are converted into biodegradable substances or toxic. The purpose of the present invention is to improve the fenton oxidation method, which is also diversified, which reduces the toxicity of waste water, which has an adverse effect on microorganisms, and the post-treatment of the polishing concept of treating substances not treated by microorganisms after biological treatment. We are making continuous research efforts.

이러한 연구노력의 결과로, 펜톤산화법에 이용되는 촉매를 개량함으로써 전술한 펜톤산화법의 문제점을 해소함과 동시에 월등히 높은 유기물 분해 효율을 나타내는 폐수 처리 방법을 얻을 수 있게 되었다.As a result of this research effort, by improving the catalyst used in the fenton oxidation method, it is possible to solve the above-mentioned problems of the fenton oxidation method and to obtain a wastewater treatment method exhibiting an extremely high decomposition efficiency of organic matter.

본 발명자들은 이미 동시계류중인 한국 특허출원번호 99-54742호를 통해 광펜톤산화처리용 금속산화물 촉매와 이의 제조방법 및 이를 이용한 난분해성 유기물 처리방법을 개시한 바 있다. 이 출원에서는 금속, 금속산화물, 금속탄산화물 또는 금속수산화물을 공기, 산소, 수소 또는 질소 분위기 하에 100 내지 1500℃ 사이에서 소성시키는 것을 특징으로 하는 제조방법을 제시하고 있다. The present inventors have already disclosed a metal oxide catalyst for photophentone oxidation, a method for preparing the same, and a method for treating hardly decomposable organic substances using the same through Korean Patent Application No. 99-54742, which is co-pending. This application proposes a method for producing a metal, a metal oxide, a metal carbonate or a metal hydroxide, which is calcined at 100 to 1500 ° C. under an air, oxygen, hydrogen or nitrogen atmosphere.

본 발명자들은 전술한 출원명세서에 제시된 방법과는 다른 방법으로 펜톤산화용 철산화물 촉매를 제조할 수 있으며 이 촉매의 유기물 분해 효율이 우수함을 발견하여 본 발명을 완성하게 되었다.The present inventors have been able to produce the iron oxide catalyst for fenton oxidation by a method different from the method described in the above-mentioned application, and found that the catalyst has excellent organic decomposition efficiency, thus completing the present invention.

본 발명은 전술한 펜톤산화처리법에 의한 폐수처리시의 제반 문제점을 해결함과 동시에 질소, 황 및 유기할로겐 화합물을 포함하는 폐수는 물론, 난분해 물질인 방향족을 포함하는 유기화합물을 효과적으로 분해하며 미생물처리를 할 경우 미생물의 활성을 활발하게 하는 촉매 및 그 제조방법, 그리고 그 촉매를 이용한 폐수 또는 음용수 등을 높은 효율로 처리하는 방법을 제공하기 위한 것이다. The present invention solves all the problems in wastewater treatment by the Fenton oxidation method described above, and effectively decomposes organic compounds containing aromatics, which are hardly decomposable substances, as well as wastewater containing nitrogen, sulfur, and organic halogen compounds. When the treatment is to provide a catalyst for activating the activity of the microorganism and its production method, and a method for treating waste water or drinking water using the catalyst with high efficiency.

본 발명은 제1 양태로 이온성 철을 알칼리제로 처리하여 수산화철을 제조한 후 약 100 내지 1000℃ 사이의 온도에서 2 내지 8시간 동안 소성시키는 것을 특징으로 하는 펜톤산화처리용 산화철 촉매의 제조 방법을 제공한다.The present invention provides a method for producing an iron oxide catalyst for fenton oxidation, which is characterized in that the iron is prepared by treating ionic iron with an alkali agent in a first embodiment and then calcining at a temperature between about 100 to 1000 ° C. for 2 to 8 hours. to provide.

이 양태에서 이온성 철로는 아세트산철, 황산철, 암모늄철, 염산철, 탄산철, 브롬화철, 플루오르철, 요오드화철, 질산철, 옥살산철, 인산철 등을 각각 단독물로 또는 2종 이상의 혼합물로 사용할 수 있다.In this embodiment, the ionic iron is selected from the group consisting of iron acetate, iron sulfate, iron ammonium, iron hydrochloride, iron carbonate, iron bromide, iron fluoride, iron iodide, iron nitrate, iron oxalate, iron phosphate, respectively, or a mixture of two or more thereof. Can be used as

이 제조방법의 바람직한 구체예로서, 알칼리 처리에는 가성소다, 수산화칼륨, 암모니아 등을 이용할 수 있다. 이 알칼리제의 pH는 pH 8 내지 10의 범위인 것이 적당하다. 바람직하게는, pH 9의 알칼리제인 것이 좋다. As a preferable specific example of this production method, caustic soda, potassium hydroxide, ammonia and the like can be used for the alkali treatment. It is preferable that pH of this alkali chemicals is the range of pH 8-10. Preferably, the alkali agent is pH 9.

이 제조방법의 특히 바람직한 구체예로서, 소성은 전기로를 이용하여 600℃의 온도로 3시간 동안 실시하는 것이 좋다. As a particularly preferred embodiment of this manufacturing method, the firing is preferably carried out for 3 hours at a temperature of 600 ℃ using an electric furnace.

본 발명은 제2 양태로 전술한 제조방법에 의해 제조된 펜톤산화처리용 산화철 촉매를 제공한다. The present invention provides, in a second aspect, an iron oxide catalyst for fenton oxidation treatment prepared by the above-described manufacturing method.

본 발명의 산화철 촉매는 물에 불용성으로, 슬러지 문제를 유발시키지 않고 재활용이 가능하다는 장점이 있다. 또한, 2종 이상의 이온성 철을 이용하여 제조한 경우, 제조된 산화철은 출발물질의 종류에 따라 2가와 3가가 혼재된 산화수를 가지게 된다. 이러한 2가와 3가가 혼재된 산화철은 과산화수소수와 잘 반응하여 산화반응을 일으키므로 좋은 효율을 갖는 펜톤반응의 촉매로 사용할 수 있다.Iron oxide catalyst of the present invention is insoluble in water, there is an advantage that can be recycled without causing sludge problems. In addition, when manufactured using two or more kinds of ionic iron, the produced iron oxide has an oxidation number mixed with divalent and trivalent, depending on the type of starting material. The mixed iron oxides such as divalent and trivalent react well with hydrogen peroxide to cause oxidation, and thus can be used as catalysts for Fenton reaction having good efficiency.

본 발명은 제3 양태로 전술한 펜톤산화처리용 산화철 촉매를 난분해성 유기물이 함유된 폐수를 처리하는데 이용하는 방법을 제공한다.The present invention provides a method of using the above-described iron oxide catalyst for fenton oxidation treatment to treat wastewater containing hardly decomposable organic substances.

또한, 본 발명은 제4 양태로 전술한 펜톤산화처리용 산화철 촉매를 음용수를 처리하는데 이용하는 방법을 제공한다.The present invention also provides a method of using the above-described iron oxide catalyst for fenton oxidation treatment to treat drinking water.

펜톤처리의 가장 큰 목적은 오염 부하량을 감소시키기 위하여 폐수 중에 존재하는 오염물, 특히 유기물을 완전산화시키거나, 고농도 난분해성 유기물을 미생물 분해가 쉽도록 변환시키는 주된 역할을 하는 데 있다. The main purpose of the Fenton treatment is to completely oxidize contaminants, especially organic substances, present in the waste water to reduce the pollutant load, or to convert high concentration hardly degradable organic substances to facilitate microbial decomposition.

종래의 펜톤산화법은 펜톤 시약인 과산화수소 및 철염을 이용하여 OH 라디칼을 발생시킴으로써 펜톤 시약의 강력한 산화력으로 유기물을 분해시키는 것으로 크게 펜톤 시약에 의한 산화반응, 중화 및 철염을 제거하기 위한 응집공정 등 세단계로 나눌 수 있다. The conventional Fenton oxidation method generates OH radicals using hydrogen peroxide and iron salts, the Fenton's reagent, to decompose organic matters with the strong oxidizing power of the Fenton's reagent. Three steps, such as oxidation reaction by the Fenton's reagent, neutralization and coagulation process to remove iron salt Can be divided into:

이러한 펜톤산화법은 다음과 같은 메카니즘에 의해서 유기물을 산화시킨다.This fenton oxidation method oxidizes organic matter by the following mechanism.

상기 산화 메카니즘에 제시된 바와 같이, 종래의 펜톤산화법은 과산화수소수에 의하여 Fe2+ → Fe3+로 산화시키면서 OH·라디칼을 발생시키고 이 OH·라디칼에 의하여 산화반응이 진행된다. 이러한 반응에서 Fe3+가 과산화수소에 의하여 Fe2+로 다시 환원이 되어야 계속 펜톤산화반응이 일어나는데 철이 산화되는 속도가 환원되는 속도보다 빠르므로 3가 철이 축적되는 현상이 발생하고 이에 의하여 반응효율이 떨어지게 된다. 최종적으로는 반응이 더 이상 진행되지 않게 된다. 이러한 효용성이 떨어진 촉매는 가성소다 등을 사용하여 pH를 증가시켜 불용성인 수산화철로 만든 후 이를 제거해야 한다. 이러한 과정에서 폐기대상인 대량의 철슬러리가 발생하게 된다.As shown in the oxidation mechanism, the conventional Fenton oxidation method generates OH radicals while oxidizing Fe 2+ to Fe 3+ by hydrogen peroxide solution, and the oxidation reaction proceeds by the OH radicals. In this reaction, Fe 3+ must be reduced back to Fe 2+ by hydrogen peroxide to continue the phentone oxidation reaction. Since the rate of iron oxidation is faster than the rate of reduction, trivalent iron accumulates, thereby reducing the reaction efficiency. do. Finally, the reaction no longer proceeds. These less effective catalysts should be removed after making them insoluble iron hydroxide by increasing the pH using caustic soda. In this process, a large amount of iron sludge to be generated is generated.

하지만, 본 발명에서는 물에 불용성인 산화철을 폐수처리에 사용하므로 철슬러리의 문제가 발생되지 않으며, 촉매의 재사용이 가능하다. However, in the present invention, since iron oxide insoluble in water is used for wastewater treatment, the problem of iron slurry does not occur, and the catalyst can be reused.

또한, 기존의 펜톤산화법은 철이온의 농도를 대략 5000 ppm 이상 넣어 주어야 하며, 과산화수소수의 양은 철이온의 두 배 가량을 넣어주어야 하므로 약 10000 ppm의 과산화수소수가 들어가야 한다. 그러므로 펜톤산화가 일어나고 난 후에 철이온들은 가성소다를 이용하여 중화시킬 때 수산화철이 되어 침전이 되므로 슬러지 문제가 있고, 또한 반응하지 않고 남는 과량의 과산화수소수를 처리해 주어야 하는 문제점이 있었다. In addition, the conventional Fenton oxidation method should be added to the iron ion concentration of approximately 5000 ppm or more, and the amount of hydrogen peroxide should be added about twice the iron ion, about 10000 ppm of hydrogen peroxide water should be entered. Therefore, after the phenton oxidation occurs, the iron ions become iron hydroxide when it is neutralized using caustic soda, so that there is a sludge problem, and there is a problem that the excess hydrogen peroxide solution to react without reacting.

이에 반해, 본 발명의 산화철 촉매는 1000 ppm 정도면 가능하고, 과산화수소수의 양은 400 ppm 이면 가능하므로, 과산화수소가 모두 반응에서 소모되는 바, 잔류 과산화수소수의 문제가 없다. On the other hand, the iron oxide catalyst of the present invention can be about 1000 ppm and the amount of hydrogen peroxide can be 400 ppm, so that all of the hydrogen peroxide is consumed in the reaction, so there is no problem of residual hydrogen peroxide solution.

펜톤산화법의 경우 pH가 중요하다. 종래의 펜톤산화법은 pH를 2 ∼ 4 사이로 유지시켜주어야 반응이 진행되므로, 반응탱크의 부식의 문제가 발생하고, 반응 후 다시 pH를 중성으로 맞추어주어야 하므로 수산화나트륨과 같은 알칼리제를 사용하였다. pH가 5 이상으로 증가되면 촉매로 사용되는 철이온이 철수산화물을 형성하고 이러한 철수산화물은 펜톤반응에 더 이상 참가하지 않는 것으로 알려져 있다. PH is important for fenton oxidation. In the conventional Fenton oxidation method, since the reaction proceeds only when the pH is maintained between 2 and 4, the problem of corrosion of the reaction tank occurs, and an alkaline agent such as sodium hydroxide was used because the pH should be adjusted to neutral again after the reaction. When the pH is increased to 5 or more, iron ions used as catalysts form iron hydroxides, which are known to no longer participate in the Fenton reaction.

이에 반해, 본 발명에서 제조된 철산화물 촉매는 철이온이 아니므로 pH가 5 이상이 되더라고 철수산화물을 형성하지 않는다. 또한, 본 발명의 산화철 촉매는 중성, 산성에서 모두 반응을 잘 일으키고, 대개의 폐수가 약산성인 pH = 6 정도이므로 인위적으로 pH를 조작할 필요가 없으므로 탱크의 부식이나 반응 후 pH를 중성으로 만들기 위한 인위적인 조작을 할 필요가 없다. In contrast, the iron oxide catalyst prepared in the present invention does not form iron hydroxide even though the pH is 5 or more because it is not iron ion. In addition, the iron oxide catalyst of the present invention reacts well in both neutral and acidic conditions, and since most wastewaters have a weak acidity of pH = 6, there is no need to artificially manipulate the pH, so that the pH of the tank is neutral after corrosion or reaction. There is no need for artificial manipulation.

