KR101653382B1 - Manufacuring method of complex adsorbent for ammonia removal - Google Patents

Manufacuring method of complex adsorbent for ammonia removal Download PDF

Info

Publication number
KR101653382B1
KR101653382B1 KR1020150026608A KR20150026608A KR101653382B1 KR 101653382 B1 KR101653382 B1 KR 101653382B1 KR 1020150026608 A KR1020150026608 A KR 1020150026608A KR 20150026608 A KR20150026608 A KR 20150026608A KR 101653382 B1 KR101653382 B1 KR 101653382B1
Authority
KR
South Korea
Prior art keywords
ammonia
iron
based compound
neutralizing agent
activated carbon
Prior art date
Application number
KR1020150026608A
Other languages
Korean (ko)
Inventor
김신동
임혜림
민경민
박경선
박성순
김나은
Original Assignee
주식회사 이앤켐솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이앤켐솔루션 filed Critical 주식회사 이앤켐솔루션
Priority to KR1020150026608A priority Critical patent/KR101653382B1/en
Application granted granted Critical
Publication of KR101653382B1 publication Critical patent/KR101653382B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a manufacturing method of a complex adsorbent with excellent ammonia adsorbability for ammonia removal, which generates iron oxyhydroxide (FeOOH) via a neutralization reaction between an iron-based compound and an ammonia-based neutralizing agent by titrating the iron-based compound with the ammonia-based neutralizing agent in the presence of powdered active carbon, and which uniformly distributes the iron oxyhydroxide (FeOOH) on the surface and pores of the powdered active carbon. According to the present invention, the manufacturing method of a complex adsorbent for ammonia removal comprises the following steps: mixing an iron-based compound and distilled water in a weight ratio of 3:1 to generate an iron-based compound solution, adding powdered active carbon to the iron-based compound solution, and performing an agitation process to uniformly infiltrating the iron-based compound solution into the surface and pores of the powdered active carbon; performing titration with an ammonia-based neutralizing agent so that the pH of the iron-based compound solution mixed with the powdered active carbon becomes 4.5-7, thereby generating iron oxyhydroxide (FeOOH) into the pores of the powdered active carbon via a neutralization reaction between the iron-based compound and the ammonia-based neutralizing agent; and removing a residual solution in the case of completing the neutralization reaction between the iron-based compound and the ammonia-based neutralizing agent, and performing washing and drying processes. The ammonia-based neutralizing agent is ammonium carbonate ((NH4)2CO3) or ammonia bicarbonate.

Description

암모니아 제거용 복합 흡착제의 제조방법{Manufacuring method of complex adsorbent for ammonia removal}[0001] The present invention relates to a method for producing a complex adsorbent for ammonia removal,

본 발명은 분말활성탄소가 존재하는 상태에서 철계 화합물을 암모니아계 중화제로 적정시켜 철계화합물과 암모니아계 중화제의 중화반응으로 생성되는 옥시수산화철(FeOOH)이 분말활성탄소의 표면 및 기공에 고르게 분포되도록 하는 우수한 암모니아 흡착성능을 갖는 암모니아 제거용 복합 흡착제의 제조방법에 관한 것이다.The present invention relates to a process for producing iron oxide, which is obtained by titrating an iron-based compound with an ammonia-based neutralizing agent in the presence of powdered activated carbon to uniformly distribute oxyhydroxide (FeOOH) produced by the neutralization reaction between an iron-based compound and an ammonia- And a method for producing a composite adsorbent for removing ammonia having an ammonia adsorption capability.

비료원료 및 석유화학, 전자산업, 섬유산업 등 그 용도가 다양하며 산업의 발달로 국내 암모니아 소비량은 계속적으로 증가하고 있다. 암모니아는 황산, 인산 등과 더불어 비료제조의 중간원료이며, 비료 외에도 군수화학용, caprolactam 및 acrylonitrile monomer와 같은 합성섬유, 냉동용, 소다공업, 중탄산 암모늄 제조 등 화학공업에 널리 사용되고 있다.Fertilizer raw materials, petrochemical, electronic industry, textile industry and so on. With the development of industry, domestic consumption of ammonia is continuously increasing. In addition to fertilizers, ammonia is widely used in chemical industries such as synthetic fibers such as caprolactam and acrylonitrile monomer, refrigeration, soda industry, and ammonium bicarbonate manufacture, as well as fertilizer, in addition to sulfuric acid and phosphoric acid.

한편, 최근 매립지 부족, 매립가스의 대기방출, 매립지 포화상태 등의 문제로서 고형 유기성 폐기물의 혐기성 소화처리가 첨자 늘어나고 있는 추세이고, 혐기성소화 탈리액은 일반적으로 질산화 탈질을 이용한 생물학적 처리공정이 적용되고 있으나, 고농도의 암모니아를 미생물을 이용하여 제거하기 위해 막대한 송풍 동력이 필요해 하수처리장 에너지자립화에 걸림돌이 되었다.On the other hand, anaerobic digestion of solid organic wastes is increasing as a problem of landfill shortage, atmospheric release of landfill gas, saturation of landfill, etc. Anaerobic digestion liquor is generally subjected to a biological treatment process using nitrification denitrification , Huge amount of ammonia was required to remove microorganisms, and huge wind power was needed to prevent the self-sufficiency of the sewage treatment plant.

암모니아는 수소와 마찬가지로 온실 가스를 배출하지 않는 친환경적인 특징을 가짐과 동시에 저압에서도 액화가 용이하여 저장과 운반이 수소에 비해서 쉽고, 연료로서도 메탄올과 대등한 정도의 높은 에너지 밀도를 갖고 많은 양의 수소를 포함하고 있다. 이러한 암모니아의 특징을 활용하여 대기 중으로 방출되는 암모니아를 회수하여 질소산화물 제거 공정에 적용함으로서 고농도 암모니아를 함유한 폐수를 암모니아와 액상의 폐수로 분리하여 액상의 폐수에 함유된 암모니아를 감소시키는 효과가 있다.Ammonia, like hydrogen, is an eco-friendly feature that does not emit greenhouse gases. It is easier to store and transport than hydrogen because of its ease of liquefaction at low pressures. It also has a high energy density comparable to that of methanol . By utilizing the characteristic of ammonia, ammonia discharged into the atmosphere is recovered and applied to the nitrogen oxide removal process, thereby separating the wastewater containing high concentration ammonia into ammonia and liquid wastewater, thereby reducing the ammonia contained in the wastewater in the liquid phase .

일반적으로 축산폐수 혹은 바이오가스화 공정에서 발생하는 고농도 질소 함유 소화 탈리액 등을 고형물 전처리를 하지 않은 채 암모니아를 스트리핑한 후 흡탈착 반응을 통해 고순도의 암모니아 가스를 회수하게 된다. Generally, ammonia is stripped without pretreatment of solid matter such as livestock wastewater or nitrate-containing digestion liquor from biogasification process, and ammonia gas of high purity is recovered through absorption-desorption reaction.

이에 따라 흡탈착으로 암모니아를 회수하기 위하여 통상적으로 활성탄 또는 제올라이트를 사용하지만, 흡착능력의 한계로 사용시간이 단축되는 문제점이 있으므로 이를 보상할 수 있는 다른 기상흡착제의 개발이 요구되고 있다
Accordingly, although activated carbon or zeolite is usually used to recover ammonia by adsorption / desorption, there is a problem that the use time is shortened due to the limit of the adsorption capacity, so that development of another vapor adsorbent capable of compensating for this is required

본 발명이 해결하고자 하는 과제는 분말활성탄소가 존재하는 상태에서 철계 화합물을 암모니아계 중화제로 적정시켜 철계화합물과 암모니아계 중화제의 중화반응으로 생성되는 옥시수산화철(FeOOH)이 분말활성탄소의 표면 및 기공에 고르게 분포되도록 하는 우수한 암모니아 흡착성능을 갖는 암모니아 제거용 복합 흡착제의 제조방법을 제공하는 데 있다.A problem to be solved by the present invention is to titrate an iron-based compound with an ammonia-based neutralizing agent in the presence of powdered activated carbon, thereby producing iron oxyhydroxide (FeOOH) generated by the neutralization reaction between the iron-based compound and the ammonia- And uniformly distributing the ammonia adsorbed on the adsorbent.

삭제delete

본 발명에 의한 암모니아 제거용 복합 흡착제의 제조방법은, 철계화합물과 증류수를 3:1의 중량비로 혼합하여 생성된 철계화합물의 용액에 분말활성탄소를 첨가하고 교반하여 분말활성탄소의 표면 및 기공에 철계화합물 용액을 고르게 침투시키는 공정과; 분말활성탄소가 혼합된 철계화합물 용액의 pH가 4.5~7이 되도록 암모니아계 중화제를 적정하여 분말활성탄소의 기공에 철계화합물과 암모니아계 중화제의 중화반응으로 옥시수산화철(FeOOH)을 생성하는 공정과; 철계화합물과 암모니아계 중화제의 중화반응이 완료되면 용액을 제거하고 세척한 후에 건조시키는 공정을 포함하되, 암모니아계 중화제는 탄산암모늄((NH4)2CO3) 또는 중탄산암모니아인 것을 특징으로 한다.A method for producing a composite adsorbent for removing ammonia according to the present invention is characterized in that powdery activated carbon is added to a solution of an iron compound produced by mixing an iron compound and distilled water at a weight ratio of 3: Uniformly impregnating the compound solution; (FeOOH) is produced by neutralizing an iron-based compound with an ammonia-based neutralizing agent in pores of powdered activated carbon by titrating an ammonia-based neutralizing agent so that the pH of the iron-based compound solution mixed with powdered activated carbon becomes 4.5 to 7; (NH 4 ) 2 CO 3 ) or ammonia bicarbonate, after the neutralization reaction of the iron-based compound and the ammonia-based neutralizing agent is completed.

바람직하게, 철계화합물은 Fe(NO3)3·9H2O, FeCl3·6H2O, FeCl2·6H2O, FeSO4·7H2O 중에서 선택한 하나 이상인 것을 특징으로 한다.Preferably, the iron-based compound is at least one selected from Fe (NO 3 ) 3 .9H 2 O, FeCl 3 .6H 2 O, FeCl 2 .6H 2 O and FeSO 4 .7H 2 O.

삭제delete

삭제delete

삭제delete

본 발명에 의해서 제조된 복합 흡착제는 철계 화합물을 암모니아계 중화제로 중화반응시켜 생성되는 옥시수산화철(FeOOH)이 분말활성탄소의 표면 및 기공에 고르게 분포되기 때문에 분말활성탄소와 함께 분말활성탄소 단독으로 사용하는 것보다 현저하게 우수한 암모니아 흡착성능을 갖는 효과가 있다.
The complex adsorbent produced by the present invention is used as powdered activated carbon alone with powdered activated carbon because oxy iron hydroxide (FeOOH) produced by neutralization reaction of an iron-based compound with an ammonia-based neutralizing agent is evenly distributed on the surface and pores of powdered activated carbon The ammonia adsorption performance is remarkably improved.

도 1은 본 발명에 따른 암모니아 제거용 흡착제의 입도분포 및 크기를 나타낸 그래프.
도 2는 본 발명에 따른 실시예의 질소 흡탈착 등온선 그래프.
도 3a는 본 발명에 따른 실시예의 암모니아 승온 탈착(NH3-TPD) 분석 그래프.
도 3b는 비교예의 암모니아 승온 탈착(NH3-TPD) 분석 그래프.
도 4는 암모니아 파과실험의 반응기 사진.
도 5는 본 발명에 따른 실시예의 배출가스 농도/시간 그래프.
1 is a graph showing particle size distribution and size of an adsorbent for removing ammonia according to the present invention.
2 is a graph of a nitrogen adsorption / desorption isotherm of an embodiment according to the present invention.
FIG. 3A is a graph of ammonia temperature desorption (NH 3 -TPD) analysis of an embodiment according to the present invention. FIG.
FIG. 3B is a graph showing the ammonia temperature desorption (NH 3 -TPD) analysis of the comparative example.
FIG. 4 is a photograph of a reactor in an ammonia breakdown experiment. FIG.
5 is a graph of exhaust gas concentration / time for an embodiment according to the present invention.

본 발명에 의한 암모니아 제거용 복합 흡착제의 제조방법은 철계화합물 용해공정, 분말활성탄소 혼합공정, 암모니아계 중화공정, 세척공정으로 이루어지며, 이하 각 공정을 구체적으로 설명한다.The method for producing a composite adsorbent for removing ammonia according to the present invention comprises an iron-based compound dissolution step, a powdered activated carbon mixing step, an ammonia-based neutralization step, and a washing step.

<철계화합물 용해공정>&Lt; Iron-based compound dissolution step &

철계화합물을 증류수에 첨가하여 고르게 교반하여 용해시킨다. 이때, 철계화합물은 Fe(NO3)3·9H2O, FeCl3·6H2O, FeCl2·6H2O, FeSO4·7H2O 등을 사용하는 것이 바람직하다. 또한, 철계화합물과 증류수를 약 3:1로 혼합하는 것이 바람직하다. 증류수를 다량 사용하면 후술하는 암모니아계 중화제와 반응후에 제거되는 용액이 많이 발생되는 문제가 있다. 한편, 철계화합물은 용액상태의 철계화합물 용액을 직접 사용할 수도 있다.The iron-based compound is added to distilled water and stirred to be dissolved evenly. The iron-based compound is preferably Fe (NO 3 ) 3 .9H 2 O, FeCl 3 .6H 2 O, FeCl 2 .6H 2 O, FeSO 4 .7H 2 O and the like. Further, it is preferable to mix the iron-based compound and distilled water at about 3: 1. When a large amount of distilled water is used, there is a problem that a large amount of ammonia-based neutralizing agent and a solution to be removed after the reaction are generated. On the other hand, the iron-based compound can also be used directly as a solution of an iron-based compound in a solution state.

<분말활성탄소 혼합공정>&Lt; Powder Activated Carbon Mixing Process >

철계화합물이 용해된 용액에 분말활성탄소를 첨가하고 교반하여 분말활성탄소의 기공에 철계화합물 용액을 고르게 침투시킨다. 이때, 분말활성탄소는 75마이크론 이하인 것이 바람직하다. 이러한 분말활성탄소는 다공성 표면에서 철계화합물이 암모니아계 중화제와 반응하여 생성되는 옥시수산화철을 분포시킬 수 있게 된다.Powdered activated carbon is added to a solution in which the iron-based compound is dissolved and stirred to uniformly penetrate the iron-based compound solution into the pores of the powdered activated carbon. Preferably, the powdered activated carbon is 75 microns or less. Such powder activated carbon can distribute oxyhydroxide produced by the reaction of the iron-based compound with the ammonia-based neutralizing agent on the porous surface.

<암모니아계 중화공정>&Lt; Ammonia-based neutralization step &

분말활성탄소가 혼합된 철계화합물 용액에 암모니아계 중화제를 약 pH 4.5~7이 되도록 적정하여 철계화합물을 암모니아계 중화제로 중화반응시켜 흡착제로 사용하기 위한 옥시수산화철(FeOOH)를 생성한다. 이때, 생성되는 옥시수산화철은 분말활성탄소에 기공 등에서 고르게 형성되면서 분말활성탄소에 의해서 입자간 사이가 벌어지게 되어 분말활성탄소와 함께 암모니아 제거용 복합 흡착제로 형성되게 된다. 이때, 암모니아계 중화제의 적정시에 pH 가 낮을수록 생성되는 복합 흡착제의 입자 크기가 증가하게 된다.(FeOOH) for use as an adsorbent by neutralization reaction of an iron-based compound with an ammonia-based neutralizing agent by titrating an ammonia-based neutralizing agent to a solution of an iron-based compound mixed with powdered activated carbon at a pH of about 4.5 to 7. At this time, the generated oxy iron hydroxide is uniformly formed in the pore of the powdered activated carbon, and the intergranular particles are spread by the powder activated carbon, so that it is formed as a composite adsorbent for removing ammonia together with powdered activated carbon. At this time, the particle size of the composite adsorbent produced increases as the pH of the ammonia-based neutralizer is optimized.

암모니아계 중화제는 탄산암모늄((NH4)2CO3), 중탄산암모니아, 암모니아수 등을 사용하는 것이 바람직하다. Ammonia-based neutralizing agent is preferably used in an ammonium carbonate ((NH 4) 2 CO 3 ), bicarbonate, ammonia, aqueous ammonia or the like.

<세척공정><Cleaning Process>

철계화합물과 암모니아계 중화제의 중화반응이 완료되면 용액을 제거하고 증류수로 세척한 후에 건조하여 복합 흡착제를 제조한다.When the neutralization reaction between the iron-based compound and the ammonia-based neutralizing agent is completed, the solution is removed, washed with distilled water and dried to prepare a composite adsorbent.

이하 실시예 및 시험예를 통해 본 발명을 보다 더 상세하게 설명한다. 그러나 이들의 실시예 및 시험예에 의해 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples. However, the scope of the present invention is not limited by these examples and test examples.

<실시예><Examples>

철계화합물로 Fe(NO3)39H2O(98%) 90g을 증류수 30g에 첨가하고 3시간 동안 교반하여 용해시킨 후, 분말활성탄소(요오드 흡착성능 1,600mg/g, 75마이크론) 10g을 추가하여 고르게 교반하였다. 그 후, 중화제로 탄산암모늄((NH4)2CO3)(30%) 1M 용액을 이용하여 pH 7까지 적정하였다. 적정이 완료된 후에 원심분리기를 이용하여 남아 있는 고형물을 분리하고, 수차례 증류수로 세척한 후에 110℃에서 건조하여 복합 흡착제를 제조하였다.
90 g of Fe (NO 3 ) 3 9H 2 O (98%) as an iron-based compound was added to 30 g of distilled water and dissolved by stirring for 3 hours. 10 g of powdered activated carbon (iodine adsorption capacity 1,600 mg / g, 75 microns) And stirred evenly. Thereafter, the solution was titrated to pH 7 using a 1 M solution of ammonium carbonate ((NH 4 ) 2 CO 3 ) (30%) as a neutralizing agent. After completion of titration, the remaining solids were separated using a centrifuge, washed several times with distilled water, and dried at 110 ° C to prepare a composite adsorbent.

<복합 흡착제의 물리 및 화학적 특성 분석><Physical and chemical characterization of composite adsorbent>

실시예로 제조된 복합 흡착제의 물리 및 화학적 특성을 알아보기 위해 비표면적, 기공크기, 기공부피를 측정하여 표 1에 나타내었고, 입도크기는 도 1에 나타내었고, 질소 흡탈착 등온선은 도 2에 나타내었다.The specific surface area, pore size, and pore volume were measured in order to examine the physical and chemical properties of the composite adsorbent prepared in the examples. The particle size was shown in FIG. 1, and the nitrogen adsorption / desorption isotherm was shown in FIG. 2 Respectively.

비표면적(m2/g)Specific surface area (m 2 / g) 평균기공크기
Pore Size (nm)
Average pore size
Pore Size (nm)
기공부피
Vtotal(cm3/g)
Pore volume
V total (cm 3 / g)
중세기공부피Vmeso(cm3/g)Medieval Study P V meso (cm 3 / g) 미세기공부피
VMicro(cm3/g)
Microcircuit
V Micro (cm 3 / g)
724.75724.75 28.142328.1423 0.5090.509 0.2280.228 0.2810.281

도 1에 나타난 바와 같이 실시예의 복합 흡착제는 D50에서 20.95㎛의 작은 입자를 갖는 것을 알 수 있다. 또한, 도 2에 나타난 바와 같이 질소흡착등온선의 결과로 보면 type I의 형태와 type I과 type II의 중간형태의 등온흡착곡선을 나타내었다. 이렇게 type I과 type II의 중간형태의 등온흡착곡선을 나타내는 경우에는 미세공들 뿐만 아니라 중세공들도 많이 형성되었음을 알 수가 있었다.
Example composite adsorbent also carried out as shown in Fig. 1 it can be seen that having a small particle of 20.95㎛ at D 50. As shown in FIG. 2, the adsorption isotherms of type I and intermediate type I and II are shown in the results of nitrogen adsorption isotherms. The isothermal adsorption curves of type I and type II intermediates are shown in Fig.

<암모니아 승온 탈착(NH3-TPD) 분석><Ammonia Temperature Deposition (NH 3 -TPD) Analysis>

실시예로 제조된 복합 흡착제의 암모니아 흡착성능을 확인하기 위하여 암모니아 승온 탈착(NH3-TPD) 분석을 실시하여 표 2 및 도 3a의 그래프로 나타내었다. 비교예로 실시예의 성분으로 사용된 분말활성탄소의 NH3-TPD 분석을 실시하여 표 3 및 도 3b의 그래프로 나타내었다. 승온탈착실험은 0~600℃의 범위에서 수행되었으며, 전체 피크면적은 흡착제의 산량(Acidity)을 나타낸다. Ammonia temperature desorption (NH 3 -TPD) analysis was performed to confirm the ammonia adsorption performance of the composite adsorbent prepared in the examples, and the results are shown in the graphs of Table 2 and FIG. As a comparative example, NH 3 -TPD analysis of the powdered activated carbon used as the components of the examples was carried out and shown in the graphs of Table 3 and FIG. 3B. The temperature elevation desorption experiments were carried out in the range of 0 ~ 600 ℃, and the total peak area shows the acidity of the adsorbent.

실시예Example Start time
(sec)
Start time
(sec)
End time
(sec)
End time
(sec)
Time width
(sec)
Time width
(sec)
Peak position
(sec)
Peak position
(sec)
Area
(count)
Area
(count)
산량
mmol/g
Output
mmol / g
1차 피크Primary peak 943943 3,1463,146 2,2032,203 2,0442,044 7.76E+087.76E + 08 2.2862.286 2차 피크Secondary peak 3,1853,185 5,0805,080 1,8951,895 4,1324,132 1.6E+081.6E + 08 0.4720.472

비교예Comparative Example Start time
(sec)
Start time
(sec)
End time
(sec)
End time
(sec)
Time width
(sec)
Time width
(sec)
Peak position
(sec)
Peak position
(sec)
Area
(count)
Area
(count)
산량
mmol/g
Output
mmol / g
1차 피크Primary peak 3,0973,097 5,3935,393 2,2962,296 4,2454,245 2.25E+072.25E + 07 0.0770.077

표 2 및 도 3a에 나타난 바와 같이 실시예의 복합 흡착제는 943초(약 120℃)에서 암모니아가 측정되어 점차 증가되어 2044초(약 250℃)에서 1차 피크점을 형성하면서 약 1,150,000(uV)가 검출된 후에 감소하였다. 그 후, 다시 4,132초(약 570℃)에서 2 피크점을 형성하면서 약 300,000(uV)한 후에 급속 감소하였다. 실시예에의 총 산량은 2.758mmol/g임을 확인할 수 있었다.As shown in Table 2 and FIG. 3A, the composite adsorbent of the example had ammonia measured at 943 seconds (about 120 DEG C) and gradually increased to about 1,150,000 (uV) while forming a first peak point at 2044 seconds And then decreased. Thereafter, it rapidly decreased again after about 300,000 (uV) while forming 2 peak points at 4,132 seconds (about 570 ° C). It was confirmed that the total amount of acid in the examples was 2.758 mmol / g.

반면에 비교예의 흡착제는 표 3 및 도 3b에 나타난 바와 같이, 4,245초(약 580℃)에서 피크점을 형성하면서 약 48,000(uV)가 검출된 후에 감소하였다. 비교예의 총 산량은 0.077mmol/g임을 확인할 수 있었다.On the other hand, the adsorbent of the comparative example decreased after detecting about 48,000 (uV) while forming a peak point at 4,245 seconds (about 580 DEG C) as shown in Table 3 and FIG. 3B. The total amount of acid in the comparative example was 0.077 mmol / g.

이와 같이 본 발명의 복합 흡착제는 분말활성탄소를 단독으로 사용하는 경우보다 현저하게 우수한 산량을 갖는 것으로 암모니아 흡착제로 우수함을 확인할 수 있다.
As described above, it can be confirmed that the complex adsorbent of the present invention has a remarkably excellent acid amount as compared with the case of using powdered activated carbon singly, and is superior as an ammonia adsorbent.

<암모니아 파과실험><Ammonia Breakout Experiment>

도 4와 같은 원기둥형상의 반응기에 실시예로 제조된 복합 흡착제를 채우고 하단으로 5% 암모니아 가스를 200ml/min으로 주입하고, 상단으로 배출되는 가스를 매 3.5분마다 가스크로마토그래피를 통해 측정하였다. 측정된 배출가스의 값을 농도로 환산하여 도 5의 배출가스 농도/시간 그래프에 나타내었으며, 파과점, 종말점 및 암모니아 가스 흡착량을 계산하여 표 4에 나타내었다. 4, the composite adsorbent prepared in Example 4 was filled in a cylindrical reactor as shown in FIG. 4, 5% ammonia gas was injected at 200 ml / min at the lower end, and gas discharged to the upper end was measured every 3.5 minutes through gas chromatography. The measured exhaust gas values are shown in the concentration / time graph of FIG. 5 in terms of concentration, and the breakthrough point, end point, and ammonia gas adsorption amount are shown in Table 4.

파과점 흡착량(g) Breakthrough point Adsorption (g) 파과점~종말점 흡착량(g) Breakthrough point - end point adsorption amount (g) 총 흡착량(g) Total adsorption (g) 0.07968750.0796875 0.2578190.257819 0.3375070.337507 파과점 흡착율(wt%) Breakthrough point adsorption (wt%) 파과점~종말점 흡착량(wt%) Breakthrough point - end point adsorption amount (wt%) 총 흡착율(wt%) Total adsorption (wt%) 1.593750 1.593750 5.156387 5.156387 6.750137 6.750137

도 5에 도시된 바와 같이 실시예의 복합 흡착제는 10.5분 동안 모든 암모니아 가스를 흡착하여 배출가스에서 암모니아 가스가 검출되지 않았으며, 94.5분 이후에는 5% 농도의 암모니아 가스가 배출되었다. 즉, 배출가스에서 암모니아 가스가 검출되는 최초 시점인 파과점은 10.5분이고, 모든 암모니아 가스가 배출되는 시점인 종말점은 94.5분이었다.As shown in FIG. 5, the composite adsorbent of the example adsorbed all the ammonia gas for 10.5 minutes, and ammonia gas was not detected in the exhaust gas. After 94.5 minutes, 5% ammonia gas was discharged. That is, the breakthrough point, which is the initial point at which ammonia gas was detected in the exhaust gas, was 10.5 minutes, and the end point, at which all the ammonia gas was discharged, was 94.5 minutes.

그리고, 복합 흡착제의 파과점(10.5분)까지의 암모니아 가스 흡착량과 파과점 이후 종말점(94.5분)까지의 암모니아 가스 흡착량을 계산한 결과 NH3-TPD 분석과 유사한 총 흡착율보다 약간 높은 것을 확인할 수 있었다.The amount of ammonia gas adsorption up to the breakthrough point (10.5 minutes) and the amount of ammonia gas adsorption up to the end point (94.5 minutes) after the breakthrough point were calculated and found to be slightly higher than the total adsorption rate similar to NH 3 -TPD analysis I could.

Claims (8)

삭제delete 삭제delete 삭제delete 철계화합물과 증류수를 3:1의 중량비로 혼합하여 생성된 철계화합물의 용액에 분말활성탄소를 첨가하고 교반하여 분말활성탄소의 표면 및 기공에 철계화합물 용액을 고르게 침투시키는 공정과;
분말활성탄소가 혼합된 철계화합물 용액의 pH가 4.5~7이 되도록 암모니아계 중화제를 적정하여 분말활성탄소의 기공에 철계화합물과 암모니아계 중화제의 중화반응으로 옥시수산화철(FeOOH)을 생성하는 공정과;
철계화합물과 암모니아계 중화제의 중화반응이 완료되면 용액을 제거하고 세척한 후에 건조시키는 공정을 포함하되,
암모니아계 중화제는 탄산암모늄((NH4)2CO3) 또는 중탄산암모니아인 것을 특징으로 하는 암모니아 제거용 복합 흡착제의 제조방법.
Mixing the iron-based compound and distilled water at a weight ratio of 3: 1, adding powdered activated carbon to the resulting solution of the iron-based compound, and stirring the solution to uniformly penetrate the iron-based compound solution into the surface and pores of the powdered activated carbon;
(FeOOH) is produced by neutralizing an iron-based compound and an ammonia-based neutralizing agent in the pores of the powdered activated carbon by titrating an ammonia-based neutralizing agent so that the pH of the iron-based compound solution mixed with the powdered activated carbon becomes 4.5 to 7;
And removing the solution, washing and drying after completion of the neutralization reaction of the iron-based compound and the ammonia-based neutralizing agent,
Ammonia-based neutralizing agent is ammonium carbonate ((NH 4) 2 CO 3 ) or a method of producing a composite sorbent for ammonia removal, characterized in that ammonium bicarbonate.
청구항 4에 있어서, 철계화합물은 Fe(NO3)3·9H2O, FeCl3·6H2O, FeCl2·6H2O, FeSO4·7H2O 중에서 선택한 하나 이상인 것을 특징으로 하는 암모니아 제거용 복합 흡착제의 제조방법.The method according to claim 4, the iron compound is Fe (NO 3) 3 · 9H 2 O, FeCl 3 · 6H 2 O, FeCl 2 · 6H 2 O, FeSO 4 · remove ammonia, characterized in that at least one selected from among 7H 2 O for A method for producing a composite adsorbent. 삭제delete 삭제delete 삭제delete
KR1020150026608A 2015-02-25 2015-02-25 Manufacuring method of complex adsorbent for ammonia removal KR101653382B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150026608A KR101653382B1 (en) 2015-02-25 2015-02-25 Manufacuring method of complex adsorbent for ammonia removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150026608A KR101653382B1 (en) 2015-02-25 2015-02-25 Manufacuring method of complex adsorbent for ammonia removal

Publications (1)

Publication Number Publication Date
KR101653382B1 true KR101653382B1 (en) 2016-09-01

Family

ID=56942783

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150026608A KR101653382B1 (en) 2015-02-25 2015-02-25 Manufacuring method of complex adsorbent for ammonia removal

Country Status (1)

Country Link
KR (1) KR101653382B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570024A (en) * 2020-12-28 2021-03-30 青岛科技大学 Ag/AgCl/IL/FeOOH/AC photocatalytic material and preparation and application thereof
KR20210083197A (en) 2019-12-26 2021-07-06 고려대학교 산학협력단 Porous-organic-polymer-based ammonia adsorbents and their preparation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030015599A (en) * 2001-08-16 2003-02-25 이윤나 Ultra-high speed water treatment powder containing surface-modified magnetite powder and adsorbent and preparation method
JP2003070887A (en) * 2001-09-05 2003-03-11 Otsuka Sangyo Interior Kk Adsorption deodorizing material and product thereof
KR20110011858A (en) * 2009-07-29 2011-02-09 코아텍주식회사 A depurator for harmfulness gas removal and its manufacturing method
KR20130013927A (en) * 2011-07-29 2013-02-06 주식회사 세원공업 The adsorbent for removing organic sulfur compounds, the method for preparing the same, and the desulfurization system for fuel gas using the adsorbent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030015599A (en) * 2001-08-16 2003-02-25 이윤나 Ultra-high speed water treatment powder containing surface-modified magnetite powder and adsorbent and preparation method
JP2003070887A (en) * 2001-09-05 2003-03-11 Otsuka Sangyo Interior Kk Adsorption deodorizing material and product thereof
KR20110011858A (en) * 2009-07-29 2011-02-09 코아텍주식회사 A depurator for harmfulness gas removal and its manufacturing method
KR20130013927A (en) * 2011-07-29 2013-02-06 주식회사 세원공업 The adsorbent for removing organic sulfur compounds, the method for preparing the same, and the desulfurization system for fuel gas using the adsorbent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210083197A (en) 2019-12-26 2021-07-06 고려대학교 산학협력단 Porous-organic-polymer-based ammonia adsorbents and their preparation
CN112570024A (en) * 2020-12-28 2021-03-30 青岛科技大学 Ag/AgCl/IL/FeOOH/AC photocatalytic material and preparation and application thereof

Similar Documents

Publication Publication Date Title
Jiang et al. Recyclable nitrogen-doped biochar via low-temperature pyrolysis for enhanced lead (II) removal
Tofighy et al. Salty water desalination using carbon nanotube sheets
CN106693974A (en) Preparation method and application of supported metal oxide catalyst for removing ammonia nitrogen in water through catalytic ozonation
CN112156752B (en) Modified activated carbon with reproducible adsorbability and application thereof in wastewater treatment
Khelifi et al. Nickel (II) adsorption from aqueous solutions by physico-chemically modified sewage sludge
KR101822411B1 (en) Preparation Method of Adsorbent for Removal of Sulfur Compounds Using Acidic Mineral Sludge
Santra et al. Ceramic membrane-based ultrafiltration combined with adsorption by waste derived biochar for textile effluent treatment and management of spent biochar
CN103432986A (en) Magnetic diatomite-based adsorbent and preparation method and application thereof
Zhang et al. Potassium permanganate modification of hydrochar enhances sorption of Pb (II), Cu (II), and Cd (II)
CN110683540A (en) Nitrogen-rich hierarchical pore biomass charcoal and application thereof
KR101653382B1 (en) Manufacuring method of complex adsorbent for ammonia removal
JP2012091167A (en) Method for treating water containing nutrient salts and oxidizing substance
Tang et al. Enhanced adsorption of organic pollutants using N-doped porous carbon derived from hemp stems: Insights into the mechanism
CN113813926A (en) Porous carbon material with B-N Lewis acid-base pair structure and preparation method and application thereof
Dinker et al. Temperature based adsorption studies of Cr (vi) using p-toluidine formaldehyde resin coated silica material
CN102557243A (en) Biological bamboo charcoal as well as preparation process and application thereof
KR20100078706A (en) Fabrication of nitrogen-containing mesoporous carbon using vapor deposition polymerization and application to adsorbent for heavy metal ions
Pang et al. Adsorption of chromium (VI) onto activated carbon modified with KMnO4
CN102773084A (en) Preparation method of chemical adsorption material for removing phosphorus containing substances in wastewater
CN113457639B (en) Manganese-loaded loofah sponge fiber for adsorption catalytic denitrification and preparation and application thereof
MX2023015290A (en) Wastewater adsorbent, and preparation method therefor and use thereof.
Yu et al. Removal of indoor formaldehyde over CMK-8 adsorbents
Love et al. Adsorption of ammonia on ozonated activated carbon
Amin et al. Utilization of Pleurotus eryngii biosorbent as an environmental bioremedy for the decontamination of trace cadmium (II) ions from water system
Qiu et al. Biomass‐Derived Carbon Materials for the Adsorption of Organic Pollutants

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190826

Year of fee payment: 4