KR102358097B1 - Preparation method of amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction - Google Patents

Preparation method of amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction Download PDF

Info

Publication number
KR102358097B1
KR102358097B1 KR1020200065804A KR20200065804A KR102358097B1 KR 102358097 B1 KR102358097 B1 KR 102358097B1 KR 1020200065804 A KR1020200065804 A KR 1020200065804A KR 20200065804 A KR20200065804 A KR 20200065804A KR 102358097 B1 KR102358097 B1 KR 102358097B1
Authority
KR
South Korea
Prior art keywords
sulfide
iron
amorphous iron
iron sulfide
heat treatment
Prior art date
Application number
KR1020200065804A
Other languages
Korean (ko)
Other versions
KR20210148668A (en
Inventor
김신동
신재철
김소연
이창하
Original Assignee
(주)이앤켐솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이앤켐솔루션 filed Critical (주)이앤켐솔루션
Priority to KR1020200065804A priority Critical patent/KR102358097B1/en
Publication of KR20210148668A publication Critical patent/KR20210148668A/en
Application granted granted Critical
Publication of KR102358097B1 publication Critical patent/KR102358097B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 황화수소에 의해서 파과된 수산화철을 불활성분위기에서 안정화시킴으로서 난분해성 유기물질을 효과적으로 제거하는 불균일계 펜톤산화반응용 무정형 황화철 촉매의 제조방법에 관한 것이다.
본 발명은 산성광산배수에 가성소다(NaOH) 또는 액상 소석회(Ca(OH)2)를 투입하고, 무기질 바인더를 혼합하여 생성된 수산화철을 준비하는 황화수소 흡착용 수산화철 준비단계(S10)와; 준비된 수산화철에 황화수소를 도입하여 수산화철을 파과시켜 무정형의 황화철을 생성하는 무정형 황화철을 생성하는 단계(S20)와; 황화수소와 반응하여 생성된 무정형 황화철을 열처리 장치에 공급하고, 불활성가스를 도입하여 산소를 제거하는 무정형 황화철의 산소차단 단계(S30)와; 불활성가스로 산소가 제거된 불활성가스 분위기의 열처리장치를 약 100~800℃, 가열하여 열처리하는 무정형 황화철의 열처리 단계(S40);를 포함한다.
The present invention relates to a method for preparing an amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction that effectively removes hardly decomposable organic materials by stabilizing iron hydroxide broken by hydrogen sulfide in an inert atmosphere.
The present invention prepares iron hydroxide for hydrogen sulfide adsorption by adding caustic soda (NaOH) or liquid slaked lime (Ca(OH) 2 ) to acid mine drainage and mixing an inorganic binder to prepare iron hydroxide (S10); introducing hydrogen sulfide into the prepared iron hydroxide to break through the iron hydroxide to produce amorphous iron sulfide to produce amorphous iron sulfide (S20); an oxygen blocking step (S30) of supplying amorphous iron sulfide produced by reaction with hydrogen sulfide to a heat treatment apparatus and introducing an inert gas to remove oxygen; and a heat treatment step (S40) of heat-treating amorphous iron sulfide by heating a heat treatment apparatus in an inert gas atmosphere from which oxygen has been removed with an inert gas at about 100 to 800°C.

Description

불균일계 펜톤산화반응용 무정형 황화철 촉매의 제조방법{Preparation method of amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction}Preparation method of amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction

본 발명은 황화수소에 의해서 파과된 수산화철을 불활성분위기에서 안정화시킴으로서 난분해성 유기물질을 효과적으로 제거하는 불균일계 펜톤산화반응용 무정형 황화철 촉매의 제조방법에 관한 것이다.The present invention relates to a method for preparing an amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction that effectively removes hardly decomposable organic materials by stabilizing iron hydroxide broken by hydrogen sulfide in an inert atmosphere.

고도산화기술(Advanced Oxidation Technology, AOT)은 강력한 산화력을 갖는 활성산화종을 생산하여 난분해성 유기오염물질을 비선택적으로 빠르게 분해시킬 수 있는 수처리 기술이다. Advanced Oxidation Technology (AOT) is a water treatment technology that can non-selectively rapidly decompose difficult-to-decompose organic pollutants by producing active oxidizing species with strong oxidizing power.