이하, 본 발명은 실시예를 통해 보다 상세하게 설명되지만, 본 발명은 이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(실시예 1)(Example 1)

아세트산철 100g을 물 1L에 용해시킨 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.100 g of iron acetate was dissolved in 1 L of water, and 4 g of caustic soda was added to the solution to prepare iron hydroxide, which was then precipitated to obtain solid iron hydroxide. The iron hydroxide thus obtained was dried and calcined at 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

이와 같이 제조된 산화철 촉매의 산화상태를 측정하기 위하여, X선 광전자 분광학으로 분석하였다. 그 결과는 도 1에 나타낸 바와 같다. 비교군으로 기존의 펜톤산화법에 많이 이용되는 황산철(b) 및 기존의 산화철인 침철석(c), 적철석(d), 자철석(e)의 X선 광전자 분광계로 측정한 결과를 함께 나타내었다. 이 결과로부터, 본 발명의 산화철 촉매가 기존의 어떠한 산화철과도 다른 산화상태를 보임을 알 수 있었다. In order to measure the oxidation state of the iron oxide catalyst thus prepared, it was analyzed by X-ray photoelectron spectroscopy. The result is as shown in FIG. As a comparative group, the results obtained by X-ray photoelectron spectroscopy of iron sulfate (b) and iron oxide (c), hematite (d), and magnetite (e), which are widely used in the conventional Fenton oxidation method, are shown. From this result, it was found that the iron oxide catalyst of the present invention exhibits an oxidation state different from that of any existing iron oxide.

(실시예 2) (Example 2)

황산제일철 100g을 물 1L에 용해한 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.100 g of ferrous sulfate was dissolved in 1 L of water, and 4 g of caustic soda was added to the solution to prepare iron hydroxide, which was then precipitated to obtain a solid iron hydroxide. The iron hydroxide thus obtained was dried and calcined at 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

(실시예 3)(Example 3)

암모늄철 100g을 물 1L에 용해한 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃사이의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.100 g of iron ammonium was dissolved in 1 L of water, and then 4 g of caustic soda was added to the solution to prepare iron hydroxide, followed by precipitation to obtain solid iron hydroxide. The iron hydroxide thus obtained was dried and then fired at a temperature between 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

(실시예 4)(Example 4)

염산철 100g을 물 1L에 용해한 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.After dissolving 100 g of iron hydrochloride in 1 L of water, 4 g of caustic soda was added to the solution to prepare iron hydroxide, and then precipitated to obtain a solid iron hydroxide. The iron hydroxide thus obtained was dried and calcined at 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

(실시예 5)(Example 5)

탄산철 100g을 물 1L에 용해한 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.After dissolving 100 g of iron carbonate in 1 L of water, 4 g of caustic soda was added to the solution to prepare iron hydroxide, and then precipitated to obtain solid iron hydroxide. The iron hydroxide thus obtained was dried and calcined at 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

(실시예 6)(Example 6)

브롬화철 100g을 물 1L에 용해한 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.100 g of iron bromide was dissolved in 1 L of water, and 4 g of caustic soda was added to the solution to prepare iron hydroxide, followed by precipitation to obtain solid iron hydroxide. The iron hydroxide thus obtained was dried and calcined at 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

(실시예 7)(Example 7)

플루오르철 100g을 물 1L에 용해한 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.After dissolving 100 g of iron fluoride in 1 L of water, 4 g of caustic soda was added to the solution to prepare iron hydroxide, and then precipitated to obtain a solid iron hydroxide. The iron hydroxide thus obtained was dried and calcined at 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

(실시예 8)(Example 8)

요오드화철 100g을 물 1L에 용해한 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.100 g of iron iodide was dissolved in 1 L of water, and 4 g of caustic soda was added to the solution to prepare iron hydroxide, followed by precipitation to obtain solid iron hydroxide. The iron hydroxide thus obtained was dried and calcined at 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

(실시예 9)(Example 9)

질산철 100g을 물 1L에 용해한 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.After dissolving 100 g of iron nitrate in 1 L of water, 4 g of caustic soda was added to the solution to prepare iron hydroxide, and then precipitated to obtain a solid iron hydroxide. The iron hydroxide thus obtained was dried and calcined at 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

(실시예 10)(Example 10)

옥살산철 100g을 물 1L에 용해한 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.After dissolving 100 g of iron oxalate in 1 L of water, 4 g of caustic soda was added to the solution to prepare iron hydroxide, and then precipitated to obtain a solid iron hydroxide. The iron hydroxide thus obtained was dried and calcined at 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

(실시예 11)(Example 11)

인산철 100g을 물 1L에 용해한 다음, 가성소다 4g을 용액에 첨가하여 수산화철을 제조한 다음, 침전을 시켜서 고형의 수산화철을 얻었다. 이렇게 얻은 수산화철을 건조한 다음 전기로를 사용하여 600℃의 온도로 3시간 동안 소성하여 산화철 촉매를 제조하였다.After dissolving 100 g of iron phosphate in 1 L of water, 4 g of caustic soda was added to the solution to prepare iron hydroxide, and then precipitated to obtain a solid iron hydroxide. The iron hydroxide thus obtained was dried and calcined at 600 ° C. for 3 hours using an electric furnace to prepare an iron oxide catalyst.

이하, 본 발명의 산화철 촉매의 난분해성 유기물 분해능을 시험평가하기 위하여 합성 폐수에 난분해성 유기물로 페놀, 4-클로로페놀 또는 2-클로로페놀과 본 발명의 산화철 촉매를 첨가하여 페놀 분해율 및 과산화수소 분해율을 측정하였다. 비교군으로는 기존의 펜톤산화법에 널리 이용되는 황산철과 기존의 산화철인 침철석, 적철석, 자철석을 사용하여 실험하였다.Hereinafter, in order to test-evaluate the degradability of the organic oxides of the iron oxide catalyst of the present invention, phenol, 4-chlorophenol or 2-chlorophenol and the iron oxide catalyst of the present invention are added to the synthetic wastewater to reduce the phenol decomposition rate and the hydrogen peroxide decomposition rate. Measured. The comparative group was experimented with iron sulfate widely used in the conventional Fenton oxidation method and goethite, hematite, magnetite and iron oxide.

(처리예 1)(Processing example 1)

난분해성 유기물질인 페놀이 200 ppm 함유된 합성폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 실시예 1에서 얻은 촉매(산화철) 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 15분간 반응시킨 결과 페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 99% 이상 분해되는 것을 확인할 수 있었다.(참조: 도 2)PH was adjusted to 3 by adding acid to 100 mL of synthetic wastewater containing 200 ppm of phenol, which is a hardly decomposable organic substance, and then 0.1 g of the catalyst (iron oxide) obtained in Example 1 was added and 0.1 mL of 35% hydrogen peroxide solution was added thereto. The reaction was carried out. After reaction at room temperature for 15 minutes, phenol was decomposed more than 99%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed more than 99% after 40 minutes (see FIG. 2).

(비교처리예 1)Comparative Example 1

난분해성 유기물질인 페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 펜톤산화처리법에서 촉매로 많이 사용하는 황산철 0.0035 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 15분간 반응시킨 결과 페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 99% 이상 분해되는 것을 확인할 수 있었다.(참조: 도 3)After adding acid to 100 mL of wastewater containing 200 ppm of phenol, which is a hardly decomposable organic substance, adjust pH to 3, and then add 0.0035 g of iron sulfate, which is used as a catalyst in the conventional Fenton oxidation method, and 0.1 mL of 35% hydrogen peroxide solution. After the reaction was carried out. After reaction at room temperature for 15 minutes, phenol was decomposed more than 99%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed more than 99% after 40 minutes (see Fig. 3).

(비교처리예 2)Comparative Example 2

난분해성 유기물질인 페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 산화철 중에 하나인 침철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 15분간 반응시킨 결과 페놀이 10%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 50% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 4)After adding acid to 100 mL of wastewater containing 200 ppm of phenol, which is a hardly decomposable organic substance, pH was adjusted to 3, 0.1 g of goethite, one of the existing iron oxides was added, and 0.1 mL of 35% hydrogen peroxide solution was added. . After reaction at room temperature for 15 minutes, phenol was decomposed about 10%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that more than 50% of hydrogen peroxide water remained after 40 minutes (see Fig. 4).

(비교처리예 3)Comparative Example 3

난분해성 유기물질인 페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 산화철 중에 하나인 적철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 15분간 반응시킨 결과 페놀이 40%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 50% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 4)After adding acid to 100 mL of wastewater containing 200 ppm of phenol, which is a hardly decomposable organic substance, pH was adjusted to 3, 0.1 g of hematite, one of the existing iron oxides was added, and 0.1 mL of 35% hydrogen peroxide solution was added. . The reaction was carried out at room temperature for 15 minutes, resulting in about 40% degradation of phenol. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that more than 50% of hydrogen peroxide water remained after 40 minutes (see Fig. 4).

(비교처리예 4)Comparative Example 4

난분해성 유기물질인 페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 산화철 중에 하나인 자철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 15분간 반응시킨 결과 페놀이 45%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 50% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 4)After adding acid to 100 mL of wastewater containing 200 ppm of phenol, which is a hardly decomposable organic substance, pH was adjusted to 3, 0.1 g of magnetite, one of the existing iron oxides was added, and 0.1 mL of 35% hydrogen peroxide solution was added. . After 15 minutes of reaction at room temperature, phenol decomposed about 45%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that more than 50% of hydrogen peroxide water remained after 40 minutes (see Fig. 4).

(처리예 2)(Process Example 2)

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 실시예 1에서 얻은 촉매(산화철) 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 5분간 반응시킨 결과 4-클로로페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 30분 후에는 과산화수소수가 99% 이상 분해되는 것을 확인할 수 있었다.(참조: 도 5)PH was adjusted to 3 by adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol, a hardly decomposable organic substance, and 0.1 g of the catalyst (iron oxide) obtained in Example 1 was added, and 0.1 mL of 35% hydrogen peroxide solution was added. After the reaction was carried out. After 5 minutes of reaction at room temperature, 4-chlorophenol was decomposed more than 99%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed more than 99% after 30 minutes (see FIG. 5).

(비교처리예 5)Comparative Example 5

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 펜톤산화처리법에서 촉매로 많이 사용하는 황산철 0.0035 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 5분간 반응시킨 결과 4-클로로페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 90% 정도 분해되는 것을 확인할 수 있었다.(참조: 도 6)PH was adjusted to 3 by adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol, which is a hardly decomposable organic substance. Then, 0.0035 g of iron sulfate, which is frequently used as a catalyst in the conventional Fenton oxidation method, was added, followed by 35% hydrogen peroxide. 0.1 mL of water was added and reacted. After 5 minutes of reaction at room temperature, 4-chlorophenol was decomposed more than 99%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed about 90% after 40 minutes (see FIG. 6).

(비교처리예 6)Comparative Example 6

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 산화철 중에 하나인 침철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 4-클로로페놀이 60%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 40% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 7)After adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol which is a hardly decomposable organic substance, adjust pH to 3, add 0.1 g of goethite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 4-chlorophenol was decomposed about 60%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that 40% or more of hydrogen peroxide water remained after 40 minutes (see FIG. 7).

(비교처리예 7)Comparative Example 7

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 산화철 중에 하나인 적철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 4-클로로페놀이 50%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 50% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 7)After adding acid to 100 mL of waste water containing 200 ppm of 4-chlorophenol which is a hardly decomposable organic substance, adjust pH to 3, add 0.1 g of hematite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 4-chlorophenol decomposed about 50%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that more than 50% of hydrogen peroxide water remained after 40 minutes (see Fig. 7).

(비교처리예 8)Comparative Example 8

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 산화철 중에 하나인 자철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 4-클로로페놀이 50%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 50% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 7)After adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol which is a hardly decomposable organic substance, adjust pH to 3, add 0.1 g of magnetite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 4-chlorophenol decomposed about 50%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that more than 50% of hydrogen peroxide water remained after 40 minutes (see Fig. 7).

(처리예 3)(Process 3)

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 실시예 1에서 얻은 촉매(산화철) 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 5분간 반응시킨 결과 2-클로로페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 30분 후에는 과산화수소수가 99% 이상 분해되는 것을 확인할 수 있었다.(참조: 도 8)PH was adjusted to 3 by adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, a hardly decomposable organic substance, and then 0.1 g of the catalyst (iron oxide) obtained in Example 1 was added and 0.1 mL of 35% hydrogen peroxide solution was added. After the reaction was carried out. After 5 minutes of reaction at room temperature, 2-chlorophenol was decomposed more than 99%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed more than 99% after 30 minutes (see FIG. 8).

(비교처리예 9)Comparative Example 9

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 펜톤산화처리법에서 촉매로 많이 사용하는 황산철 0.0035 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 5분간 반응시킨 결과 2-클로로페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 30분 후에는 과산화수소수가 90% 정도 분해되는 것을 확인할 수 있었다.(참조: 도 9)After adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol which is a hardly decomposable organic substance, pH was adjusted to 3, and then 0.0035 g of iron sulfate, which is frequently used as a catalyst in the conventional Fenton oxidation method, was added, followed by 35% hydrogen peroxide. 0.1 mL of water was added and reacted. After 5 minutes of reaction at room temperature, 2-chlorophenol was decomposed more than 99%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed about 90% after 30 minutes (see Fig. 9).

(비교처리예 10)Comparative Example 10

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 산화철 중에 하나인 침철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 2-클로로페놀이 40%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 60% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 10)After adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, which is a hardly decomposable organic substance, adjust pH to 3, add 0.1 g of goethite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 2-chlorophenol decomposed about 40%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water remained more than 60% (see Fig. 10).

(비교처리예 11)Comparative Example 11

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 산화철 중에 하나인 적철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 2-클로로페놀이 40%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 60% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 10)After adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol which is a hardly decomposable organic substance, adjust pH to 3, add 0.1 g of hematite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 2-chlorophenol decomposed about 40%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water remained more than 60% (see Fig. 10).

(비교처리예 12)Comparative Example 12

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 3으로 맞춘 후, 기존의 산화철 중에 하나인 자철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 2-클로로페놀이 35%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 60% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 10)After adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, which is a hardly decomposable organic substance, adjust pH to 3, add 0.1 g of magnetite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 2-chlorophenol decomposed about 35%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water remained more than 60% (see Fig. 10).

(처리예 4)(Processing Example 4)

난분해성 유기물질인 페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 실시예 1에서 얻은 촉매(산화철) 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 20분간 반응시킨 결과 페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 99% 이상 분해되는 것을 확인할 수 있었다.(참조: 도 2)PH was adjusted to 5 by adding acid to 100 mL of wastewater containing 200 ppm of phenol, which is a hardly decomposable organic substance, and then 0.1 g of the catalyst (iron oxide) obtained in Example 1 was added, followed by adding 0.1 mL of 35% hydrogen peroxide solution. Let. After 20 minutes of reaction at room temperature, phenol was decomposed more than 99%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed more than 99% after 40 minutes (see FIG. 2).

(비교처리예 13)Comparative Example 13

난분해성 유기물질인 페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 기존의 펜톤산화처리법에서 촉매로 많이 사용하는 황산철 0.0035 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 40분간 반응시킨 결과 페놀이 거의 분해되지 않았다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에도 과산화수소수가 거의 분해되지 않는 것을 확인할 수 있었다.(참조: 도 3)PH was adjusted to 5 by adding acid to 100 mL of wastewater containing 200 ppm of phenol, which is a hardly decomposable organic substance, and then 0.0035 g of iron sulfate, which is frequently used as a catalyst in the conventional Fenton oxidation method, was added, and 35% hydrogen peroxide 0.1 mL. After the reaction was carried out. After 40 minutes of reaction at room temperature, phenol was hardly decomposed. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that hydrogen peroxide water was hardly decomposed even after 40 minutes (see FIG. 3).

(처리예 5)(Process 5)

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 실시예 1에서 얻은 촉매(산화철) 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 20분간 반응시킨 결과 4-클로로페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 30분 후에는 과산화수소수가 99% 이상 분해되는 것을 확인할 수 있었다.(참조: 도 5)PH was adjusted to 5 by adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol, a hardly decomposable organic substance, and 0.1 g of the catalyst (iron oxide) obtained in Example 1 was added, and 0.1 mL of 35% hydrogen peroxide solution was added. After the reaction was carried out. After 20 minutes of reaction at room temperature, 4-chlorophenol was decomposed more than 99%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed more than 99% after 30 minutes (see FIG. 5).

(비교처리예 14)Comparative Example 14

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 기존의 펜톤산화처리법에서 촉매로 많이 사용하는 황산철 0.0035 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 20분간 반응시킨 결과 4-클로로페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 99% 정도 분해되는 것을 확인할 수 있었다.(참조: 도 6)PH was adjusted to 5 by adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol, a hardly decomposable organic substance, and then 0.0035 g of iron sulfate, which is frequently used as a catalyst in the conventional Fenton oxidation method, was added to 35% hydrogen peroxide. 0.1 mL of water was added and reacted. After 20 minutes of reaction at room temperature, 4-chlorophenol was decomposed more than 99%. In addition, as a result of checking the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed by about 99% after 40 minutes (see FIG. 6).

(비교처리예 15)Comparative Example 15

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 기존의 산화철 중에 하나인 침철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 4-클로로페놀이 35%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 65% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 7)PH was adjusted to 5 by adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol, a hardly decomposable organic substance, and then 0.1 g of goethite, one of the existing iron oxides, and 0.1 mL of 35% hydrogen peroxide solution were added. The reaction was carried out. After 30 minutes of reaction at room temperature, 4-chlorophenol decomposed about 35%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water remained more than 65% (see Fig. 7).

(비교처리예 16)Comparative Example 16

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 기존의 산화철 중에 하나인 적철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 4-클로로페놀이 45%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 55% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 7)After adding acid to 100 mL of waste water containing 200 ppm of 4-chlorophenol, which is a hardly decomposable organic substance, adjust pH to 5, add 0.1 g of hematite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 4-chlorophenol decomposed about 45%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that more than 55% of hydrogen peroxide water remained after 40 minutes (see Fig. 7).

(비교처리예 17)Comparative Example 17

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 기존의 산화철 중에 하나인 자철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 4-클로로페놀이 45%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 55% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 7)After adding acid to 100 mL of waste water containing 200 ppm of 4-chlorophenol, which is a hardly decomposable organic substance, adjust pH to 5, add 0.1 g of magnetite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 4-chlorophenol decomposed about 45%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that more than 55% of hydrogen peroxide water remained after 40 minutes (see Fig. 7).

(처리예 6)(Processing example 6)

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 실시예 1에서 얻은 촉매(산화철) 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 20분간 반응시킨 결과 2-클로로페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 30분 후에는 과산화수소수가 99% 이상 분해되는 것을 확인할 수 있었다.(참조: 도 8)PH was adjusted to 5 by adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, a hardly decomposable organic substance, and 0.1 g of the catalyst (iron oxide) obtained in Example 1 was added, and 0.1 mL of 35% hydrogen peroxide solution was added. After the reaction was carried out. After 20 minutes of reaction at room temperature, 2-chlorophenol was decomposed more than 99%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed more than 99% after 30 minutes (see FIG. 8).

(비교처리예 18)Comparative Example 18

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 기존의 펜톤산화처리법에서 촉매로 많이 사용하는 황산철 0.0035 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 20분간 반응시킨 결과 2-클로로페놀이 90%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 30분 후에는 과산화수소수가 90% 정도 분해되는 것을 확인할 수 있었다.(참조: 도 9)PH was adjusted to 5 by adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, which is a hardly decomposable organic substance, and then added 0.0035 g of iron sulfate, which is frequently used as a catalyst in the conventional Fenton oxidation method, and 35% hydrogen peroxide. 0.1 mL of water was added and reacted. After 20 minutes of reaction at room temperature, 2-chlorophenol was decomposed more than 90%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed about 90% after 30 minutes (see Fig. 9).

(비교처리예 19)Comparative Example 19

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 기존의 산화철 중에 하나인 침철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 2-클로로페놀이 15%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 80% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 10)After adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol which is a hardly decomposable organic substance, adjust pH to 5, add 0.1 g of goethite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 2-chlorophenol decomposed about 15%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that more than 80% of hydrogen peroxide water remained after 40 minutes (see Fig. 10).

(비교처리예 20)Comparative Example 20

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 기존의 산화철 중에 하나인 적철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 2-클로로페놀이 35%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 60% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 10)After adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, which is a hardly decomposable organic substance, adjust pH to 5, add 0.1 g of hematite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 2-chlorophenol decomposed about 35%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water remained more than 60% (see Fig. 10).

(비교처리예 21)Comparative Example 21

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 5로 맞춘 후, 기존의 산화철 중에 하나인 자철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 2-클로로페놀이 25%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 70% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 10)PH was adjusted to 5 by adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, a hardly decomposable organic substance, and then 0.1 g of magnetite, one of the existing iron oxides, and 0.1 mL of 35% hydrogen peroxide solution were added. The reaction was carried out. After 30 minutes of reaction at room temperature, 2-chlorophenol decomposed about 25%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that more than 70% of hydrogen peroxide water remained after 40 minutes (see Fig. 10).

(처리예 7)(Process Example 7)

난분해성 유기물질인 페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 실시예 1에서 얻은 촉매(산화철) 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 페놀이 90%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 90% 이상 분해되는 것을 확인할 수 있었다.(참조: 도 2)PH was adjusted to 7 by adding acid to 100 mL of wastewater containing 200 ppm of phenol, which is a hardly decomposable organic substance, and then 0.1 g of the catalyst (iron oxide) obtained in Example 1 was added and 0.1 mL of 35% hydrogen peroxide solution was added. Let. After 30 minutes of reaction at room temperature, phenol was decomposed more than 90%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed 90% or more after 40 minutes (see Fig. 2).

(비교처리예 22)Comparative Example 22

난분해성 유기물질인 페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 기존의 펜톤산화처리법에서 촉매로 많이 사용하는 황산철 0.0035 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 40분간 반응시킨 결과 페놀이 거의 분해되지 않았다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에도 과산화수소수가 거의 분해되지 않는 것을 확인할 수 있었다.(참조: 도 3)After adding acid to 100 mL of wastewater containing 200 ppm of phenol, which is a hardly decomposable organic substance, adjust pH to 7. Then, add 0.0035 g of iron sulfate which is used as a catalyst in the conventional Fenton oxidation method, and 0.1 mL of 35% hydrogen peroxide solution. After the reaction was carried out. After 40 minutes of reaction at room temperature, phenol was hardly decomposed. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that hydrogen peroxide water was hardly decomposed even after 40 minutes (see FIG. 3).

(처리예 8)(Process Example 8)

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 실시예 1에서 얻은 촉매(산화철) 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 40분간 반응시킨 결과 4-클로로페놀이 98%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 90% 이상 분해되는 것을 확인할 수 있었다.(참조: 도 5)PH was adjusted to 7 by adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol, a hardly decomposable organic substance, and 0.1 g of the catalyst (iron oxide) obtained in Example 1 was added, and 0.1 mL of 35% hydrogen peroxide solution was added. After the reaction was carried out. After 40 minutes of reaction at room temperature, 4-chlorophenol was decomposed more than 98%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was decomposed 90% or more after 40 minutes (see Fig. 5).

(비교처리예 23)Comparative Example 23

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 기존의 펜톤산화처리법에서 촉매로 많이 사용하는 황산철 0.0035 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 40분간 반응시킨 결과 4-클로로페놀이 거의 분해되지 않았다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수도 거의 분해되지 않는 것을 확인할 수 있었다.(참조: 도 6)PH was adjusted to 7 by adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol, which is a hardly decomposable organic substance. Then, 0.0035 g of iron sulfate, which is frequently used as a catalyst in the conventional Fenton oxidation method, was added, followed by 35% hydrogen peroxide. 0.1 mL of water was added and reacted. After 40 minutes of reaction at room temperature, 4-chlorophenol was hardly decomposed. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that the hydrogen peroxide water was hardly decomposed after 40 minutes (see FIG. 6).

(비교처리예 24)Comparative Example 24

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 기존의 산화철 중에 하나인 침철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 4-클로로페놀이 30%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 70% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 7)After adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol, which is a hardly decomposable organic substance, pH was adjusted to 7. Then, 0.1 g of goethite, one of the existing iron oxides, was added, and 0.1 mL of 35% hydrogen peroxide solution was added. The reaction was carried out. After 30 minutes of reaction at room temperature, 4-chlorophenol was decomposed about 30%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that more than 70% of hydrogen peroxide water remained after 40 minutes (see Fig. 7).

(비교처리예 25)Comparative Example 25

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 기존의 산화철 중에 하나인 적철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 4-클로로페놀이 40%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 60% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 7)After adding acid to 100 mL of wastewater containing 200 ppm of 4-chlorophenol which is a hardly decomposable organic substance, pH was adjusted to 7, and then 0.1 g of hematite, one of the existing iron oxides, and 0.1 mL of 35% hydrogen peroxide solution were added. The reaction was carried out. After 30 minutes of reaction at room temperature, 4-chlorophenol was decomposed about 40%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water remained more than 60% (see Fig. 7).

(비교처리예 26)Comparative Example 26

난분해성 유기물질인 4-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 기존의 산화철 중에 하나인 자철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 4-클로로페놀이 40%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 60% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 7)After adding acid to 100 mL of waste water containing 200 ppm of 4-chlorophenol, which is a hardly decomposable organic substance, adjust pH to 7. Then, add 0.1 g of magnetite, one of the existing iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 4-chlorophenol was decomposed about 40%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water remained more than 60% (see Fig. 7).

(처리예 9)(Process Example 9)

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 실시예 1에서 얻은 촉매(산화철) 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 40분간 반응시킨 결과 2-클로로페놀이 99%이상 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 95% 이상 분해되는 것을 확인할 수 있었다.(참조: 도 8)PH was adjusted to 7 by adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, a hardly decomposable organic substance, and then 0.1 g of the catalyst (iron oxide) obtained in Example 1 was added and 0.1 mL of 35% hydrogen peroxide solution After the reaction was carried out. After reacting for 40 minutes at room temperature, 2-chlorophenol was decomposed more than 99%. In addition, as a result of checking the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water was decomposed by 95% or more.

(비교처리예 27)Comparative Example 27

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 기존의 펜톤산화처리법에서 촉매로 많이 사용하는 황산철 0.0035 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 40분간 반응시킨 결과 2-클로로페놀이 거의 분해되지 않았다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수도 거의 분해되지 않는 것을 확인할 수 있었다.(참조: 도 9)After adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol which is a hardly decomposable organic substance, pH was adjusted to 7. 0.1 mL of water was added and reacted. After reacting for 40 minutes at room temperature, 2-chlorophenol was hardly decomposed. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that hydrogen peroxide was hardly decomposed after 40 minutes (see FIG. 9).

(비교처리예 28)Comparative Example 28

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 기존의 산화철 중에 하나인 침철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 2-클로로페놀이 35%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 60% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 10)After adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, which is a hardly decomposable organic substance, adjust pH to 7. The reaction was carried out. After 30 minutes of reaction at room temperature, 2-chlorophenol decomposed about 35%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water remained more than 60% (see Fig. 10).

(비교처리예 29)Comparative Example 29

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 기존의 산화철 중에 하나인 적철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 2-클로로페놀이 65%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 30% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 10)After adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, which is a hardly decomposable organic substance, pH was adjusted to 7. The reaction was carried out. After 30 minutes of reaction at room temperature, 2-chlorophenol decomposed about 65%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water remained more than 30% (see Fig. 10).

(비교처리예 30)Comparative Example 30

난분해성 유기물질인 2-클로로페놀이 200 ppm 함유된 폐수 100 mL에 산을 첨가하여 pH를 7로 맞춘 후, 기존의 산화철 중에 하나인 자철석 0.1 g를 넣고, 35% 과산화수소수 0.1 mL을 넣은 후 반응을 시켰다. 실온에서 30분간 반응시킨 결과 2-클로로페놀이 35%정도 분해되었다. 또한 반응 후의 과산화수소 잔량을 확인한 결과 40분 후에는 과산화수소수가 60% 이상 남아있는 것을 확인할 수 있었다.(참조: 도 10)After adding acid to 100 mL of wastewater containing 200 ppm of 2-chlorophenol, which is a hardly decomposable organic substance, adjust pH to 7. Then, add 0.1 g of magnetite, one of the iron oxides, and add 0.1 mL of 35% hydrogen peroxide solution. The reaction was carried out. After 30 minutes of reaction at room temperature, 2-chlorophenol decomposed about 35%. In addition, as a result of confirming the residual amount of hydrogen peroxide after the reaction, it was confirmed that after 40 minutes, the hydrogen peroxide water remained more than 60% (see Fig. 10).

이상과 같이 본 발명의 산화철 촉매가 기존의 산화철에 비하여 난분해성 유기물 분해율이 우수한 것으로 나타나는 바, 본 발명의 산화철 촉매가 나타내는 상이한 산화상태가 펜톤처리법에 유리하게 작용하고 있음을 알 수 있었다.As described above, since the iron oxide catalyst of the present invention exhibits excellent decomposition rate of hardly decomposable organic matter as compared to the conventional iron oxide, it was found that different oxidation states represented by the iron oxide catalyst of the present invention are advantageous for the Fenton treatment method.

본 발명의 제조방법에 의해 제조된 산화철 촉매를 이용한 폐수처리방법은 기존의 펜톤공정의 단점으로 지적되고 있는 산조건의 제한과 처리 후 발생되는 철슬러리를 근본적으로 제거하여 기존의 펜톤공정을 적용하기 어려운 사업장에서 적용이 가능하고, 산조건을 만들고 다시 중성으로 방류하기 위하여 사용되는 약품 비용과 폐수의 양을 획기적으로 줄일 수 있으며, 슬러리가 발생되지 않으므로 슬러리 처리비용이 들지 않으므로 기존의 펜톤처리법에 비하여 획기적으로 비용이 절감된다.Wastewater treatment method using the iron oxide catalyst prepared by the production method of the present invention is applied to the conventional Fenton process by fundamentally removing the iron slurry generated after the limitation of the acid conditions and the treatment is pointed out as a disadvantage of the conventional Fenton process It can be applied in difficult workplaces, drastically reduce the amount of chemicals and waste water used to create acid conditions and discharge to neutral again, and it does not incur slurry processing costs because no slurry is generated. Significantly reduce costs

펜톤처리법을 적용하고 있는 폐수처리장에서 폐수처리에 적용이 가능하며, 기존의 펜톤처리법은 음용수에 적용시 잔존 과산화수소수 문제 때문에 적용이 어려우나 이 처리방법은 잔존 과산화수소수가 없고, 철성분이 물에 녹아들어가지 않으므로 음용수의 처리에도 적용할 수 있다. 기존의 펜톤처리법을 적용하고 있는 모든 사업장에 적용이 가능하고, 기존의 펜톤처리공정에 비하여 전체적인 비용이 절감되므로 폐수처리시장이나 음용수 처리공정 시장에 매우 시장성이 큰 것으로 판단된다. It can be applied to wastewater treatment in the wastewater treatment plant applying Fenton treatment method. Existing Fenton treatment method is difficult to apply to drinking water because of remaining hydrogen peroxide problem, but this treatment method does not have residual hydrogen peroxide solution and iron component is dissolved in water. It can also be applied to the treatment of drinking water. It can be applied to all workplaces using the existing Fenton treatment method, and the overall cost is reduced compared to the existing Fenton treatment process. Therefore, it is considered to be very marketable in the wastewater treatment market or the drinking water treatment market.

도 1은 본 발명의 제조방법에 따라 수득한 산화철과 기존 산화철들의 상이한 산화상태를 나타내는 비교 측정된 XPS(X선 광전자 분광학) 그래프이다.1 is a comparative measured XPS (X-ray photoelectron spectroscopy) graph showing different oxidation states of iron oxide and conventional iron oxides obtained according to the production method of the present invention.

도 2는 본 발명에 의해서 제조된 산화철을 이용한 페놀의 펜톤산화처리결과이다.Figure 2 is a result of fenton oxidation of phenol using iron oxide prepared according to the present invention.

도 3은 기존의 펜톤처리법에서 많이 사용되는 황산철을 이용한 페놀의 펜톤산화처리결과이다.3 is a result of fenton oxidation of phenol using iron sulfate, which is widely used in the conventional Fenton treatment method.

도 4는 기존의 산화철, 즉 (a) 자철석, (b) 적철석, (c) 침철석을 이용한 페놀의 펜톤산화처리결과이다.Figure 4 shows the results of phenton oxidation of phenol using conventional iron oxide, namely (a) magnetite, (b) hematite, and (c) goethite.

도 5는 본 발명에 의해서 제조된 산화철을 이용한 4-클로로페놀의 펜톤산화처리결과이다.5 is a penton oxidation result of 4-chlorophenol using iron oxide prepared according to the present invention.

도 6은 기존의 펜톤처리법에서 많이 사용되는 황산철을 이용한 4-클로로페놀의 펜톤산화처리결과이다.6 is a result of fenton oxidation of 4-chlorophenol using iron sulfate which is widely used in the conventional fenton treatment.

도 7은 기존의 산화철, 즉 (a) 자철석, (b) 적철석, (c) 침철석을 이용한 4-클로로페놀의 펜톤산화처리결과이다.7 shows the results of phenton oxidation of 4-chlorophenol using iron oxide, namely (a) magnetite, (b) hematite, and (c) goethite.

도 8은 본 발명에 의해서 제조된 산화철을 이용한 2-클로로페놀의 펜톤산화처리결과이다.8 is a result of fenton oxidation of 2-chlorophenol using iron oxide prepared according to the present invention.

도 9는 기존의 펜톤처리법에서 많이 사용되는 황산철을 이용한 2-클로로페놀의 펜톤산화처리결과이다.9 is a result of fenton oxidation of 2-chlorophenol using iron sulfate which is widely used in the conventional fenton treatment method.

도 10은 기존의 산화철, 즉 (a) 자철석, (b) 적철석, (c) 침철석을 이용한 2-클로로페놀의 펜톤산화처리결과이다.10 shows the results of phenton oxidation of 2-chlorophenol using iron oxide, namely (a) magnetite, (b) hematite, and (c) goethite.

Claims (7)

이온성 철과 알칼리제를 반응시켜 수산화철을 제조한 후, 100 내지 1000℃ 사이의 온도에서 2 내지 8 시간 소성시키는 것을 특징으로 하는 펜톤산화처리용 산화철 촉매의 제조방법.The iron hydroxide is prepared by reacting an ionic iron with an alkali agent, and then calcined at a temperature between 100 and 1000 ° C. for 2 to 8 hours. 제1항에 있어서, 이온성 철이 아세트산철, 황산제일철 및 황산제이철, 암모늄철, 염산철, 탄산철, 브롬화철, 플루오르철, 요오드화철, 질산철, 옥살산철, 인산철로 구성된 군 중에서 선택되는 단독물 또는 2종 이상의 혼합물인 것을 특징으로 하는 펜톤산화처리용 산화철 촉매의 제조방법.The sole ionic iron according to claim 1, wherein the ionic iron is selected from the group consisting of iron acetate, ferrous sulfate and ferric sulfate, iron ammonium, iron hydrochloride, iron carbonate, iron bromide, iron fluoride, iron iodide, iron nitrate, iron oxalate, and iron phosphate A process for producing an iron oxide catalyst for fenton oxidation, which is water or a mixture of two or more kinds. 제1항에 있어서, 알칼리제가 가성소다, 수산화칼륨, 암모니아 또는 암모니아와 염화암모늄, 암모니아와 황산암모늄으로 만든 완충용액으로 구성된 군 중에서 선택되는 것을 특징으로 하는 펜톤산화처리용 산화철 촉매의 제조방법.The method of claim 1, wherein the alkaline agent is selected from the group consisting of caustic soda, potassium hydroxide, ammonia, or a buffer solution made of ammonia and ammonium chloride, ammonia and ammonium sulfate. 제1항 내지 제3항 중 어느 한 항에 기재된 제조방법에 따라 제조된 펜톤산화처리용 산화철 촉매. An iron oxide catalyst for fenton oxidation treatment produced according to any one of claims 1 to 3. 제4항에 기재된 펜톤산화처리용 산화철 촉매를 난분해성 유기물을 함유하는 폐수처리에 이용하는 방법.The method of using the iron oxide catalyst for fenton oxidation treatment of Claim 4 for wastewater treatment containing hardly decomposable organic substance. 제5항에 있어서, 난분해성 유기물이 질소, 황, 유기할로겐 화합물 및 방향족을 함유하는 유기화합물을 포함하는 것을 특징으로 하는 방법.6. The method of claim 5 wherein the hardly degradable organics comprise organic compounds containing nitrogen, sulfur, organohalogen compounds and aromatics. 제4항에 기재된 펜톤산화처리용 산화철 촉매를 음용수 처리에 이용하는 방법.A method of using the iron oxide catalyst for fenton oxidation treatment according to claim 4 for drinking water treatment.
KR10-2002-0080565A 2002-12-17 2002-12-17 Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby KR100495765B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0080565A KR100495765B1 (en) 2002-12-17 2002-12-17 Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0080565A KR100495765B1 (en) 2002-12-17 2002-12-17 Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby

Publications (2)

Publication Number Publication Date
KR20040052386A KR20040052386A (en) 2004-06-23
KR100495765B1 true KR100495765B1 (en) 2005-06-16

Family

ID=37346056

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0080565A KR100495765B1 (en) 2002-12-17 2002-12-17 Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby

Country Status (1)

Country Link
KR (1) KR100495765B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209270B1 (en) * 2018-12-14 2021-01-29 한국과학기술연구원 Sulfated transition metal oxide catalysts for electro-fenton reaction system, electrode comprising the same and electro-fenton reaction system using the same
KR102358097B1 (en) * 2020-06-01 2022-02-04 (주)이앤켐솔루션 Preparation method of amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction
CN113244937B (en) * 2021-04-25 2022-05-03 中南民族大学 Fenton oxidation water treatment method of coupling sludge biochar-iron phosphate catalyst
KR102675006B1 (en) * 2022-08-24 2024-06-13 (주)이앤켐솔루션 Manufacturing method of Iron sulfide carrier for treatment of nitrogen in wastewater
KR102631442B1 (en) * 2022-09-14 2024-01-30 주식회사 브이엘홀딩스 A method of recycling BOE waste liquid

Also Published As

Publication number Publication date
KR20040052386A (en) 2004-06-23

Similar Documents

Publication Publication Date Title
US5948269A (en) Process for the removal and suppression of dissolved hydrogen sulfide and other malodorous compounds and reduction of acidity in liquid and sludge wastewater systems
KR100778754B1 (en) Method for chemical treatment of wastewater comprising cyanide compounds
CN110803736A (en) Bionic denitrification method for wastewater containing low-concentration nitrate and/or nitrite
CN110799461A (en) Wastewater treatment method for removing chemical oxygen demand
KR101406526B1 (en) Zero valent iron based water treatment process and device for the removal of nitrate
Tiwari et al. Applications of ferrate (VI) in the treatment of wastewaters
CN110885145B (en) Method for synchronously removing pollutants in water body and controlling generation of bromine-containing byproducts
Fang et al. Highly efficient in-situ purification of Fe (II)-rich high-arsenic groundwater under anoxic conditions: Promotion mechanisms of PMS on oxidation and adsorption
CN109437386B (en) Method for removing metal thallium in wastewater
KR100495765B1 (en) Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby
KR102456090B1 (en) Manufacturing method of cobalt manganese oxide catalyst and contaminant treatment method using thereof
KR20190138129A (en) Catalyst for fenton oxidation, and process for treating wastewater using the same
KR100495764B1 (en) Method of preparing iron catalysts for fenton oxidation and use of iron catalysts prepared thereby
CN110372048B (en) Method for removing organic matters in water
CN113354057B (en) Degradation treatment method for copper complexing reinforced tetracycline pollutants
CN113603205B (en) Method for accelerating degradation of organic pollutants by potassium permanganate
KR101420656B1 (en) Method for treatment of wastewater containing cyanide
CN115650355A (en) Method for removing low-concentration nitrate or nitrite by simulating self-cleaning process
JP4639309B2 (en) Treatment method of wastewater containing cyanide
KR100394180B1 (en) Metal oxide catalysts for Fenton photo-oxidation, method for preparing the same and method for treating waste water using the same
JP2011115728A (en) Method of removing nitrogen and phosphorus in water and coloring of water
JPH0780479A (en) Treatment of organic compound-containing waste liquid
KR20030008074A (en) Photo-oxideatic treatment of waster discharged from FGD
Castaldi et al. Removal of selenium from FGD scrubber purge water
Song et al. Oxidation of inorganic contaminants by ferrates (VI)-A review

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090528

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee