JPS6178174A - Junction gate type field-effect transistor - Google Patents

Junction gate type field-effect transistor

Info

Publication number
JPS6178174A
JPS6178174A JP20020584A JP20020584A JPS6178174A JP S6178174 A JPS6178174 A JP S6178174A JP 20020584 A JP20020584 A JP 20020584A JP 20020584 A JP20020584 A JP 20020584A JP S6178174 A JPS6178174 A JP S6178174A
Authority
JP
Japan
Prior art keywords
layer
gate
semiconductor
type
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20020584A
Other languages
Japanese (ja)
Inventor
Yasumasa Imoto
井元 康雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20020584A priority Critical patent/JPS6178174A/en
Publication of JPS6178174A publication Critical patent/JPS6178174A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a junction gate type field-effect transistor having self- alignment type gate structure, which has small parasitic resistance and noises therefrom are low, by forming a semiconductor buffer layer having a mixed- crystal composition different from a semiconductor gate layer between the semiconductor gate layer and a gate electrode metallic layer and shaping the gate electrode metallic layer to an eave form to the semiconductor buffer layer. CONSTITUTION:A first metal 5 and a second metal 6 for a gate electrode are patterned to a striped shape in the inverted mesa direction, and only a p type In0.74Ga0.26As0.56P0.44 layer 4 is etched selectively by an etching liquid consisting of sulfuric acid, hydrogen peroxide and water while using the metals 5 and 6 as masks. Only a p type InP layer 3 is etched selectively by an etching liquid composed of phosphoric acid and hydrochloric acid while employing the p type In0.74Ga0.26As0.56P0.44 layer 4 as a mask. The p type InP layer 3 is etched selectively without side etching and takes a form close to approximately verticality at that time. When a third metal 7 is evaporated onto the whole surface, the eave of the gate electrode shaped by selectively etching the p type In0.74Ga0.26 As0.56P0.44 layer 4 forms a shadow, thus isolating both a gate and a source and both the gate and a drain in a self-alignment manner.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は接合ゲート型電界効果トランジスタ、特に低雑
音高速電子回路に適する電界効果トランジスタの改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in junction gate field effect transistors, particularly field effect transistors suitable for low noise, high speed electronic circuits.

(従来の技術) 電子回路素子として重要な電界効果トランジスタは、低
雑音で高速動作をさせるために、ソース・ドレイン間の
相互コンダクタンスを大きく、かつ寄生抵抗を減らす必
要がある。そのためにはゲート長、ゲート・ドレイン間
距離、ゲート・ソース間距離金短かくすればよく、通常
は自己整合構造が広く用いられている。ところで、接合
ゲート型電界効果トランジスタのゲート長はpn接合部
の長さに対応し、このpn接合部、すなわちゲート部を
自己整合的にソース、ドレインから分離する構造が従来
から知られている。すなわち、pn接合をへテロ接合に
より形成し、ゲート金pAtマスクとしてストライプ状
の逆メサを?択エツチングによりつくり、このときサイ
ドエツチングによシゲート金ハのひさしを生じ、これが
ソース及びドレインのオーミ・ツク電極蒸着時に影とな
ってゲートとソース、ドレインとの分離が自己整合的に
行なわれる構造でおる(米国雑誌’Proceedin
gsof the 7th Conference o
n 3o1id Device ’、 157(197
5)参照)。
(Prior Art) Field effect transistors, which are important as electronic circuit elements, need to have large source-drain mutual conductance and reduced parasitic resistance in order to operate at low noise and high speed. To achieve this, the gate length, gate-drain distance, and gate-source distance need to be shortened, and self-aligned structures are usually widely used. By the way, the gate length of a junction gate type field effect transistor corresponds to the length of the pn junction, and a structure in which the pn junction, that is, the gate part is separated from the source and drain in a self-aligned manner, has been known. That is, a pn junction is formed by a heterojunction, and a striped reverse mesa is used as a gate gold pAt mask? This structure is created by selective etching, and at this time, side etching produces an overhang of silicate gold, which becomes a shadow during the deposition of ohmic electrodes for the source and drain, and the gate is separated from the source and drain in a self-aligned manner. Deoru (US magazine 'Proceedin')
gsof the 7th Conference o
n 3o1id Device', 157 (197
5)).

この場合、サイドエツチング量はゲート響ソース、ゲー
ト・ドレイン間距離に対応し、寄生抵抗低減の点から少
ない万がよいが、この従来の構造ではゲートのメサの高
さをソース−ドレイン電極金属の厚嘔より十分に高くす
る必要があるため、ゲートのメサエッチングと同時に形
成されるサイドエツチング全2μ鴨以下に制御するのは
極めて難かしかった。従って、ゲート−ソース間、ゲー
ト・ドレイン間の寄生抵抗が小さく、相互コンダクタン
スの大きな低雑音の電界効果トランジスタが得られない
といった欠点を有していた。
In this case, the amount of side etching corresponds to the gate acoustic source and gate-drain distances, and is preferably as small as possible from the perspective of reducing parasitic resistance. However, in this conventional structure, the height of the gate mesa is adjusted to Since it is necessary to make the side etching sufficiently higher than the thickness, it is extremely difficult to control the side etching, which is formed at the same time as the mesa etching of the gate, to a total thickness of 2 μm or less. Therefore, it has been disadvantageous that it is not possible to obtain a low-noise field effect transistor with small parasitic resistance between the gate and source and between the gate and drain, large mutual conductance, and low noise.

(発明の目的) 本発明の目的は、このよつな欠点を除去し、ゲート・ソ
ース間距離、ゲート・ドレイン間距離が0.2μ濯以下
で寄生抵抗が小さく、低雑音の自己整合型ゲート構造の
接合ゲート型電界効果トランジスタ金提供することにあ
る。
(Object of the Invention) The object of the present invention is to eliminate these drawbacks and provide a self-aligned gate with a gate-source distance and a gate-drain distance of 0.2μ or less, low parasitic resistance, and low noise. An object of the present invention is to provide a junction gate field effect transistor structure of gold.

(発明の構成) 本発明の構成は、半導体基板上に第1導電型の半導体層
を形成しこの半導体層上の一部に第2導電型の半導体ゲ
ート層を形成しこの半導体ゲート層およびこの半導体ゲ
ート層の両側の半導体層上にそれぞれ電極金属層を設け
てそれぞれゲート、ドレインおよびソースとした接合ゲ
ート型電界効果トランジスタにおいて、前記半導体ゲー
ト層と前記ゲート電極金属層との間に前記半導体ゲート
層と異なる混晶組成をもつ半導体ノくツファ層金設け、
前記ゲート電極金属層が前記半導体バッファ層に対して
ひさし形状となることを特徴とする。
(Structure of the Invention) The structure of the present invention is such that a semiconductor layer of a first conductivity type is formed on a semiconductor substrate, a semiconductor gate layer of a second conductivity type is formed on a part of this semiconductor layer, and this semiconductor gate layer and this semiconductor layer are formed on a part of this semiconductor layer. In a junction gate field effect transistor, electrode metal layers are provided on the semiconductor layers on both sides of a semiconductor gate layer to serve as a gate, a drain, and a source, respectively, and the semiconductor gate layer is provided between the semiconductor gate layer and the gate electrode metal layer. A semiconductor layer with a mixed crystal composition different from the layer is provided,
The gate electrode metal layer is characterized in that it has an eave shape with respect to the semiconductor buffer layer.

(尭施例) 次に図面を参照して本発明の実施例を詳細に説明する。(Example) Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の接合ゲート型電界効果トラ
ンジスタの断面図である。図のように、この接合ゲート
型電界効果トランジスタは、半絶縁性InP  よりな
る基板1上に、層厚が0.2μ鴫。
FIG. 1 is a sectional view of a junction gate field effect transistor according to an embodiment of the present invention. As shown in the figure, this junction gate field effect transistor has a layer thickness of 0.2 μm on a substrate 1 made of semi-insulating InP.

キャリアIl!1度がl X I Q 17cns−”
のn型In0.74GaOJg八S 0.56 P 0
.44層2よりなる能動肩および層厚0.5μ溝キャリ
ア濃度5X1017α−3のP型InP層3と層厚01
μ倶キャリア濃度5X1018a11−8のバッファ層
となるP型I n O,74Gao、zs A30.5
11 Po、44層4とからなる逆メサストライプ状ゲ
ート層金有し、その電極としては、ゲートがTI より
なる第1の金1I45゜Pt よりなる第2の金rr%
6およびAuGeよりなる第3の金ff17の311よ
り成り、ソース・ドレインの?JC金属が第3の金属7
となっている。
Career Il! 1 degree is l X I Q 17cns-”
n-type In0.74GaOJg8S 0.56 P 0
.. Active shoulder consisting of 44 layers 2 and layer thickness 0.5μ groove P-type InP layer 3 with carrier concentration 5X1017α-3 and layer thickness 01
P-type InO, 74Gao, zs A30.5, which becomes a buffer layer with a μ carrier concentration of 5×1018a11-8
11 Po, 44 layers 4, and the gate has an inverted mesa stripe-like gate layer of gold, and its electrodes include a first gold layer made of TI and a second gold layer made of 1I45°Pt.
6 and a third gold ff17 made of AuGe, the source/drain ? JC Metals is the third metal 7
It becomes.

本構造のゲート形成方法は、まずゲート電極の第1の金
N5と第2の金属6とを逆メサ方向に長さ250μ町幅
1.5μmでストライブ状にバターニンクシ、コレヲマ
スクトしテp ffl I n O,74aao、26
As o、ss P O,44層4のみを硫酸、過酸化
水素及び水よりなるエツチング液で選択的にエツチング
する。
The method for forming the gate of this structure is to first mask the first gold N5 and the second metal 6 of the gate electrode in a stripe pattern with a length of 250 μm and a width of 1.5 μm in the reverse mesa direction. n O, 74aao, 26
As o, ss P O, 44 Only layer 4 is selectively etched with an etching solution consisting of sulfuric acid, hydrogen peroxide, and water.

次次、p M In O,74Gao、zs Aso、
aa P O,44層4t+v2りとしてp型InP層
3のみを燐酸及び塩酸よりなるエンチング液で選択的に
エツチングする。このときp型In0.74GaOJ6
AS0.56F0.44層4の選択エツチングではサイ
ドエツチング金主じるが、p型InP 層3の選択エツ
チングではサイドエツチングが無くほぼ垂直に近い形状
となる。次に全面に第3の金属7t−蒸着すると、p゛
型In0.74Ga0.26As o、sa PG、4
4層4の選択エツチングによシ生じたゲート電極のひさ
しが影をつくるため、ゲート・ソース、ゲート・ドレイ
ン間は自己整合で分離される。
Next, p M In O, 74 Gao, zs Aso,
aa PO, 44 layers 4t+v2, and only the p-type InP layer 3 is selectively etched with an etching solution consisting of phosphoric acid and hydrochloric acid. At this time, p-type In0.74GaOJ6
In the selective etching of the AS0.56F0.44 layer 4, side etching is dominant, but in the selective etching of the p-type InP layer 3, there is no side etching and the shape is almost vertical. Next, when the third metal 7t is deposited on the entire surface, p-type In0.74Ga0.26Aso, sa PG, 4
Since the eaves of the gate electrode created by selective etching of the 4th layer 4 create a shadow, the gate and source and the gate and drain are separated by self-alignment.

本実施例では、メサ全体のゲート電極に対するサイドエ
ッチ1rip型In0.74Ga(1,26人S G、
56 P 0.44N4(DそれtDみであシ、p型I
 n O,74Ga O,26As o、ssP O,
44l脅4の層厚が0.1μmであることから、メサの
す・fドエッチ量は0.2μ能程度に制御することがで
き、かつメサの篩さはサイドエッチ?とは独立にp型I
nPM13の厚さで任意に設定できる。
In this example, side etch 1-rip type In0.74Ga (1,26 SG,
56 P 0.44N4 (DSotDMiash, p type I
n O, 74 Ga O, 26 As o, ssP O,
Since the layer thickness of the 44l layer 4 is 0.1 μm, the amount of side etching on the mesa can be controlled to about 0.2 μm, and the sieveness of the mesa can be controlled by side etching. p-type I independently of
The thickness of nPM13 can be set arbitrarily.

従って、ゲート・ソース、ゲート・ドレイン間の寄生抵
抗は、ゲート@250μ悟のとき約20とな勺、従来に
比べて1/10以下に大幅に低減され、高い相互コンダ
クタンスを有する低雑音の接合ゲ−ト型電界効果トラン
ジスタが得られる。
Therefore, the parasitic resistance between the gate and the source and between the gate and the drain is about 20 when the gate is 250 μm, which is significantly reduced to less than 1/10 compared to the conventional method, resulting in a low-noise junction with high transconductance. A gated field effect transistor is obtained.

なお、素子を構成する各層の材料、混晶組成は、本実施
例に限らず選択エツチング可能なものであればいかなる
材料、混晶組成であってもよい。また。各層のドーピン
グ量、層厚もいかなる値であってもよく、電極金属もメ
サエッチングを行なうエッチャントに対して耐性があり
オーミック接触がとれるものであればいかなるものであ
ってもよい。
The material and mixed crystal composition of each layer constituting the element are not limited to those of this embodiment, but may be any material or mixed crystal composition that can be selectively etched. Also. The doping amount and layer thickness of each layer may be any value, and the electrode metal may be any metal as long as it is resistant to the etchant that performs mesa etching and can establish ohmic contact.

(発明の効果) 以上詳述したように、本発明によれば、半導体ゲート層
とゲート電極金属の間に半導体バアッファ層1−はさむ
ことにより、ゲート・ソース間、ゲート・ドレイン間距
離全短縮して寄生抵抗を低減し、高い相互コンダクタン
ス金有する接合ゲート型電界効果トランジスタが得られ
る。
(Effects of the Invention) As detailed above, according to the present invention, by sandwiching the semiconductor buffer layer 1 between the semiconductor gate layer and the gate electrode metal, the gate-source and gate-drain distances can be completely shortened. Thus, a junction gate field effect transistor with reduced parasitic resistance and high transconductance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

$1図は本発明の一実施例の概略断面図である。 図においてlは基板、2はn型In0.74Ga0,2
@A$0.MPo、44層、3はp型InP/l、4は
p型In0.76Ga O,24As o、sa Po
、44層、5は第1の金属、6は第2の金属、7Vi第
3の金属でらる。
Figure $1 is a schematic cross-sectional view of one embodiment of the present invention. In the figure, l is the substrate, 2 is n-type In0.74Ga0,2
@A$0. MPo, 44 layers, 3 is p-type InP/l, 4 is p-type In0.76Ga O,24As o, sa Po
, 44 layers, 5 is the first metal, 6 is the second metal, and 7Vi is the third metal.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に第1導電型の半導体層を形成しこの半
導体層上の一部に第2導電型の半導体ゲート層を形成し
この半導体ゲート層およびこの半導体ゲート層の両側の
半導体層上にそれぞれ電極金属層を設けてそれぞれゲー
ト、ドレインおよびソースとした接合ゲート型電界効果
トランジスタにおいて、前記半導体ゲート層と前記ゲー
ト電極金属層との間に前記半導体ゲート層と異なる混晶
組成をもつ半導体バッファ層を設け、前記ゲート電極金
属層が前記半導体バッファ層に対してひさし形状となる
ことを特徴とする接合ゲート型電界効果トランジスタ。
A semiconductor layer of a first conductivity type is formed on a semiconductor substrate, a semiconductor gate layer of a second conductivity type is formed on a part of this semiconductor layer, and a semiconductor gate layer of a second conductivity type is formed on this semiconductor gate layer and the semiconductor layers on both sides of this semiconductor gate layer, respectively. In a junction gate field effect transistor provided with an electrode metal layer and used as a gate, a drain, and a source, respectively, a semiconductor buffer layer having a mixed crystal composition different from that of the semiconductor gate layer between the semiconductor gate layer and the gate electrode metal layer. A junction gate field effect transistor characterized in that the gate electrode metal layer has an eave shape with respect to the semiconductor buffer layer.
JP20020584A 1984-09-25 1984-09-25 Junction gate type field-effect transistor Pending JPS6178174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20020584A JPS6178174A (en) 1984-09-25 1984-09-25 Junction gate type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20020584A JPS6178174A (en) 1984-09-25 1984-09-25 Junction gate type field-effect transistor

Publications (1)

Publication Number Publication Date
JPS6178174A true JPS6178174A (en) 1986-04-21

Family

ID=16420547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20020584A Pending JPS6178174A (en) 1984-09-25 1984-09-25 Junction gate type field-effect transistor

Country Status (1)

Country Link
JP (1) JPS6178174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154565A (en) * 1987-12-10 1989-06-16 Fujitsu Ltd Manufacture of junction fet
US5231040A (en) * 1989-04-27 1993-07-27 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor
JPH05226598A (en) * 1991-11-25 1993-09-03 Korea Electron Telecommun Photoelectric integrated element for reception use and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154565A (en) * 1987-12-10 1989-06-16 Fujitsu Ltd Manufacture of junction fet
US5231040A (en) * 1989-04-27 1993-07-27 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor
JPH05226598A (en) * 1991-11-25 1993-09-03 Korea Electron Telecommun Photoelectric integrated element for reception use and its manufacture

Similar Documents

Publication Publication Date Title
JPS61121369A (en) Semiconductor device
JP3253824B2 (en) GaAs semiconductor power device operable at low power supply voltage and method of manufacturing the same
US5231040A (en) Method of making a field effect transistor
JPS6178174A (en) Junction gate type field-effect transistor
US3453504A (en) Unipolar transistor
JPS5879773A (en) Field-effect transistor
JPH0964341A (en) High electron mobility transistor
KR930020731A (en) Dual gate metal semiconductor field effect transistor and manufacturing method thereof
JPS61161766A (en) Longitudinal mosfet
EP0394590B1 (en) Field effect transistors and method of making a field effect transistor
JPS6122873B2 (en)
JPS60251671A (en) Field-effect type transistor and manufacture thereof
JPS6323668B2 (en)
JPS6115375A (en) Hetero junction fet
JP2867472B2 (en) Semiconductor device
JPS62190772A (en) Field-effect transistor and manufacture thereof
JPS6114756A (en) Bipolar transistor
JPS59165462A (en) Manufacture of compound semiconductor field effect transistor
JPS635572A (en) Manufacture of junction type fieldeffect transistor
JP3195807B2 (en) Method for manufacturing field effect transistor
JPH02262342A (en) Manufacture of semiconductor device
JPS61234569A (en) Field effect transistor
KR950000661B1 (en) Mesfet and manufacturing method thereof
JPH01183858A (en) Semiconductor device
JPS59130481A (en) Schottky gate field effect transistor