JPS6177342A - Formation of multilayer wiring - Google Patents

Formation of multilayer wiring

Info

Publication number
JPS6177342A
JPS6177342A JP19837084A JP19837084A JPS6177342A JP S6177342 A JPS6177342 A JP S6177342A JP 19837084 A JP19837084 A JP 19837084A JP 19837084 A JP19837084 A JP 19837084A JP S6177342 A JPS6177342 A JP S6177342A
Authority
JP
Japan
Prior art keywords
wiring
layer wiring
film
layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19837084A
Other languages
Japanese (ja)
Inventor
Keiichi Fukuda
啓一 福田
Toshiki Ehata
敏樹 江畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19837084A priority Critical patent/JPS6177342A/en
Publication of JPS6177342A publication Critical patent/JPS6177342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form multilayer wirings having no possibility of disconnection without causing the deterioration in characteristic of the title device by including the process of forming the first layer wiring, process of forming as insulation film of approximately the same thickness as that of the first layer wiring, and process of flattening the insulation film with regard to the first layer wiring. CONSTITUTION:The insulation film 13 of approximately the same thickness as that of the first layer wiring, e.g. an Si3N4 film is formed. Next, the insulation film 13 is selectively removed in a part 13' present above the first wiring layer 12, and a resist pattern 14 is formed in the part 13' resulting from removal of the film 13 at the part 13' above the wiring 12 in order to flatten the surface. Using the mask of this resist pattern 14, the film 13 at the part 13' above the wiring 12 is etched away with e.g. CF4 gas 18, resulting in flattening. After contact holes 16 are opened in the interlayer insulation film 15 above required parts of the wiring 12, the second layer wiring 17 is formed likewise as the first layer wiring 13. Repetion of the above-mentoined processes on the wiring 17 enables the formation of a multilayer wiring of three or more layers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多層配線形成法、さらに詳しく云えば、半導体
装置特に集積回路における多層配線形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming multilayer wiring, and more particularly, to a method for forming multilayer wiring in semiconductor devices, particularly integrated circuits.

〔従来の技術〕[Conventional technology]

半導体装置、特に集積回路の電極配線は、高集積化に伴
9、多層配線形成法とるようになって来てしる。
2. Description of the Related Art As semiconductor devices, particularly integrated circuits, have electrode wirings, multilayer wiring formation methods have come to be used as the degree of integration increases.

従来の、この種半導体装置における多層配線形成法では
次のような工1!をとってμる。すなわち半導体基板上
に、例えばトランジスタ形成済みのシリコン基板上に、
第1層配線!形成し、その後、例えばプラズマCVD法
によル第1層配I!を含む基板全面に層間絶縁膜として
Si、N4膜(,9(窒化膜)を形成する。次にスルー
ホール部ある埴はコンタクトホール部のSi、N4膜を
エツチングによシ取除く。それから、このSd、N4層
間絶縁展1に第2層配線を形成する。
The conventional method for forming multilayer wiring in this type of semiconductor device involves the following process 1! Take it and measure it. That is, on a semiconductor substrate, for example, on a silicon substrate on which a transistor has been formed,
First layer wiring! After that, the first layer I! is formed by, for example, a plasma CVD method. A Si, N4 film (, 9 (nitride film)) is formed as an interlayer insulating film on the entire surface of the substrate including the contact hole. Next, the Si and N4 films in the contact hole area are removed by etching. A second layer wiring is formed on this Sd, N4 interlayer insulation layer 1.

上記の従来の多層配線形成法によって形成された2層配
線構造は、第1層配線上にSt、N4膜等の絶縁膜がス
ルーホール部を除き存在し、さらにその上に第2層目の
配線が設けられるものである。
In the two-layer wiring structure formed by the conventional multilayer wiring formation method described above, an insulating film such as St or N4 film exists on the first layer wiring except for the through-hole area, and a second layer Wiring is provided.

このようにして形成された配線構造では次のような欠陥
が存在した。すなわち、第2層目の配線が第1層目の配
線と交差する箇所では、#11層目の配線による段差が
大きいため、その上に上記の絶縁l@會設けたとき、絶
縁膜に生ずる段差5tar、鋭く、段部における第2層
配線が薄くなシ、そのため断線を生じ易−〇 このように、第2層目の配線が断線金生じ易い欠陥を除
去するため、第1層配線によって、上記絶縁膜に生ずる
段差部の平坦化を行い、配線歩留の向上が試みられた。
The wiring structure thus formed had the following defects. In other words, at the point where the second layer wiring intersects the first layer wiring, there is a large step due to the #11 layer wiring, so when the above insulation is provided on top of it, the level difference that occurs in the insulating film The height difference is 5 tar, and the second layer wiring at the step is not thin, so it is easy to cause wire breakage. Attempts have been made to improve the wiring yield by flattening the stepped portions that occur in the insulating film.

このために、従来試みられた方法’e#12図について
説明する。
For this purpose, a conventionally attempted method 'e#12 will be explained.

第2図(51)は、半導体基板21上に全面に、#11
層配線用の金属層(第2図(a)においては図示せず)
と同一程度の厚さの絶縁膜22、例えば、5isN4膜
を形成し、第1層の配線全形成する位置にある絶縁WI
Aをレジ!「πをマスクにして、例えば(J4を主成分
とするガス26を用いてドライエツチングを行なりて除
去した状態における半導体装置基板21の該当する部分
の断面を示すものである。
FIG. 2 (51) shows #11 on the entire surface of the semiconductor substrate 21.
Metal layer for layer wiring (not shown in Fig. 2(a))
An insulating film 22, for example, a 5isN4 film, is formed to have a thickness similar to
Check out A! It shows a cross section of the corresponding portion of the semiconductor device substrate 21 after being removed by dry etching using a gas 26 containing J4 as a main component, using π as a mask.

この場合、絶縁膜22の上記のエツチングによって除去
された部分27は図示の通シ開ロ部も底部も寸法は余シ
変らないがその底部における半導体基板部28は上記エ
ツチング用ガス26によシ損傷を受けるおそれがある。
In this case, the dimensions of the portion 27 of the insulating film 22 removed by the above-mentioned etching do not change much in the illustrated through-opening bottom portion or the bottom portion, but the semiconductor substrate portion 28 at the bottom portion is etched by the etching gas 26. There is a risk of damage.

上記の工@を終了した状態、すなわち、第2図(ωに示
す状態にお―て、配線金属24t″基板21上のととも
に除去し、その上に層間絶縁膜25を形成する。この工
程を終了すると第2図(6)に示す状態となる。
In the state where the above process is completed, that is, in the state shown in FIG. When the process is completed, the state shown in FIG. 2 (6) is reached.

このようにして、絶縁膜22のエツチングによシ除去し
た部分27に蒸着された金属24′のみ残存し、この金
属24′で第1層の配Sを形成することができ、この際
、絶縁膜22と金属24′とが残存するためその光面は
平坦となる。その後層間絶縁膜25を形成し平坦な表面
金得ることができ、この上に断線の生じなφ第2層配m
e形成することができる。
In this way, only the metal 24' deposited on the etched away portion 27 of the insulating film 22 remains, and this metal 24' can form the first layer S. Since the film 22 and metal 24' remain, the optical surface becomes flat. After that, an interlayer insulating film 25 is formed to obtain a flat gold surface, and a second layer of φ is formed on this film without causing disconnection.
e can be formed.

しかし、この形成方法によると、第2図(、)における
エツチング時に、半導体基板21の光面の第1層配線金
属24′と接合する部分がイオンによ)ダメージを受け
、その電気的特性を劣化させる欠点かラルそのため電極
部を形成する方法としては適してiな1゜ この際、このエツチングをダメージの影響の少−化学工
、テ/グ法で行なう場合には、該エツチングは加工精度
が悪く、等方性エツチングとなる。
However, according to this formation method, during the etching shown in FIG. For this reason, it is not suitable as a method for forming electrode parts because of the drawbacks that cause deterioration.At this time, when this etching is carried out by a chemical process or a tecking method that causes less damage, the etching is difficult to process with precision. This results in isotropic etching.

従って、半導体基板210表面を処理して第2図(、)
に示す状態とするために化学エツチングを行えば、この
エツチングによって除去される絶縁膜220部分27は
第2図(4に示すように開口部が底部よシも着しく広く
なる。従って、との工シテング処理終了後、第1層配線
金属24′を蒸着させたときに該配線金属24′の周辺
部に溝27′が形成されるため、この上に絶縁膜25′
ft形成した場合、完全には平坦化できず段差29が残
シ、この上に#!2層の配IiIを施すと前記の通p断
線のおそれがある。
Therefore, after processing the surface of the semiconductor substrate 210, as shown in FIG.
If chemical etching is performed to obtain the state shown in FIG. After the engineering process is completed, when the first layer wiring metal 24' is deposited, a groove 27' is formed around the wiring metal 24'.
When ft is formed, it cannot be completely flattened and a step 29 remains, and #! If two-layer wiring IiI is applied, there is a risk of the above-mentioned disconnection.

〔発明が解決しシうとする問題点〕[Problems that the invention attempts to solve]

本発明は、半導体装置、特に集積回路における従来の技
術による多層配線形成法の、上記の問題点を解決し、特
性が劣化せず、また多層配線におiて断線の生ずるおそ
れのない多層配線形成法を提供しようとするものである
The present invention solves the above-mentioned problems of the conventional multilayer wiring formation method for semiconductor devices, especially integrated circuits, and eliminates the possibility of deterioration of characteristics and the possibility of disconnection in the multilayer wiring. The purpose of this paper is to provide a method of formation.

c問題点を解決するための手段〕 本発明による多層配線形成法は、半導体基板上に第1層
配線上mを形成する工租と、該第1層配線を形成した上
記基板蚕誓に該第1層配線と同一の程度の厚さの絶縁*
1−形成する工程と、上記絶縁膜の上記第1層配線上の
部分をレジストパターンをマスクとしてエツチングを行
なって除去して上記絶縁膜を第1層配線に対して平坦化
する工程と。
Means for Solving Problem c] The multilayer interconnection forming method according to the present invention includes a process for forming a first layer interconnect on a semiconductor substrate and a process for manufacturing the substrate on which the first layer interconnect is formed. Insulation with the same thickness as the first layer wiring*
1--A step of forming, and a step of etching and removing a portion of the insulating film on the first layer wiring using a resist pattern as a mask to planarize the insulating film with respect to the first layer wiring.

を含むものであって、この本発明の多層配線形成法によ
って上記の従来技術における問題点を解決し得たのでお
る。
The above-mentioned problems in the prior art can be solved by the multilayer wiring forming method of the present invention.

〔実施例〕〔Example〕

以下本発明の一実施例を図面につ9て説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(ω〜0)は本発明による多層配線形成法が実施
される半導体基板の工程順の断面図である。
FIG. 1 (ω-0) is a cross-sectional view of a semiconductor substrate in the order of steps on which a multilayer interconnection forming method according to the present invention is performed.

第1図(G)におiて、半導体基板11上に形成された
第1層配線12による段差の平坦化を行なうために、第
1層配線12と同程度の厚さの絶縁膜13、例えば54
sN4膜を形成する。第1図−)は上記の絶縁膜13の
形成の終了した状1mを示す。
In FIG. 1(G), in order to flatten the step caused by the first layer wiring 12 formed on the semiconductor substrate 11, an insulating film 13 having the same thickness as the first layer wiring 12, For example 54
Form an sN4 film. FIG. 1-) shows a state 1m in which the formation of the insulating film 13 described above has been completed.

次に、絶縁膜(EtHN4膜)15の第1層配線12の
上に存在する部分15′を選択的に除去して、光面を平
坦化するために、該絶縁膜15の第1層配線12上の部
分15′を除いた部分15〃にレジストパターン14を
形成する。上記の工程を終了した状態を第1図(6)に
示す。
Next, a portion 15' of the insulating film (EtHN4 film) 15 existing on the first layer wiring 12 is selectively removed to planarize the optical surface of the first layer wiring of the insulating film 15. A resist pattern 14 is formed on the portion 15 excluding the portion 15' on the resist pattern 12. The state after the above steps are shown in FIG. 1 (6).

上記の工程におりて、レジストパターン14ヲ第1層配
線12に対して高い合せ精度で形成する必要がおるが、
パターンの形成に±0.1μ毒の高い精度の位置合せが
可能な、例えば公知の縮小投影電光装置を用いることに
よシ、上記精度の位置合せは達成できる。
In the above process, it is necessary to form the resist pattern 14 with high alignment accuracy with respect to the first layer wiring 12.
The alignment with the above-mentioned precision can be achieved by using, for example, a known reduction projection electro-optical device which is capable of alignment with a high precision of ±0.1 μm for pattern formation.

第1図(6)に示された状態にお−て、この後絶縁膜1
3の第1層配線12上を除く部分15”に形成された上
記レジストパターン14″ftマスクトシて、第1層配
@12上の絶縁膜13の部分15′を、例えばCF4ガ
ス18を用いてエツチングを行なって除去層間絶縁膜1
5ヲ形成し、絶縁at六面の平坦化を実現する。第1図
(o)は上記の工程を終了したと右の状態を示す図であ
る。
In the state shown in FIG. 1 (6), the insulating film 1 is then
Using a 14"ft mask of the resist pattern formed on the portion 15'' excluding the first layer wiring 12 of No. 3, the portion 15' of the insulating film 13 on the first layer wiring 12 is coated with, for example, CF4 gas 18. Interlayer insulating film 1 removed by etching
5 is formed to realize flattening of the six insulating surfaces. FIG. 1(o) is a diagram showing the state on the right after the above steps have been completed.

その後、第1図(d)に示すように、第1層配線12の
所要個所の上部において、上記層間絶縁膜15にコンタ
クト・ホール(スルーホール)14をM口した後第2層
配線17を第1層配線12と同様に形成するが、層間絶
縁膜15は平坦化され、段差部がないため第2層配線1
7に断線のおそれはなり。
Thereafter, as shown in FIG. 1(d), M contact holes (through holes) 14 are formed in the interlayer insulating film 15 at required locations on the first layer wiring 12, and then the second layer wiring 17 is formed. Although it is formed in the same manner as the first layer wiring 12, the interlayer insulating film 15 is flattened and there is no stepped portion, so the second layer wiring 12 is formed.
7, there is a risk of wire breakage.

第1層配線12上に上記した本発明の工程を繰返えし実
施することによ95層以上のさらに多層の配線形成が可
能でおる。
By repeatedly carrying out the above-described process of the present invention on the first layer wiring 12, it is possible to form further multilayer wiring of 95 or more layers.

以上本発明の一実施例について説明したが、本発明は上
記実施例に限定されるものではなく、その技術的範囲内
で種々の変形が可能である。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope thereof.

例えば平坦化に使用する絶縁膜(#11図(、)〜(d
)における13)は842N、膜に限るものではなく、
第1層配線12と同程度の厚さの絶縁膜であればよく、
無機膜でも有機膜でもよい。さらに、本発明の工程にお
ける絶縁膜13のエツチングには化学エツチング法める
vh抹物理エツチング法の−づれを使用してもかまわな
い。
For example, an insulating film used for planarization (#11 (,) to (d)
13) in ) is 842N, not limited to membranes,
It suffices if the insulating film has the same thickness as the first layer wiring 12,
It may be an inorganic film or an organic film. Further, for etching the insulating film 13 in the process of the present invention, either a chemical etching method or a VH physical etching method may be used.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されてしるので、半導体装置
特に集積回路における多層配線形成に尚ル、半導体装置
の特性の劣化をまねくことなく、かつ断線のおそれのな
1多層配*1−形成し得る効 ・来がある。
Since the present invention is configured as described above, it is possible to form a multilayer wiring in a semiconductor device, especially an integrated circuit, without causing deterioration of the characteristics of the semiconductor device and without fear of disconnection. There are effects that can be formed.

【図面の簡単な説明】 1i1図は本発明の一実施例の、半導体基板の工程順断
面図、第2図乙) * (6) + (a)は従来技術
による半導体基板の工程順断面図%1IK2図(d)は
上記と異る従来技術によル得られる半導体基板断面図で
ある。
[Brief Description of the Drawings] Figure 1i1 is a process-order cross-sectional view of a semiconductor substrate according to an embodiment of the present invention, and Figure 2B) * (6) + (a) is a process-order cross-sectional view of a semiconductor substrate according to the prior art. %1IK2 Figure (d) is a cross-sectional view of a semiconductor substrate obtained by a conventional technique different from the above.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に第1層配線を形成する工程と、該第1
層配線を形成した上記基板上に該第1層配線と同一の程
度の厚さの絶縁膜を形成する工程と、上記絶縁膜の上記
第1層配線上の部分をレジストパターンをマスクとして
エッチングを行なって除去して上記絶縁膜を第1層配線
に対して平坦化する工程とを含むことを特徴とする多層
配線形成法。
a step of forming a first layer wiring on a semiconductor substrate;
A step of forming an insulating film having the same thickness as the first layer wiring on the substrate on which the layered wiring is formed, and etching a portion of the insulating film on the first layer wiring using a resist pattern as a mask. and removing the insulating film to planarize the insulating film relative to the first layer wiring.
JP19837084A 1984-09-21 1984-09-21 Formation of multilayer wiring Pending JPS6177342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19837084A JPS6177342A (en) 1984-09-21 1984-09-21 Formation of multilayer wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19837084A JPS6177342A (en) 1984-09-21 1984-09-21 Formation of multilayer wiring

Publications (1)

Publication Number Publication Date
JPS6177342A true JPS6177342A (en) 1986-04-19

Family

ID=16389978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19837084A Pending JPS6177342A (en) 1984-09-21 1984-09-21 Formation of multilayer wiring

Country Status (1)

Country Link
JP (1) JPS6177342A (en)

Similar Documents

Publication Publication Date Title
JPH06181209A (en) Manufacture of semiconductor device
JPH10163198A (en) Semiconductor device and its manufacture
JPS6177342A (en) Formation of multilayer wiring
JPH06244286A (en) Manufacture of semiconductor device
JPH0530068B2 (en)
JPS6313347B2 (en)
JPS6313346B2 (en)
JPH06349828A (en) Manufacture of integrated circuit device
JPH07161720A (en) Semiconductor device and its manufacture
JPH0222844A (en) Semiconductor integrated circuit
JPH098007A (en) Method for flattening insulation film
JPH0254563A (en) Semiconductor device
JPS5928358A (en) Manufacture of semiconductor device
JPH02151052A (en) Manufacture of semiconductor device
JPS59175124A (en) Manufacture of semiconductor device
JPS60124950A (en) Semiconductor device having multilayer interconnection structure
JPH09172075A (en) Manufacture for interlayer connection hole in multilayer wiring of semiconductor device
JP2000077524A (en) Pattern formation method
JPH0536841A (en) Semiconductor device and manufacture thereof
JPH0750707B2 (en) Method for forming interlayer insulating film through hole
JPH0488634A (en) Formation of thin film wiring
JPS63177442A (en) Manufacture of semiconductor device
JPH04255252A (en) Manufacture of semiconductor device
JPS61116861A (en) Formation of multilayer interconnection
JPH07326611A (en) Forming method of wiring of semiconductor device