유기물을 함유하는 폐수는 각종 화합물을 제조하는 과정에서 발생되어 강이나 바다로 흘러 자연환경을 저해하는 주요 원인으로 폐수에 함유된 유기물은 그 종류가 매우 다양하다. 근원적으로 유기물이란 탄소, 산소, 질소, 수소, 황 등의 원소로 이루어진 물질을 뜻하는 것으로, 탄소간 결합 형태에 따라 알칸, 알켄, 알킨의 세 가지로 크게 구분될 수 있으며, 각 분자들에는 작용기들이 결합되어 폐수에 함유된 유기물의 특성을 나타낸다. 작용기의 형태에 따라 폐수 등에 함유된 유기물은 알데히드, 니트릴, 알코올, 아민, 아마이드, 방향족, 산 등으로 구분되어진다.Wastewater containing organic matter is generated in the process of manufacturing various compounds and flows into rivers or seas, which is the main cause of deterioration of the natural environment. There are many types of organic matter contained in wastewater. Fundamentally, an organic material refers to a substance composed of elements such as carbon, oxygen, nitrogen, hydrogen, and sulfur, and can be broadly divided into three types, alkanes, alkenes, and alkynes, depending on the form of bonding between carbons, and each molecule has a functional group. These are combined to show the characteristics of organic matter contained in wastewater. Depending on the type of functional group, organic substances contained in wastewater are classified into aldehydes, nitriles, alcohols, amines, amides, aromatics, acids, and the like.

이와 같이 폐수에 함유된 유기물의 종류가 매우 다양하므로 폐수 등의 처리는 매우 어렵다.As described above, since the types of organic matter contained in wastewater are very diverse, it is very difficult to treat wastewater and the like.

폐수 중에 질소가 함유된 화합물, 예를 들어 아민화합물, 아미드화합물, 아미노산화합물 등을 포함한 폐수는 음이온 고분자응집제를 이용하여 응집 처리하나 방출되는 슬러지에 아민을 함유하게 되므로 후속처리가 필요하다. 또한, 흡착방법을 사할 경우에도 흡착제의 효율이 아민으로 인해 저하되기 때문에 곤란하다.Wastewater containing nitrogen-containing compounds in wastewater, for example, amine compounds, amide compounds, amino acid compounds, etc., is coagulated using an anionic polymer coagulant. However, since the discharged sludge contains amines, subsequent treatment is required. In addition, even when the adsorption method is used, it is difficult because the efficiency of the adsorbent is lowered due to the amine.

지금까지 알려진 난분해성 유기물의 처리방법으로는 활성오니법이라 불리는 생물학적 방법과 화학적 방법이 있다. 활성 오니법은 유기화합물을 분해시키는데 긴 시간이 걸리며 폐수를 조류 및 박테리아의 성장에 적합한 농도로 희석시켜야 한다. 따라서, 이 방법은 처리시설을 갖추는데 넓은 공간이 요구되며 난분해성 물질인 방향족 유기물이 함유된 폐수의 경우 활성오니가 쇼크를 받거나 잘 처리되지 않아서 분해되지 않은 채 방류되는 단점을 가지고 있다.There are two types of methods for treating difficult-to-decompose organic matter known so far: a biological method called the activated sludge method and a chemical method. The activated sludge method takes a long time to decompose organic compounds, and the wastewater must be diluted to a concentration suitable for the growth of algae and bacteria. Therefore, this method requires a large space to equip a treatment facility, and in the case of wastewater containing aromatic organic matter, which is a difficult-to-decompose material, activated sludge is subjected to shock or is not well treated, so it is discharged without decomposition.

또한, 현재 가장 일반적으로 사용되는 화학적 처리법으로는 철산화법, 오존산화법, 펜톤(Fenton)산화법 등이 있다. In addition, the chemical treatment methods currently most commonly used include iron oxidation method, ozone oxidation method, Fenton oxidation method, and the like.

한국등록특허 제10-2070919호 "촉매, 전극 및 이를 이용한 전기적 펜톤 반응 시스템"에서는 난반해성 유기물을 분해할 수 있는 Fe1-XS로 이루어진 결정성 황화철을 제공하는 것이다.Korean Patent Registration No. 10-2070919 "Catalyst, electrode and electric Fenton reaction system using same" provides crystalline iron sulfide composed of Fe 1-X S capable of decomposing difficult-to-decompose organic matter.

이러한 한국등록특허 제10-2070919호의 결정성 황화철 촉매는 수열합성법(hydrothermal synthesis), 용매열합성법(solvothermal synthesis), 볼-밀링법(mechano-chemical method(ball-milling)), 비템플레이트 또는 템플레이트합성법(non-templated or templated method), 함침법(impregnation method), 딥코팅법(dip coating), 열분해법(thermal decomposition method using Fe-S based complex) 등으로 제조하기 때문에 제조과정이 복잡하고 많은 에너지가 소요되는 문제가 있다.The crystalline iron sulfide catalyst of Korea Patent Registration No. 10-2070919 is hydrothermal synthesis, solvothermal synthesis, mechano-chemical method (ball-milling), non-template or template synthesis method. (non-templated or templated method), impregnation method, dip coating method, thermal decomposition method using Fe-S based complex, etc. There is a problem that takes

본 발명이 해결하고자 하는 과제는 황화수소에 의해서 파과된 수산화철을 불활성분위기에서 안정화시킴으로서 난분해성 유기물질을 효과적으로 제거하는 불균일계 펜톤산화반응용 무정형 황화철 촉매의 제조방법을 제공하는 데 있다.An object of the present invention is to provide a method for preparing an amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction that effectively removes difficult-to-decompose organic substances by stabilizing iron hydroxide broken by hydrogen sulfide in an inert atmosphere.

본 발명에 따른 불균일계 펜톤산화반응용 무정형 황화철 촉매의 제조방법은, 산성광산배수에 가성소다(NaOH) 또는 액상 소석회(Ca(OH)2)를 투입하고, 무기질 바인더를 혼합하여 생성된 수산화철을 준비하는 황화수소 흡착용 수산화철 준비단계(S10)와; 준비된 수산화철에 황화수소를 도입하여 수산화철을 파과시켜 무정형의 황화철을 생성하는 무정형 황화철을 생성하는 단계(S20)와; 황화수소와 반응하여 생성된 무정형 황화철을 열처리 장치에 공급하고, 불활성가스를 도입하여 산소를 제거하는 무정형 황화철의 산소차단 단계(S30)와; 불활성가스로 산소가 제거된 불활성가스 분위기의 열처리장치를 약 100~800 ℃, 가열하여 열처리하는 무정형 황화철의 열처리 단계(S40);를 포함한다. In the method for producing an amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction according to the present invention, caustic soda (NaOH) or liquid slaked lime (Ca(OH) 2 ) is added to acid mine drainage, and iron hydroxide produced by mixing an inorganic binder is A preparation step of preparing iron hydroxide for adsorption of hydrogen sulfide (S10); introducing hydrogen sulfide into the prepared iron hydroxide to break through the iron hydroxide to produce amorphous iron sulfide to produce amorphous iron sulfide (S20); an oxygen blocking step (S30) of supplying amorphous iron sulfide produced by reaction with hydrogen sulfide to a heat treatment apparatus and introducing an inert gas to remove oxygen; and a heat treatment step (S40) of amorphous iron sulfide in which oxygen is removed with an inert gas in an inert gas atmosphere heat treatment apparatus by heating at about 100 to 800 ° C.

바람직하게, 황화수소 흡착용 수산화철은 철염 또는 철성분을 다량 함유한 산성광산배수에 가성소다(NaOH) 또는 액상 소석회(Ca(OH)2)를 투입하고, 무기질 바인더를 혼합하여 생성된 것을 특징으로 한다.Preferably, the iron hydroxide for adsorption of hydrogen sulfide is produced by adding caustic soda (NaOH) or liquid slaked lime (Ca(OH) 2 ) to acid mine drainage containing a large amount of iron salt or iron component, and mixing an inorganic binder. .

바람직하게, 불활성가스는 질소가스인 것을 특징으로 한다.Preferably, the inert gas is characterized in that nitrogen gas.

바람직하게, 열처리온도는 400~500 ℃인 것을 특징으로 한다.Preferably, the heat treatment temperature is characterized in that 400 ~ 500 ℃.

본 발명의 불균일계 펜톤산화반응용 무정형 황화철 촉매는 무정형으로 난분해성 유기물질을 효과적으로 제거할 수 있는 효과가 있다.The amorphous iron sulfide catalyst for the heterogeneous Fenton oxidation reaction of the present invention has the effect of effectively removing an amorphous and hardly decomposable organic material.

또한, 황화수소를 제거하는 수산화철을 재활용할 수 있기 때문에 경제적으로 무정형 황화철를 제조할 수 있는 효과가 있다.In addition, since iron hydroxide that removes hydrogen sulfide can be recycled, it is possible to economically produce amorphous iron sulfide.

또한, 철염 또는 산성광산배수로부터 수산화철을 생성하고 이로부터 무정형 황화철을 생성하면 버려지는 산성광산배수에 의한 환경오염도 예방할 수 있는 장점이 있다.In addition, when iron hydroxide is produced from iron salts or acid mine drainage and amorphous iron sulfide is produced therefrom, there is an advantage in that environmental pollution caused by discarded acid mine drainage can also be prevented.

도 1은 본 발명에 따른 불균일계 펜톤산화반응용 무정형 황화철 촉매의 제조방법의 공정도.
도 2는 본 발명에 따른 실시예의 무정형 황화철 촉매의 X-선 회절 분석결과 그래프.
도 3은 본 발명에 따른 실시예의 무정형 황화철 촉매에 의한 4-클로로페놀의 분해 실험결과 그래프.
도 4는 본 발명에 따른 실시예의 무정형 황화철 촉매의 무정형 황화철의 용출량분석 그래프.
1 is a process diagram of a method for preparing an amorphous iron sulfide catalyst for a heterogeneous Fenton oxidation reaction according to the present invention.
Figure 2 is a graph of the X-ray diffraction analysis results of the amorphous iron sulfide catalyst of Example according to the present invention.
3 is a graph of the decomposition test result of 4-chlorophenol by the amorphous iron sulfide catalyst of an embodiment according to the present invention.
4 is an analysis graph of the amount of elution of amorphous iron sulfide in the amorphous iron sulfide catalyst of an embodiment according to the present invention.

이하 본 발명을 구체적으로 설명하면 다음과 같다. 본 발명의 전체에서 '불균일계'란 촉매에 반응하는 물질과 촉매의 상이 다른 것을 의미하다.Hereinafter, the present invention will be described in detail. In the context of the present invention, the term 'heterogeneous system' means that a material reacting with a catalyst and a phase of the catalyst are different.

본 발명에 따른 불균일계 펜톤산화반응용 무정형 황화철 촉매의 제조방법은 황화수소 흡착용 수산화철을 준비하는 단계(S10)와, 무정형 황화철을 생성하는 단계(S20)와, 무정형 황화철의 산소차단 단계(S30)와, 무정형 황화철의 안정화 단계(S40)을 포함한다.The method for producing an amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction according to the present invention includes the steps of preparing iron hydroxide for hydrogen sulfide adsorption (S10), generating amorphous iron sulfide (S20), and oxygen blocking step of amorphous iron sulfide (S30) and a stabilization step (S40) of amorphous iron sulfide.

황화수소 흡착용 수산화철 준비단계(S10)는 황화수소를 흡착할 수 있는 기공 및 표면을 갖는 수산화철을 준비한다. 이때, 황화수소 흡착용 수산화철은 철염 또는 철성분을 다량 함유한 산성광산배수에 가성소다(NaOH) 또는 액상 소석회(Ca(OH)2)를 투입하고, 무기질 바인더를 혼합하여 생성된 것이 바람직하다. 산성광산배수에 가성소다 또는 액상 소석회를 투입하면 산성광산배수에 존재하는 철화합물을 FeO(OH) 또는 Fe(OH)3 등의 수산화철로 침전되며, 침전된 수산화철을 펠렛 등으로 성형하여 황화수소 흡착용 수산화철 흡착제로 생성할 수 있게 된다.In the iron hydroxide preparation step (S10) for adsorbing hydrogen sulfide, iron hydroxide having pores and surfaces capable of adsorbing hydrogen sulfide is prepared. At this time, the iron hydroxide for adsorption of hydrogen sulfide is produced by adding caustic soda (NaOH) or liquid slaked lime (Ca(OH) 2 ) to acid mine drainage containing a large amount of iron salt or iron component, and mixing the inorganic binder. When caustic soda or liquid slaked lime is added to the acid mine drainage, the iron compounds present in the acid mine drainage are precipitated with iron hydroxide such as FeO(OH) or Fe(OH) 3 , and the precipitated iron hydroxide is molded into pellets, etc. to adsorb hydrogen sulfide It can be produced with an iron hydroxide adsorbent.

무정형 황화철을 생성하는 단계(S20)는 준비된 수산화철에 황화수소를 도입하여 수산화철을 파과시켜 무정형의 황화철을 생성한다. 이때, 흡착탑에 황화수소 흡착용 수산화철을 위치시키고 황화수소를 함유하는 바이오가스를 주입하면 수산화철의 기공 및 표면의 철성분과 반응하여 무정형의 황화철을 생성하게 된다. 이로 인해 바이오가스에 포함된 황화수소도 제거하면서 무정형의 황화철을 생산할 수 있게 된다.In the step (S20) of generating amorphous iron sulfide, hydrogen sulfide is introduced into the prepared iron hydroxide to break through the iron hydroxide to produce amorphous iron sulfide. At this time, when iron hydroxide for hydrogen sulfide adsorption is placed in the adsorption tower and biogas containing hydrogen sulfide is injected, it reacts with the iron components on the pores and surface of the iron hydroxide to produce amorphous iron sulfide. This makes it possible to produce amorphous iron sulfide while also removing hydrogen sulfide contained in biogas.

무정형 황화철의 산소차단 단계(S30)는 황화수소와 반응하여 생성된 무정형 황화철을 열처리 장치에 공급하고, 불활성가스를 도입하여 산소를 제거한다. 이때, 산소의 제거는 질소가스로 퍼지시키는 것이 바람직하다. 이러한 열처리장치에 산소를 제거하면 무정형 황화철의 황성분이 산소와 반응하여 황산화물(SOx)을 생성하면서 유독한 가스의 발생을 방지할 수 있고 황산화물의 생성에 의한 황의 손실을 방지할 수 있게 된다.In the oxygen blocking step (S30) of the amorphous iron sulfide, the amorphous iron sulfide produced by reacting with hydrogen sulfide is supplied to the heat treatment apparatus, and oxygen is removed by introducing an inert gas. At this time, the removal of oxygen is preferably purged with nitrogen gas. When oxygen is removed in such a heat treatment device, the sulfur component of amorphous iron sulfide reacts with oxygen to form sulfur oxide (SO x ), which can prevent the generation of toxic gas and prevent the loss of sulfur due to the formation of sulfur oxide. .

무정형 황화철의 열처리 단계(S40)는 불활성가스로 산소가 제거된 불활성가스 분위기의 열처리장치를 약 100~800 ℃, 특히 400~500℃로 가열하여 열처리한다. 이때, 800 ℃ 이상에서는 대부분이 황화철인 Pyrrhotite(FeX-1S)와 산화철인 Magnetite(Fe3O4)가 혼상으로 존재하고, 황화철 성분들이 녹는 현상이 진행되어 열처리 반응로 표면에 고착됨으로서 공정상에 매우 심대한 악역향을 미치게 문제가 있다. 이에 따라 열처리 단계에서 과량으로 흡착된 황성분이 원소 황으로 전환되고 불활성가스와 수분이 배출된다. 이와 같이 열처리가 완료된 무정형 황화철은 화학적으로 매우 안정화되기 때문에 불균일계 펜톤산화반응용 촉매로 사용할 수 있게 된다. In the heat treatment step (S40) of the amorphous iron sulfide, the heat treatment is performed by heating the heat treatment apparatus in an inert gas atmosphere in which oxygen has been removed with an inert gas to about 100 to 800 °C, particularly 400 to 500 °C. At this time, above 800 ℃, Pyrrhotite (Fe X-1 S), which is mostly iron sulfide, and Magnetite (Fe 3 O 4 ), which is iron oxide, exist in a mixed phase, and the iron sulfide components are melted and fixed on the surface of the heat treatment reactor. There is a problem with having a very serious villainous effect. Accordingly, in the heat treatment step, the excessively adsorbed sulfur component is converted to elemental sulfur, and inert gas and moisture are discharged. Since the amorphous iron sulfide, which has been heat treated in this way, is chemically very stable, it can be used as a catalyst for the heterogeneous Fenton oxidation reaction.

<실험예 1 : 무정형 황화철의 확인 실험><Experimental Example 1: Confirmation experiment of amorphous iron sulfide>

반응탑에 수산화철을 위치시키고 황화수소를 포함하는 바이오가스를 주입하였다. 그 후, 바이오가스 내에 존재하는 황화수소와 수산화철(Fe(OH)3)가 화학반응을 통하여 얻어진 황화철을 건조한 후에 질소 분위기에서 110, 400, 800 ℃로 2시간 동안 열처리를 수행하여 황화철을 생성하였다. Iron hydroxide was placed in the reaction tower and biogas containing hydrogen sulfide was injected. After that, iron sulfide obtained through a chemical reaction between hydrogen sulfide and iron hydroxide (Fe(OH) 3 ) present in biogas was dried and then heat-treated at 110, 400, 800 ° C. for 2 hours in a nitrogen atmosphere to produce iron sulfide.

그리고, X-선 회절기(X-ray diffractometer(XRD))를 사용하여 생성된 각각의 황화철에 대하여 X-선 회절 분석결과를 확인하여 도 1의 그래프로 나타내었다. And, the X-ray diffraction analysis results were confirmed for each iron sulfide produced using an X-ray diffractometer (XRD), and the results were shown in the graph of FIG. 1 .

도 2에 나타난 바와 같이 110℃로 열처리된 경우에 무정형 황화철이고, 400 ℃로 열처리된 경우에 무정형 황화철이지만 미미한 결정화가 확인되었다. 또한, 800 ℃로 열처리된 경우에 황화철인 Pyrrhotite(FeX-1S)와 산화철인 Magnetite(Fe3O4)가 혼상으로 존재하는 것을 확인할 수 있었다. As shown in FIG. 2 , when heat-treated at 110° C., it was amorphous iron sulfide, and when heat-treated at 400° C., it was amorphous iron sulfide, but slight crystallization was confirmed. In addition, when heat-treated at 800 ° C., it was confirmed that Pyrrhotite (Fe X-1 S) as iron sulfide and Magnetite (Fe 3 O 4 ) as iron oxide were present in a mixed phase.

또한 800 ℃로 열처리된 경우에 황화철 성분들이 녹는 현상(멜팅현상)이 진행되어 열처리 반응로 표면에 고착됨으로서 공정상에 매우 악역향을 미치는 것을 확인하였다. In addition, it was confirmed that, when heat-treated at 800 °C, the melting phenomenon (melting phenomenon) of iron sulfide components proceeded and adhered to the surface of the heat treatment reactor, thereby having a very adverse effect on the process.

<실험예2 : 4-클로로페놀의 분해 실험><Experimental Example 2: Decomposition experiment of 4-chlorophenol>

<무정형 황화철의 생성><Production of amorphous iron sulfide>

반응탑에 수산화철을 위치시키고 황화수소를 포함하는 바이오가스를 주입하였다. 그 후, 바이오가스 내에 존재하는 황화수소와 수산화철(Fe(OH)3)가 화학반응을 통하여 얻어진 황화철을 건조한 후에 질소 분위기에서 200, 300, 400, 500℃로 2시간 동안 열처리를 수행하여 실시예의 무정형 황화철을 제조하였다. Iron hydroxide was placed in the reaction tower and biogas containing hydrogen sulfide was injected. After that, after drying iron sulfide obtained through a chemical reaction between hydrogen sulfide and iron hydroxide (Fe(OH)3) present in biogas, heat treatment is performed at 200, 300, 400, and 500° C. for 2 hours in a nitrogen atmosphere, Iron sulfide was prepared.

<4-클로로페놀의 분해 실험><Decomposition experiment of 4-chlorophenol>

실시예로 제조된 200, 300, 400, 500 ℃에서 열처리된 무정형 황화철을 이용하여 pH 5에서의 4-클로로페놀(4-chloro pheno; 이하 '4-CP'라 함)의 분해율을 특정하여 도 3의 그래프로 나타내었다. 초기 4-CP의 농도는 1.0mM이고, 과산화수소(H2O2)의 농도는 100 mM로 H2O2/4-CP비를 100, pH는 5로 고정하여 실험하였다. 실시예로 제조된 200, 300, 400, 500 ℃에서 열처리된 무정형 황화철는 20 g/L로 투입하였다. The decomposition rate of 4-chlorophenol (4-chloro pheno; hereinafter referred to as '4-CP') at pH 5 using amorphous iron sulfide heat-treated at 200, 300, 400, and 500 ° C. 3 as a graph. The initial concentration of 4-CP was 1.0mM, the concentration of hydrogen peroxide (H 2 O 2 ) was 100 mM, the H 2 O 2 /4-CP ratio was 100, and the pH was fixed to 5. The amorphous iron sulfide heat-treated at 200, 300, 400, and 500 °C prepared in Examples was added at 20 g/L.

도 3에 나타난 바와 같이 4-CP의 제거율은 1 시간 이내에 95% 이상으로 확인되었으며, 200 ℃에서 열처리된 무정형 황화철의 제거율이 가장 낮았고, 400~500 ℃에서 열처리된 무정형 황화철의 4-CP 제거율은 98%이상을 유지하였다. As shown in FIG. 3 , the removal rate of 4-CP was confirmed to be 95% or more within 1 hour, the removal rate of amorphous iron sulfide heat treated at 200 ° C. was the lowest, and the 4-CP removal rate of amorphous iron sulfide heat treated at 400 ~ 500 ° C. was 98% or more was maintained.

<무정형 황화철의 철 용출량 실험><Test of iron elution amount of amorphous iron sulfide>

무정형 황화철의 안정도를 확인하기 위하여 실시예로 제조된 200, 300, 400, 500 ℃에서 열처리된 무정형 황화철을 pH 5의 용액에 투입하고 pH 5에서 용출되는 수산화철의 양을 확인하여 도 4의 그래프로 나타내었다. In order to check the stability of amorphous iron sulfide, the amorphous iron sulfide heat-treated at 200, 300, 400, and 500 ° C. prepared in Examples was added to a solution of pH 5, and the amount of iron hydroxide eluted at pH 5 was confirmed as a graph of FIG. indicated.

도 4에 나타난 바와 같이 400, 500 ℃에서 열처리된 무정형 황화철의 용출량은 50~60 ㅅM로서 200 ℃, 300 ℃에서 열처리된 무정형 황화철보다 철의 용출양이 작은 것을 확인하였다. As shown in FIG. 4, the elution amount of amorphous iron sulfide heat treated at 400 and 500 °C was 50-60 μM, and it was confirmed that the iron elution amount was smaller than that of amorphous iron sulfide heat treated at 200 °C and 300 °C.

이와 같이 황화철의 열처리 온도가 낮을수록 원소 황과 철의 결합이 느슨하여 철 이온으로 용출되는 철의 양이 증가하고, 이는 수산화이온과 반응하여 입자상의 수산화철이 증가되는 것으로 확인할 수 있었다. As described above, as the heat treatment temperature of iron sulfide was lowered, the amount of iron eluted as iron ions increased due to a loose bond between elemental sulfur and iron, which reacted with hydroxide ions to increase the amount of particulate iron hydroxide.

이에 따라 무정형 황화철의 적정한 열처리 온도는 400 ℃이상인 것을 확인할 수 있지만, 800 ℃ 이상에서는 황화철이 멜팅되어 공정을 운영하는 것이 불가능하여 촉매로 제조하는 열처리 온도는 400~500 ℃가 효과적임을 확인할 수 있었다. Accordingly, it can be confirmed that the appropriate heat treatment temperature for amorphous iron sulfide is 400 ° C. or higher, but at 800 ° C or higher, iron sulfide is melted and it is impossible to operate the process.

황화철의 열처리 온도에 따른 영향은 pH 5에서는 크게 차이가 없는 것으로 확인되었지만, 입자상물질로 전환되는 촉매의 양은 안정화 온도가 낮을수록 증가하는 것을 확인할 수 있었다. It was confirmed that the effect of the heat treatment temperature of iron sulfide was not significantly different at pH 5, but the amount of catalyst converted to particulate matter increased as the stabilization temperature was lowered.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described with reference to limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and the following by those of ordinary skill in the art to which the present invention pertains Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (4)

산성광산배수에 가성소다(NaOH) 또는 액상 소석회(Ca(OH)2)를 투입하고, 무기질 바인더를 혼합하여 생성된 수산화철을 준비하는 황화수소 흡착용 수산화철 준비단계(S10)와;
준비된 수산화철에 황화수소를 도입하여 수산화철을 파과시켜 무정형의 황화철을 생성하는 무정형 황화철을 생성하는 단계(S20)와;
황화수소와 반응하여 생성된 무정형 황화철을 열처리 장치에 공급하고, 불활성가스를 도입하여 산소를 제거하는 무정형 황화철의 산소차단 단계(S30)와;
불활성가스로 산소가 제거된 불활성가스 분위기의 열처리장치를 100~800℃, 가열하여 열처리하는 무정형 황화철의 열처리 단계(S40);를 포함하는 것을 특징으로 하는 불균일계 펜톤산화반응용 무정형 황화철 촉매의 제조방법.
Preparing iron hydroxide for hydrogen sulfide adsorption by adding caustic soda (NaOH) or liquid slaked lime (Ca(OH) 2 ) to acid mine drainage and preparing iron hydroxide produced by mixing an inorganic binder (S10);
introducing hydrogen sulfide into the prepared iron hydroxide to break through the iron hydroxide to produce amorphous iron sulfide to produce amorphous iron sulfide (S20);
an oxygen blocking step (S30) of supplying amorphous iron sulfide produced by reaction with hydrogen sulfide to a heat treatment apparatus and introducing an inert gas to remove oxygen;
A non-uniform iron sulfide catalyst for heterogeneous Fenton oxidation reaction, characterized in that it comprises; a heat treatment step (S40) of heat-treating amorphous iron sulfide by heating an inert gas atmosphere in which oxygen has been removed with an inert gas at 100 to 800° C. Way.
삭제delete 청구항 1에 있어서, 불활성가스는 질소가스인 것을 특징으로 하는 불균일계 펜톤산화반응용 무정형 황화철 촉매의 제조방법.
The method of claim 1, wherein the inert gas is nitrogen gas.
청구항 1에 있어서, 열처리온도는 400~500℃인 것을 특징으로 하는 불균일계 펜톤산화반응용 무정형 황화철 촉매의 제조방법.The method according to claim 1, wherein the heat treatment temperature is 400 ~ 500 ℃ method for producing an amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction.
KR1020200065804A 2020-06-01 2020-06-01 Preparation method of amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction KR102358097B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200065804A KR102358097B1 (en) 2020-06-01 2020-06-01 Preparation method of amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200065804A KR102358097B1 (en) 2020-06-01 2020-06-01 Preparation method of amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction

Publications (2)

Publication Number Publication Date
KR20210148668A KR20210148668A (en) 2021-12-08
KR102358097B1 true KR102358097B1 (en) 2022-02-04

Family

ID=78867894

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200065804A KR102358097B1 (en) 2020-06-01 2020-06-01 Preparation method of amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction

Country Status (1)

Country Link
KR (1) KR102358097B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102675006B1 (en) * 2022-08-24 2024-06-13 (주)이앤켐솔루션 Manufacturing method of Iron sulfide carrier for treatment of nitrogen in wastewater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495765B1 (en) * 2002-12-17 2005-06-16 학교법인 성균관대학 Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby
KR101118538B1 (en) * 2009-08-26 2012-02-24 재단법인 포항산업과학연구원 Method for removing hydrogen sulfide by using ferrous compound

Also Published As

Publication number Publication date
KR20210148668A (en) 2021-12-08

Similar Documents

Publication Publication Date Title
Liu et al. Oxygen vacancies-enriched Cu/Co bimetallic oxides catalysts for high-efficiency peroxymonosulfate activation to degrade TC: Insight into the increase of Cu+ triggered by Co doping
Lin et al. Efficient elimination of caffeine from water using Oxone activated by a magnetic and recyclable cobalt/carbon nanocomposite derived from ZIF-67
CA2221851C (en) Regeneration of active carbon and polymeric adsorbents
KR100651433B1 (en) Method of and apparatus for regenerating adsorbent
KR102358097B1 (en) Preparation method of amorphous iron sulfide catalyst for heterogeneous Fenton oxidation reaction
CN112340830B (en) Application of catalyst taking waste adsorbent after adsorption-desorption as raw material in treating high-salt organic wastewater by activating persulfate
CN105664701A (en) Method for resourcefully using coking wastewater for preparing ammonia-hydrocarbon denitrifying agent
CN109047320B (en) Remediation method for organic contaminated soil
CN110642270A (en) Method for refining and treating industrial waste salt
CN111995155A (en) Method for recycling ammoniacal nitrogen-containing acidic wastewater
CN114345344A (en) Persulfate catalyst and preparation method and application thereof
KR101815916B1 (en) Activated carbon regeneration method using ozone, hydroxyl radical and strong base
KR102085614B1 (en) Wastewater treatment method and treatment device
KR102456090B1 (en) Manufacturing method of cobalt manganese oxide catalyst and contaminant treatment method using thereof
WO2005075355A2 (en) Process of removal of ammonium from waste water
KR20200083848A (en) Adsorbent for simultaneous removal of hydrogen sulfide ammonia siloxane using alum-sludge
KR101727148B1 (en) Method for treating waste water of nuclear plant containing ethanol amine, adsorbnet and porous material for the same
KR20210033106A (en) Method for eliminating pollutant from solution
JP3667597B2 (en) Method for treating ammonia-containing wastewater discharged from semiconductor manufacturing processes
CN114249451B (en) Novel method for treating high-temperature gas cooled reactor element core preparation process wastewater
KR102675006B1 (en) Manufacturing method of Iron sulfide carrier for treatment of nitrogen in wastewater
JP5443059B2 (en) Water treatment equipment
KR101653382B1 (en) Manufacuring method of complex adsorbent for ammonia removal
CN110090386B (en) Method for low-temperature catalytic oxidation of sodium cyanide
KR20210119755A (en) A method for preparing magnetic organic catalyst based on biomass for oxidation of fenton, a magnetic organic catalyst therefrom, and use of the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant