KR20030015599A - Ultra-high speed water treatment powder containing surface-modified magnetite powder and adsorbent and preparation method - Google Patents
Ultra-high speed water treatment powder containing surface-modified magnetite powder and adsorbent and preparation method Download PDFInfo
- Publication number
- KR20030015599A KR20030015599A KR1020010049398A KR20010049398A KR20030015599A KR 20030015599 A KR20030015599 A KR 20030015599A KR 1020010049398 A KR1020010049398 A KR 1020010049398A KR 20010049398 A KR20010049398 A KR 20010049398A KR 20030015599 A KR20030015599 A KR 20030015599A
- Authority
- KR
- South Korea
- Prior art keywords
- activated carbon
- mol
- magnetite
- iron
- water treatment
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/288—Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/48—Treatment of water, waste water, or sewage with magnetic or electric fields
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
본 발명은 물에 오염된 미세한 부유물질이나 유기물 및 환경유해물질을 전하 및 흡착제에 의해 쉽게 흡착할 수 있으며, 마그네타이트에 의해 응집침전을 초고속으로 할 수 있는 방법으로, 보다 상세하게는 물속에 용해되어 있는 비휘발성, 휘발성 유기물질을 흡착하기 위해서는 활성탄이나 활성탄 섬유에 마그네타이트(Fe3O4)가 코팅된 분말에 극성유기물질인 경우 Carbo wax를, 비극성물질인 경우는 Polydimethyl siloxane을 코팅이 필요하며, 대부분의 음전하를 띠고 있는 부유물질을 쉽게 흡착하기 위하여 양전하를 띠고 있는 철 내지는 알루미늄 수산화물, 황산철 내지는 황산알루미늄, PAC 내지는 염화철이 코팅되어야 한다. 특히, 부유물질 및 환경 유해물질을 쉽게 제거하기 위해서는 마그네타이트, 활성탄 내지는 활성탄소섬유 표면에 양전하를 띠고 있는 철 내지는 알루미늄 수산화물, 황산철 내지는 황산알루미늄, PAC 내지는 염화철과 Carbo max, Polydimethyl siloxane이 함께 코팅되어있는 표면개질화된 마그네타이트 분말과 자석을 이용한 초고속 수처리 분말 제조방법에 관한 것이다.The present invention can easily adsorb fine suspended matter, organic matter and environmentally harmful substances contaminated with water by charge and adsorbent, and it can be dissolved in water in more detail by a method of ultra-fast flocculation sedimentation by magnetite. In order to adsorb nonvolatile and volatile organic substances, activated carbon or activated carbon fiber coated with magnetite (Fe 3 O 4 ) is required to be coated with carbo wax for polar organic materials and polydimethyl siloxane for nonpolar materials. In order to easily adsorb most negatively charged suspended solids, positively charged iron or aluminum hydroxide, iron sulfate or aluminum sulfate, PAC or iron chloride should be coated. In particular, in order to easily remove suspended solids and environmentally harmful substances, iron or aluminum hydroxide, iron sulfate or aluminum sulfate, PAC or iron chloride, and carbo max and polydimethyl siloxane, which have a positive charge on the surface of magnetite, activated carbon or activated carbon fiber, are coated together. The present invention relates to a method for producing ultrafast water treatment powder using magnetized surface modified magnetite powder and magnet.
폐수중의 환경오염물질은 매질이 매우 복잡하고 다양하며, 경우에 따라 매우 유독한 물질이 함유되어 있다. 환경오염을 방지하기 위하여 지금까지 여러 가지 방법을 동원하여 폐수처리를 하고 있다. 지금까지 알려진 방법중 음용수나 폐수에서휘발성 내지는 비휘발성 유기화합물을 흡착시키기 위해서는 일반적으로 비표면적이 큰 활성탄이나 활성탄소섬유를 이용하여 처리하고 있다.Environmental pollutants in waste water are very complex and diverse media, and in some cases contain very toxic substances. In order to prevent environmental pollution, various methods have been used to treat wastewater. In order to adsorb volatile or nonvolatile organic compounds in drinking water or wastewater, the activated carbon and activated carbon fibers having a large specific surface area are generally treated.
폐수중의 부유물질을 제거하기 위하여 일반적으로 철, 알루미늄 염이나 고분자 응집제를 이용하여 플록을 형성시킨 다음 응집후 침강시키고 있다.In order to remove suspended solids in wastewater, flocs are generally formed using iron, aluminum salts or polymer flocculants, and then settled after flocculation.
철이나 알루미늄의 무기염은 양전하를 띠고 있기 때문에 음전하를 띠고 있는 부유물질에 무전하를 띠게 하여 빨리 응집을 시키는데 큰 도움이 되는 대체적으로 가격이 저렴한 무기 응집제이다. 지금까지의 흡착, 응집과 같이 화학적, 생물학적 처리를 이용하여 폐수처리 시간이 경우에 따라 다소 차이가 있지만 일반적으로 10시간 이상 소요된다는 단점이 있다. 특히 응집제 처리후 부유물질을 침강시키는데 많은 시간이 필요하다. 하수종말처리장과 같은 곳은 하루에 수십만톤의 물이 유입, 배출되고 있다. 이와같은 종래의 방법을 이용할 경우 거대한 물을 처리할 수 있는 저장고가 필요하며, 폐수처리 시간이 장시간 필요로 하기 때문에 인력을 비롯하여 폐수처리 비용이 많이 소비된다는 단점을 가지고 있다.Since inorganic salts of iron and aluminum are positively charged, they are generally inexpensive inorganic flocculants which are very helpful for agglomerating quickly by giving a non-charge to a negatively charged floating material. Wastewater treatment time using chemical and biological treatments, such as adsorption and flocculation, has been somewhat different in some cases, but generally takes 10 hours or more. In particular, much time is required to settle the suspended solids after flocculant treatment. In places like sewage treatment plants, hundreds of thousands of tons of water flows in and out each day. Such a conventional method requires a reservoir capable of treating huge water, and has a disadvantage in that waste water treatment costs are high because of a long time required for waste water treatment.
따라서 본 발명의 목적은 지금까지 사용하고 있는 흡착, 응집의 단점을 극복하고, 음용수나 폐수에서 휘발성 내지는 비휘발성 유기화합물을 보다 흡착 능력을 향상 시키기 위해서는 비표면적이 넓은 활성탄이나 활성탄소섬유 표면에 극성물질로서 carbowax를, 비극성물질로 polydimethyl siloxane을 코팅하고, 물속에 떠있는 부유물질은 대부분 음전하를 띠고 있기 때문에 양전하를 띠는 철 내지는 알루미늄 수단화물, 황산철 내지는 황산알루미늄, PAC 내지는 염화철을 이용하여 부유물질의흡착률 내지는 응집률을 높이면서 쉽게 물을 정화하고, 마그네타이트인 자성체에 의한 부유물질의 분리를 매우 신속히 처리하여, 종래방법에 의한 폐수처리의 장시간 처리의 단점을 극복하며, 명확한 수처리를 하여 국민의 건강과 자연환경을 보호하고 국민의 불안감을 해소해 줄 수 있는 것이다. 활성탄, 활성탄소섬유, 마그네타이트의 혼합물 표면에 양전하를 나타내는 수산화금속과 철 내지는 알루미늄 염, 유기물을 흡착할 수 있는 (Cabowax, polydimethyl siloxane이 코팅되며, 따로 단독의 마그네타이트 표면에 양전하를 나타내는 철 내지는 알루미늄 수산화물, 황산철 내지는 황산알루미늄, PAC 내지는 염화철과, 유기물을 흡착할 수 있는 Cabowax, polydimethyl siloxane이 분말 표면에 개질화된 초고속 수처리 분말로 구성되는 것을 특징으로 한다.Accordingly, an object of the present invention is to overcome the disadvantages of adsorption and agglomeration that have been used up to now, and to improve the adsorption capacity of volatile or nonvolatile organic compounds in drinking water or wastewater. Carbowax is coated as a substance and polydimethyl siloxane is used as a non-polar substance. Since most of the suspended solids floating in the water are negatively charged, they are suspended by using positively charged iron or aluminum sudan, iron sulfate or aluminum sulfate, PAC or iron chloride. The water is easily purified while increasing the adsorption rate or coagulation rate of the vagina, and the separation of suspended solids by magnetic material, which is magnetite, can be processed very quickly, overcoming the disadvantages of the long-term treatment of wastewater treatment by the conventional method, and by clear water treatment. Health and the natural environment I can give you. The surface of the mixture of activated carbon, activated carbon fiber and magnetite is coated with a positively charged metal hydroxide, iron or aluminum salt, and organic matter (Cabowax, polydimethyl siloxane is coated on the surface of the magnetite separately, and the positively charged iron or aluminum hydroxide , Iron sulfate or aluminum sulfate, PAC or iron chloride, Cabowax that can adsorb organic matter, polydimethyl siloxane is characterized by consisting of ultra-high speed water treatment powder modified on the surface of the powder.
표 1: 표면개질화된 활성탄과 활성탄소섬유를 이용하여 물에 용해되어 있는 휘발성 유기물질의 흡착능력을 실험한 결과Table 1: Test results of adsorption capacity of volatile organic substances dissolved in water using surface modified activated carbon and activated carbon fiber
표 2: 마그네타이트 표면에 수산화알루미늄과 수산화철로 표면개질화된 수처리 효율을 테스트한 결과Table 2: Test results of surface modification with aluminum hydroxide and iron hydroxide on the magnetite surface
표 3: 마그네타이트 표면에 황산알루미늄, 황산철, 염화알루미늄, 염화철로 표면개질화된 수처리 효율을 테스트한 결과Table 3: Test results of water treatment efficiency modified with aluminum sulfate, iron sulfate, aluminum chloride and iron chloride on magnetite surface
표 4: 표면개질화된 분말에 포함된 마그네타이트의 증가에 따른 자력에 의한 자성체의 수거능력 및 수처리속도Table 4: Collection capacity and water treatment rate of magnetic material by magnetic force due to increase of magnetite in surface modified powder
스펙트럼 1: 활성탄, 활성탄소 섬유와 마그네타이트에 표면개질화된 분말의 X-ray 회절분석 결과Spectrum 1: X-ray diffraction analysis of surface modified powder on activated carbon, activated carbon fiber and magnetite
스펙트럼 2: 마그네타이트에 Al(OH)3로 표면개질화된 분말의 EDS 분석결과Spectrum 2: EDS analysis of powder surface-modified with Al (OH) 3 in magnetite
사진 1: 활성탄, 활성탄소 섬유와 마그네타이트에 표면개질화된 분말의 전자 현미경 사진Photo 1: Electron micrograph of surface modified powder on activated carbon, activated carbon fiber and magnetite
사진 2: 표면개질화된 활성탄소 섬유의 전자현미경 사진Photo 2: Electron micrograph of surface modified activated carbon fiber
상기한 본 발명의 목적은 지금까지 사용하고 있는 수처리방법의 단점을 극복하고 부유물질 및 물에 용해되어 있는 환경 유해유기물질의 흡착처리효율을 높이면서 짧은 시간에 부유물질을 분리할 수 있는 마그네타이트 분말이 함유된 표면개질화된 흡착제와 자석을 이용한 초고속 수처리 분말 제조방법에 의해 달성한다.The above object of the present invention is to overcome the disadvantages of the water treatment method used up to now, the magnetite powder which can separate the suspended solids in a short time while improving the adsorption treatment efficiency of the environmentally harmful organic substances dissolved in the suspended solids and water This is achieved by the ultrafast water treatment powder production method using the surface-modified adsorbent and the magnet.
이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.
실시예 1 (표면개질화)Example 1 (Surface Modification)
본 발명의 활성탄은 비표면적(BET)이 평균 1,200 ㎡/ 1g을 가진 국내의 제오카본에서 구입하였으며, 활성탄소 섬유는 외국제품의 데구사 제품으로 평균 1600 ㎡/ 1g의 표면적을 가진 것을 구입하였다. 마그네타이트는 합성하여 0.1 ∼5.5 ㎛의 크기를 가진 Fe3O4를 이용하였다.The activated carbon of the present invention was purchased from domestic Zeocarbon having a specific surface area (BET) of 1,200 m 2/1 g, and activated carbon fiber was purchased from Degussa products of foreign products with an average surface area of 1600 m 2/1 g. Magnetite was synthesized and used with Fe 3 O 4 having a size of 0.1 ~ 5.5 ㎛.
먼저 활성탄과 활성탄소섬유에 Fe3O4를 코팅하기 위하여 반응기 내부에 각각의 활성탄과 활성탄소섬유 100 g을 넣고 FeSO4, FeCl2등 2가 철염인 알드리치용 FeCl2ㆍ2H2O 0.28, 2.8, 14g과 따로 FeSO4ㆍH2O 0.30, 3.04, 15.2 g을 물에 녹인 후 가성소다 내지는 암모니아수로 중화시키고, 수열합성반응기에서 반응시킨 후 증류수로 수세하여 여과한 다음 100 ℃의 오븐에서 가열건조 시킨 후 환원성 분위기에서 각각의 분말에 Fe로서 0.1∼5.0 무게%를 코팅하였으며, 수열합성의 온도 및 시간을 변화시키면서 마그네타이트의 입자크기를 0.1∼5.5 ㎛로 만들었다.First, in order to coat Fe 3 O 4 on activated carbon and activated carbon fibers, 100 g of each activated carbon and activated carbon fibers were placed in a reactor, and FeCl 2 ㆍ 2H 2 O 0.28, 2.8 for bivalent iron salts such as FeSO 4 and FeCl 2 was added. , 14g and FeSO 4 ㆍ H 2 O 0.30, 3.04, 15.2 g, dissolved in water, neutralized with caustic soda or ammonia water, reacted in hydrothermal synthesis reactor, washed with distilled water, filtered and heated in an oven at 100 ℃ After the coating, each powder was coated with 0.1 to 5.0% by weight of Fe in a reducing atmosphere, and the particle size of magnetite was made 0.1 to 5.5 μm while changing the temperature and time of hydrothermal synthesis.
별도로 활성탄 또는 활성탄소섬유를 첨가하지 않고 FeSO4ㆍH2O를 50 %의 수용액으로 만든 후 위의 수열합성법을 통한 동일한 방법에 의해 Fe3O4를 따로 만들었다.Fe 3 O 4 was separately prepared by the same method through the above hydrothermal synthesis method after making FeSO 4 H 2 O in 50% aqueous solution without adding activated carbon or activated carbon fiber.
제조된 분말에 양전하를 띠우기 위해 알루민산 소다(NaAlO2), 황산알루미늄(Al2(SO4)3), 염화알루미늄(AlCl3), 염화철(FeCl3)과 황산철(FeSO4)을 이용하여 분말 표면에 Al(OH)3와 Fe(OH)3, Al2(SO4)3, FeSO4, AlCl3, FeCl3을 금속원소로서 0.1, 0.5, 2.5 중량 %를 코팅하였다. 수산화금속인 경우 아래의 반응식의 화학양론비에 의해 알루미늄, 철수산화물을 제조하였으며, 염(Salt)인 경우 각각의 마그네타이트 분말에 일정량 첨가한 후 물을 가하여 완전 용해시키고 100 ℃의 오븐에서 완전 건조시켜 분말표면에 코팅을 시켰다. 알루민산소다를 이용하였을 경우 탄산가스, 초산을 이용하여 수산화알루미늄을 제조하였으며, 황산알루미늄과 염화알루미늄을 이용하였을 경우 가성소다(NaOH), 수산화칼륨(KOH)나 암모니아수(NH4OH)를 이용하였다. 반응식은 다음과 같다.Sodium aluminate (NaAlO 2 ), aluminum sulfate (Al 2 (SO 4 ) 3 ), aluminum chloride (AlCl 3 ), iron chloride (FeCl 3 ) and iron sulfate (FeSO 4 ) were used to impart a positive charge to the powder. Al (OH) 3 and Fe (OH) 3 , Al 2 (SO 4 ) 3 , FeSO 4 , AlCl 3 , FeCl 3 was coated on the surface of the powder as a metal element 0.1, 0.5, 2.5% by weight. In the case of metal hydroxide, aluminum and iron hydroxide were prepared by the stoichiometric ratio of the following reaction formula, and in the case of salt, a certain amount was added to each magnetite powder, completely dissolved by adding water and completely dried in an oven at 100 ° C. The powder surface was coated. When sodium aluminate was used, aluminum hydroxide was prepared by using carbon dioxide gas and acetic acid. When aluminum sulfate and aluminum chloride were used, sodium hydroxide (NaOH), potassium hydroxide (KOH), or ammonia water (NH 4 OH) was used. . The scheme is as follows.
[알루민산소다 반응식]Sodium aluminate reaction
2NaAlO2+ CO2+ 3H2O = 2Al(OH)3+ Na2CO3 2NaAlO 2 + CO 2 + 3 H 2 O = 2Al (OH) 3 + Na 2 CO 3
NaAlO2+ H(C2H3O2) + H2O = Al(OH)3+ NaC2H3O2 NaAlO 2 + H (C 2 H 3 O 2 ) + H 2 O = Al (OH) 3 + NaC 2 H 3 O 2
[염화알루미늄 반응식][Aluminum chloride reaction formula]
AlCl3+3NaOH = Al(OH)3+ 3NaClAlCl 3 + 3NaOH = Al (OH) 3 + 3NaCl
AlCl3+3KOH = Al(OH)3+ 3KClAlCl 3 + 3KOH = Al (OH) 3 + 3KCl
AlCl3+3NH4OH = 3NH4Cl + Al(OH)3 AlCl 3 +3 NH 4 OH = 3 NH 4 Cl + Al (OH) 3
[황산알루미늄 반응식]Aluminum Sulfate Reaction Formula
Al2(SO4)3+ 6NH4OH = 2Al(OH)3+ 3(NH4)2SO4 Al 2 (SO 4 ) 3 + 6 NH 4 OH = 2Al (OH) 3 + 3 (NH 4 ) 2 SO 4
Al2(SO4)3+ 6NaOH = 2Al(OH)3+ 3Na2SO4 Al 2 (SO 4 ) 3 + 6NaOH = 2Al (OH) 3 + 3Na 2 SO 4
수산화철인 경우 염화철 내지는 황산철을 이용하여 가성소다 내지는 수산화칼륨을 이용하여 중화처리하여 제조하였다. 반응식은 다음과 같다.In the case of iron hydroxide, it was prepared by neutralization with caustic soda or potassium hydroxide using iron chloride or iron sulfate. The scheme is as follows.
[염화철][Iron Chloride]
FeCl3+ 3NaOH = Fe(OH)3+ 3NaClFeCl 3 + 3 NaOH = Fe (OH) 3 + 3 NaCl
2FeCl3+ 6KOH = 2Fe(OH)3+ 6KCl2FeCl 3 + 6KOH = 2Fe (OH) 3 + 6KCl
[황산철][Iron sulfate]
FeSO4+ 2KOH = Fe(OH)2+ K2SO4 FeSO 4 + 2KOH = Fe (OH) 2 + K 2 SO 4
FeSO4+ 2NaOH = Fe(OH)2+ Na2SO4 FeSO 4 + 2 NaOH = Fe (OH) 2 + Na 2 SO 4
Fe3O4가 코팅된 활성탄, 활성탄소섬유와는 달리 따로 Fe3O4의 표면위에 수용액중의 유기물의 흡착능력을 향상시키기 위하여 극성도가 낮은 polydimethyl siloxane과 극성도가 높은 Carbowax를 같은 비율로 0.01, 0.05, 0.5 중량 %를 코팅하여 표면을 개질화시켰다. 표면개질화 재료는 250 ml에 둥근플라스크에 활성탄, 활성탄소, 마그네타이트를 각각의 무게에 polydimethyl siloxane, carbowax을 각각 0.01, 0.05, 0.5 중량 %를 첨가하고 Chloroform의 용매를 25 ml를 넣고 완전 용해시킨 후 회전하면서 상온에서 감압증류를 하여 제조하였다. 마그네타이트가 함유된 활성탄 및 활성탄소섬유에 표면 개질화된 입자의 형태를 전자현미경 사진에 나타냈으며, X선 회절분석결과는 스펙트럼 1에 나타냈다. EDS의 결과를 스펙트럼 2에 나타냈다.Fe 3 O 4 coated with an activated carbon, activated carbon fiber, as opposed to Carbowax the polarity is low polydimethyl siloxane with polar high in order to improve the adsorption capacity of organic matter in the aqueous solution on the surface of the Fe 3 O 4 separately at the same rate The surface was modified by coating 0.01, 0.05, 0.5 weight%. In 250 ml of surface modification material, add activated carbon, activated carbon, and magnetite in a round flask, and add 0.01, 0.05 and 0.5% by weight of polydimethyl siloxane and carbowax, respectively, and 25 ml of chloroform solvent. It was prepared by distillation under reduced pressure at room temperature while rotating. The morphology of the surface-modified particles on activated carbon and activated carbon fibers containing magnetite was shown on an electron micrograph, and the results of X-ray diffraction analysis were shown in spectrum 1. The results of the EDS are shown in spectrum 2.
실시예 2(물에 용해된 휘발성유기물질 흡착실험)Example 2 (Adsorption experiment of volatile organic substance dissolved in water)
실시예 1에서 제조된 활성탄과 활성탄소섬유를 이용하여 각각의 표면 개질화된 분말을 물에 용해되어 있는 휘발성 유기물질의 흡착능력을 실험하였다. 각 화합물의 표준용액은 혼합표준용액으로 각각 100 ppm으로 제조한 후 0.01 ∼8 ppm의 농도로 1리터를 희석하여 제조하였다. 2리터의 비이커에 제조된 용액 1리터를 정확히 넣고 본 발명의 표면개질화된 활성탄, 활성탄소섬유, 단독의 마그네타이트의 분말을 용액에 넣은 후 나무막대로 힘차게 5분 회전을 시켜주었다. 정지후 비이커 표면에 자석을 부착시켜 표면개질화된 분말을 자력에 의해 모으고, 여액을 버렸다. 자력에 의해 모은 분말에 용매 5 ml를 정확히 넣고 나무막대를 이용하여 흡착된 유기화합물을 완전 탈착시킨 후 GC/MS로 분석하였다. 분석을 하기 위한 검정곡선은 0.1, 0,5, 2.0, 10 ppm의 농도에 따른 분석결과의 면적을 단순 선형회귀곡선으로 작성하였다. 표면개질화된 분말에 대한 회수율, 표준용액의 종류, 검출한계등 분석결과를 표 1에 나타냈다.Using the activated carbon and activated carbon fibers prepared in Example 1, each surface-modified powder was tested for adsorption capacity of volatile organic substances dissolved in water. The standard solution of each compound was prepared by mixing 100 ppm each as a mixed standard solution and diluting 1 liter at a concentration of 0.01-8 ppm. 1 liter of a solution prepared in a 2 liter beaker was accurately placed, and the surface-modified activated carbon, activated carbon fiber, and a powder of magnetite alone were added to the solution, and then strongly rotated for 5 minutes with a wooden rod. After stopping, a magnet was attached to the beaker surface to collect the surface-modified powder by magnetic force, and the filtrate was discarded. 5 ml of the solvent was accurately added to the powder collected by magnetic force, and the adsorbed organic compounds were completely desorbed using a wooden bar, and analyzed by GC / MS. As for the calibration curve for analysis, the area of the analysis result according to the concentration of 0.1, 0, 5, 2.0, and 10 ppm was prepared as a simple linear regression curve. Table 1 shows the analysis results for the surface-modified powder, the recovery rate, the type of standard solution, and the detection limit.
추출효율이 일반적으로 극성 및 비극성 유기물질이 코팅된 표면개질화된 활성탄소섬유가 가장 높았으며, 활성탄, 마그네타이트의 순서를 나타냈고, 3가지 모두 평균회수율이 100 %가까이 나타났기 때문에 물속에 유해유기물이 오염된 물을처리하는데 매우 효과적이라고 설명할 수 있다.In general, the extraction efficiency was highest in surface-modified activated carbon fibers coated with polar and non-polar organic materials, and the order of activated carbon and magnetite was shown. It can be explained that it is very effective in treating contaminated water.
실시예 3(분말에 표면개질화된 수처리 테스트)Example 3 (Water Treatment Test Surface Modified to Powder)
수산화알루미늄과 수산화철이 표면개질화된 것과 철, 알루미늄 염으로 표면개질화된 것의 수처리 효율을 테스트 하였다. 수처리 대상시료는 대전 하수종말 처리장의 물을 이용하였으며, 다음과 같은 방법으로 실험을 하였다. 1리터 비이커에 실험대상 폐수를 정확히 500 ml를 옮기고, 여기에 실시예 1에서 제조된 분말 각각 5 g과 자성이 없는 나무막대를 이용하여 천천히 회전시킨 후 10분 방치시켰다. 방치후 자석을 비이커 벽면에 부착을 시키고 여액을 분석을 하였다. 시험결과중 COD 및 SS는 수질오염공정시험방법중 화학적산소요구량 시험방법 및 부유물질 실험방법에 의해 수행하였으며, 결과는 표 2, 3에 나타냈다. 종래의 일반적인 부유물질을 응집시키고 수처리를 하기 위해서는 많은 공정을 거치게 되는데 일반적으로 10시간 이상이 소요되나 본 발명에서는 따로 무기응집제를 첨가하지 않으면서도 표면개질화된 분말로 물에 함유된 부유물질의 응집이 쉽게 일어나 극히 짧은 시간에 처리할수 있었으며, 특히 화학적산소요구량도 상대적으로 낮게 나타났다.Water treatment efficiencies of surface-modified aluminum hydroxide and iron hydroxide and surface-modified iron and aluminum salts were tested. Samples for water treatment were water from Daejeon sewage treatment plant, and the experiments were conducted as follows. Exactly 500 ml of the test wastewater was transferred to a 1-liter beaker, which was slowly rotated using 5 g of the powder prepared in Example 1 and a non-magnetic bar, and left for 10 minutes. After standing, the magnet was attached to the beaker wall and the filtrate was analyzed. Among the test results, COD and SS were carried out by the chemical oxygen demand test method and the suspended solids test method in the water pollution process test method, and the results are shown in Tables 2 and 3. It takes a lot of processes to agglomerate the conventional suspended solids and water treatment, but generally takes 10 hours or more, but in the present invention, the flocculated flocculant contained in the water as a surface-modified powder without adding an inorganic coagulant. This easily occurred and could be processed in a very short time, especially the chemical oxygen demand was relatively low.
실시예 4(물과 부유물질의 분리속도)Example 4 (separation rate of water and suspended solids)
자력에 의한 자성체의 접착능력실험은 실시예 3과 동일한 방법에 의해 수행하였다. 분말에 코팅된 마그네타이트의 량이 증가할수록 빠른 속도로 분말이 자석에 붙는 것을 나타냈으며, 수처리 속도도 마그네타이트의 증가량에 비례함을 알 수있었다. 결과는 표 4에 나타냈다.Adhesion test of the magnetic body by the magnetic force was carried out in the same manner as in Example 3. As the amount of magnetite coated on the powder increased, the powder adhered to the magnet at a high rate, and the rate of water treatment was also proportional to the increase of the magnetite. The results are shown in Table 4.
지금까지는 물속에 용해되어 있는 환경 유해물질과 물속에 존재하고 있는 부유물질을 제거하기 위하여 화학적, 물리적 방법을 동원하여 많은 시간을 필요로 하였으며, 이에따른 수처리비용이 크게 작용되고 있다. 폐수를 환경 기준치 이하의 수질로 만들기 위해서는 수용액에 함유된 매질의 영향에 따라 흡착율이 낮을 뿐만 아니라 화학적, 생물학적 처리를 통한 시간이 많이 소요되고 있다. 특히 물속에 함유된 농약류는 인체에 매우 치명적이기 때문에 흡착률이 우수한 흡착재를 이용하여 추출을 하여야 한다. 또한 공장 또는 하수종말처리장과 같은 거대한 많은 물을 처리하기 위해서는 지금까지의 방법을 이용할 경우 상당한 크기의 저장고가 필요로 하고, 많은 시간이 필요하기 때문에 인력 및 수처리 비용이 막대하게 소요되고 있어 국가경제에 지장을 초래하고 있다.Until now, it took a lot of time by mobilizing chemical and physical methods to remove environmental harmful substances dissolved in water and suspended substances in water, and the cost of water treatment is working. In order to make the waste water quality below the environmental standard, the adsorption rate is low and the chemical and biological treatment is time-consuming due to the influence of the medium contained in the aqueous solution. In particular, pesticides contained in water are very fatal to humans, so they must be extracted using an adsorbent with excellent adsorption rate. In addition, in order to treat a large amount of water, such as a plant or a sewage treatment plant, a large amount of storage and a large amount of time are required for the conventional methods. It is causing trouble.
앞에서 설명한 바와 같이 본 발명은 부유물질 및 수용액에 함유된 환경 유해물질을 응집제를 사용하지 않고 마그네타이트 분말이 함유된 표면개질화된 흡착제와 자석을 이용한 초고속 수처리 분말 제조방법에 관한 것으로 분말의 표면에 양이온성 및 유기물질의 표면개질화를 통해 유해물질의 흡착률을 높이므로서 인체의 치명적인 피해를 줄일수 있으며, 마그네타이트의 자성체를 이용하여 응집된 부유물질을 매우 짧은 시간에 처리할 수 있고, 처리 효과도 크기 때문에 하수처리장의 소규모화의 가능성과 인력의 낭비를 줄일 수 있어 보다 깨끗한 환경을 만들고, 폐수처리시 경제적 손실을 줄이는데 효과가 매우 크다.As described above, the present invention relates to a method for preparing an ultra-high-speed water treatment powder using a magnet and a surface-modified adsorbent containing magnetite powder and a magnet, which contains suspended solids and environmentally harmful substances in an aqueous solution, and a cation on the surface of the powder. The surface modification of organic and organic substances can increase the adsorption rate of harmful substances and reduce the fatal damage to the human body. The magnetic substance of magnetite can be used to treat the flocculated suspended solids in a very short time. Because of the large size, it is possible to reduce the possibility of small-sized sewage treatment plant and waste of manpower, making a cleaner environment and greatly reducing the economic loss in wastewater treatment.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010049398A KR20030015599A (en) | 2001-08-16 | 2001-08-16 | Ultra-high speed water treatment powder containing surface-modified magnetite powder and adsorbent and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010049398A KR20030015599A (en) | 2001-08-16 | 2001-08-16 | Ultra-high speed water treatment powder containing surface-modified magnetite powder and adsorbent and preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030015599A true KR20030015599A (en) | 2003-02-25 |
Family
ID=27719440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010049398A KR20030015599A (en) | 2001-08-16 | 2001-08-16 | Ultra-high speed water treatment powder containing surface-modified magnetite powder and adsorbent and preparation method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030015599A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100442541B1 (en) * | 2001-09-12 | 2004-07-30 | 주식회사 페로엔텍 | Method for preparing magnetite in aqueous solution at room temperature and Method for water-waste-treatment using the said magnetite |
KR100878350B1 (en) * | 2007-08-29 | 2009-01-15 | 한국화학연구원 | Continuous removing apparatus and method of algaes and nutrient salts by using potential difference method |
CN102527332A (en) * | 2010-12-31 | 2012-07-04 | 中国科学院理化技术研究所 | Composite magnetic adsorption material and preparation method and application thereof |
WO2012099445A3 (en) * | 2011-01-21 | 2012-09-13 | 경북대학교 산학협력단 | Method for manufacturing an organic-inorganic composite hybrid sorbent by impregnating an oxide into nanopores of activated carbon and method for using the method in water treatment |
KR101653382B1 (en) * | 2015-02-25 | 2016-09-01 | 주식회사 이앤켐솔루션 | Manufacuring method of complex adsorbent for ammonia removal |
KR20160114883A (en) * | 2015-03-25 | 2016-10-06 | 한국과학기술연구원 | carbon materials coated by iron oxide as adsorbent for removing heavy metal ions in wastewater |
CN117735706A (en) * | 2024-02-20 | 2024-03-22 | 杭州楠大环保科技有限公司 | Membrane biological reaction system for treating greenhouse gases |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5043070A (en) * | 1989-11-13 | 1991-08-27 | Board Of Control Of Michigan Technological University | Magnetic solvent extraction |
KR960007457A (en) * | 1994-08-05 | 1996-03-22 | 사코 유키오 | Magnetite Particles and Manufacturing Method Thereof |
KR19980034778A (en) * | 1996-11-08 | 1998-08-05 | 허동수 | Magnetic fluid for removing sleeping oil and its manufacturing method and method for removing and recovering sleeping oil using the same |
JPH11314919A (en) * | 1998-05-07 | 1999-11-16 | Titan Kogyo Kk | Surface-modified magnetite particles, their production and their use |
JP2000176306A (en) * | 1998-12-18 | 2000-06-27 | Kawasaki Heavy Ind Ltd | Method for recovering oil by magnetic separation and magnetic body for oil recovery |
KR20010086617A (en) * | 2000-02-09 | 2001-09-15 | 심종진 | A cobalt modified magnetic iron oxide particle powder and the method for preparation thereof |
-
2001
- 2001-08-16 KR KR1020010049398A patent/KR20030015599A/en not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5043070A (en) * | 1989-11-13 | 1991-08-27 | Board Of Control Of Michigan Technological University | Magnetic solvent extraction |
KR960007457A (en) * | 1994-08-05 | 1996-03-22 | 사코 유키오 | Magnetite Particles and Manufacturing Method Thereof |
KR19980034778A (en) * | 1996-11-08 | 1998-08-05 | 허동수 | Magnetic fluid for removing sleeping oil and its manufacturing method and method for removing and recovering sleeping oil using the same |
JPH11314919A (en) * | 1998-05-07 | 1999-11-16 | Titan Kogyo Kk | Surface-modified magnetite particles, their production and their use |
JP2000176306A (en) * | 1998-12-18 | 2000-06-27 | Kawasaki Heavy Ind Ltd | Method for recovering oil by magnetic separation and magnetic body for oil recovery |
KR20010086617A (en) * | 2000-02-09 | 2001-09-15 | 심종진 | A cobalt modified magnetic iron oxide particle powder and the method for preparation thereof |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100442541B1 (en) * | 2001-09-12 | 2004-07-30 | 주식회사 페로엔텍 | Method for preparing magnetite in aqueous solution at room temperature and Method for water-waste-treatment using the said magnetite |
KR100878350B1 (en) * | 2007-08-29 | 2009-01-15 | 한국화학연구원 | Continuous removing apparatus and method of algaes and nutrient salts by using potential difference method |
CN102527332A (en) * | 2010-12-31 | 2012-07-04 | 中国科学院理化技术研究所 | Composite magnetic adsorption material and preparation method and application thereof |
WO2012099445A3 (en) * | 2011-01-21 | 2012-09-13 | 경북대학교 산학협력단 | Method for manufacturing an organic-inorganic composite hybrid sorbent by impregnating an oxide into nanopores of activated carbon and method for using the method in water treatment |
US20140021139A1 (en) * | 2011-01-21 | 2014-01-23 | Kyungpook National University Industry-Academic Cooperation Foundation | Method for producing an organic-inorganic hybrid sorbent by impregnating an oxide into nanopores of activated carbone and use thereof in water treatment |
US9296626B2 (en) * | 2011-01-21 | 2016-03-29 | Kyungpook National University Industry-Academic Cooperation Foundation | Method for producing an organic-inorganic hybrid sorbent by impregnating an oxide into nanopores of activated carbon and use thereof in water treatment |
KR101653382B1 (en) * | 2015-02-25 | 2016-09-01 | 주식회사 이앤켐솔루션 | Manufacuring method of complex adsorbent for ammonia removal |
KR20160114883A (en) * | 2015-03-25 | 2016-10-06 | 한국과학기술연구원 | carbon materials coated by iron oxide as adsorbent for removing heavy metal ions in wastewater |
CN117735706A (en) * | 2024-02-20 | 2024-03-22 | 杭州楠大环保科技有限公司 | Membrane biological reaction system for treating greenhouse gases |
CN117735706B (en) * | 2024-02-20 | 2024-05-07 | 杭州楠大环保科技有限公司 | Membrane biological reaction system for treating greenhouse gases |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Neolaka et al. | Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr (VI) from wastewater | |
RU2225251C2 (en) | Product and method for water treatment | |
Sari et al. | Cd (II) adsorption from aqueous solution by raw and modified kaolinite | |
Devi et al. | Preparation and characterization of CNSR functionalized Fe3O4 magnetic nanoparticles: an efficient adsorbent for the removal of cadmium ion from water | |
Mousavi et al. | Synthesis of Fe3O4 nanoparticles modified by oak shell for treatment of wastewater containing Ni (II) | |
US7524421B2 (en) | Method of forming alginate particles in an aqueous solution containing metal ions | |
RU2547496C2 (en) | Magnetic composite sorbent | |
Wu et al. | Fabrication of Cu-Al2O3/ceramic particles by using brick particles as supports for highly-efficient selenium adsorption | |
Hua | Synthesis and characterization of bentonite based inorgano–organo-composites and their performances for removing arsenic from water | |
Thakur et al. | Removal of heavy metals using bentonite clay and inorganic coagulants | |
Paşka et al. | Magnetic nanopowder as effective adsorbent for the removal of Congo Red from aqueous solution | |
Onyancha et al. | Influence of magnetism-mediated potentialities of recyclable adsorbents for heavy metal ions removal from aqueous solutions–an organized review | |
Qiu et al. | Efficient oxidation and absorption of As (III) from aqueous solutions for environmental remediation via CuO@ MNW membranes | |
Wang et al. | Adsorption mechanisms of Cr (VI) on the modified bauxite tailings | |
Dehdashti et al. | Other trace elements (heavy metals) and chemicals | |
Faghihian et al. | Removal of Chromate from Aqueous Solution by a Novel Clinoptilolite-Polyanillin Composite | |
Gorokhovsky et al. | Utilization of nickel-electroplating wastewaters in manufacturing of photocatalysts for water purification | |
Mohamed et al. | Removal of chromium (VI) and acid orange 142 dye from contaminated wastewater using bio-waste mycelium of Aspergillus ustus: extraction, isotherms and kinetics studies | |
KR20030015599A (en) | Ultra-high speed water treatment powder containing surface-modified magnetite powder and adsorbent and preparation method | |
Barzegar et al. | Performance improvement of pyrolytic coke by surface modification for the adsorption of copper (ii) ions from wastewater | |
Nisreen et al. | Comparative study of removal pollutants (Heavy metals) by agricultural wastes and other chemical from the aqueous solutions | |
Contreras Rodríguez | Removal of cadmium (II), lead (II) and chromium (VI) in water with nanomaterials | |
Bulai et al. | Iron removal from wastewater using chelating resin purolite S930 | |
Dharanguttikar | Biosorption of cobalt by using Pseudomonas aerguinosa bacterial strain | |
Nyakairu et al. | Adsorption of Phosphate by Synthesized Silver/Calcium Oxide-Activated Carbon Nanocomposite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |