JPS6173350A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6173350A
JPS6173350A JP19511284A JP19511284A JPS6173350A JP S6173350 A JPS6173350 A JP S6173350A JP 19511284 A JP19511284 A JP 19511284A JP 19511284 A JP19511284 A JP 19511284A JP S6173350 A JPS6173350 A JP S6173350A
Authority
JP
Japan
Prior art keywords
layer
conductive layer
wiring
adhered
interlayer connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19511284A
Other languages
Japanese (ja)
Inventor
Tsutomu Akatsuka
赤塚 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19511284A priority Critical patent/JPS6173350A/en
Publication of JPS6173350A publication Critical patent/JPS6173350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve the flatness in an interlayer connection portion, by forming an uppermost conductive layer on a substrate into a protrudent shape, providing an interlayer insulation film around the conductive layer so as to burry the same and adhering a wiring layer thereon to effect the interlayer connection. CONSTITUTION:An SiO2 layer 4 is adhered on an Si substrate 1 provided with a base region 2 and an emitter region 3, and is provided with contact holes. A first conductive layer 5 as a first wiring layer, a heterogeneous conductive layer 8 having a smaller etching rate and a second conductive layer 9 are adhered successively in that order. The layers are then patterned and removed by etching except the layer 9 in the interlayer connection portion which is left as a protrusion. Electrodes 4E, 5B and 5C are formed by patterning. PSG6 is then adhered thereon as an interlayer insulation film while the top of the protrudent layer 9 is exposed. A second wiring layer 7 is adhered thereon to cover the exposed portion of the layer 9, and patterned into a wiring pattern. In this manner, the interlayer connection portion having a good flatness is obtained, and therefore a highly integrated and high density semiconductor device can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法、詳しくは半導体製造プ
ロセスにおける多層配線形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming multilayer wiring in a semiconductor manufacturing process.

近年大規模集積回路(LSI)の高集積化にともない多
層配線が多用されるようになった。この場合多層配線の
層間接続が簡単な工程で、確実にに行え、しかも基板の
平坦化が可能な製造工程が要望される。
In recent years, as large-scale integrated circuits (LSI) have become highly integrated, multilayer wiring has come into widespread use. In this case, there is a need for a manufacturing process that can easily and reliably connect the layers of multilayer wiring, and that can flatten the substrate.

〔従来の技術〕[Conventional technology]

第2図(a)、 (b)は従来例による層間接続を工程
順に示す基板断面図である。
FIGS. 2(a) and 2(b) are cross-sectional views of a substrate showing interlayer connections according to a conventional example in the order of steps.

第2図(alにおいて、n型珪素(Si)基板1にp型
不純物を導入してベース領域2、さらにn型不純物を導
入してエミッタ領域3を形成する。
In FIG. 2 (al), p-type impurities are introduced into an n-type silicon (Si) substrate 1 to form a base region 2, and further n-type impurities are introduced to form an emitter region 3.

つぎに熱酸化による二酸化珪素(SIO□)層4を被着
し、エミッタ、ベース、コレクタのコンタクト窓を開け
、第1の配線層としてアルミニウム(AI)層5を被着
し、バターニングしてエミッタ電極5E、ベース電極5
B、コレクタ電極5Cを形成する。
Next, a thermally oxidized silicon dioxide (SIO□) layer 4 is deposited, contact windows for the emitter, base, and collector are opened, and an aluminum (AI) layer 5 is deposited as a first wiring layer and buttered. Emitter electrode 5E, base electrode 5
B. Forming collector electrode 5C.

つぎに眉間絶縁層として燐珪酸ガラス(PSG)層6を
被着し、パターニングして層間接続部を開口する。
Next, a phosphosilicate glass (PSG) layer 6 is deposited as an insulating layer between the eyebrows and patterned to open an interlayer connection portion.

第2図(b)において、前記開口部を覆って第2の配線
層としてAI層7を被着し、配線パターンにバターニン
グする。
In FIG. 2(b), an AI layer 7 is deposited as a second wiring layer covering the opening and patterned into a wiring pattern.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来例では第1の配線層上に被着された層間絶縁層に接
続孔(スルーホール)を開口して第1の配線層を露出し
、その上から第2の配線層を被着して層間接続を行うた
め、開口面積は大きくなり、またこの部分における平坦
性は悪く、従って半導体装置の高集積化、高密度化が阻
害される。
In the conventional example, a connection hole (through hole) is opened in an interlayer insulating layer deposited on a first wiring layer to expose the first wiring layer, and a second wiring layer is deposited on top of the first wiring layer. Since interlayer connections are made, the opening area becomes large, and the flatness in this portion is poor, thus hindering high integration and high density of semiconductor devices.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、導電層と導電層との間にこれらの
導電層よりエツチングレートの小さい異種導電層を介在
してなる第1の配線層を基板上に被着し、最上層の該導
電層を層間接続部を残して除去した後、残った該導電層
の頂部を露出するようにして層間絶縁層を被着し、該導
電層の頂部および該層間絶縁層を覆って第2の配線層を
被着する本発明による半導体装置の製造方法により達成
される。
The above problem can be solved by depositing a first wiring layer on the substrate, which has a different type of conductive layer interposed between the conductive layers and having a lower etching rate than these conductive layers, and After the conductive layer is removed leaving the interlayer connection, an interlayer insulating layer is deposited to expose the top of the remaining conductive layer, and a second layer is formed covering the top of the conductive layer and the interlayer insulating layer. This is achieved by the method of manufacturing a semiconductor device according to the invention, which deposits a wiring layer.

〔作用〕[Effect]

第1の配線層において、エツチングレートの小さい異種
導電層は最表面の導電層をエツチングするときのストッ
パとしてはたらくことを利用して、通常のりソゲラフイ
エ程によるパターニングを用いて最表面の導電層を凸状
に形成する。
In the first wiring layer, the conductive layer of a different type with a low etching rate acts as a stopper when etching the conductive layer on the outermost surface, and by patterning the conductive layer on the outermost surface with a convex pattern using a normal glue-on-glue process. form into a shape.

凸状に形成された最表面の導電層の周囲を層間絶縁層で
埋め、この上に第2の配線層を被着して眉間接続を行う
ため、基板表面は極めて平坦になる。
The periphery of the convexly formed outermost conductive layer is filled with an interlayer insulating layer, and the second wiring layer is deposited thereon to perform the glabella connection, so that the substrate surface becomes extremely flat.

〔実施例〕〔Example〕

第1図(al、 (b)は本発明による層間接続を工程
順に示す基板断面図である。
FIGS. 1A and 1B are cross-sectional views of a substrate showing the interlayer connection according to the present invention in the order of steps.

第1図(a)において、n型Si基板1にp型不純物を
導入してベース領域2、さらにn型不純物を導入してエ
ミッタ領域3を形成する。
In FIG. 1(a), p-type impurities are introduced into an n-type Si substrate 1 to form a base region 2, and further n-type impurities are introduced to form an emitter region 3.

つぎに熱酸化による5102層4を被着し、エミッタ、
ベース、コレクタのコンタクト窓を開け、第1の配線層
として厚さ6000人のA1層5 (第1の導電層)、
厚さ1500人のチタンタングステン(TiW)層8 
(エツチングレート[有]小さい異種4電層)、厚さ6
000人の41層9 (第2の導電層)を順次被着する
Next, a 5102 layer 4 is deposited by thermal oxidation, and the emitter and
A1 layer 5 (first conductive layer) with a thickness of 6,000 people as the first wiring layer, with contact windows for the base and collector opened;
1500mm thick titanium tungsten (TiW) layer 8
(Different 4-conductor layer with small etching rate), thickness 6
41 layers 9 (second conductive layer) of 0.000 are deposited one after another.

第1の配線層の各層の被着は、アルゴン(Ar)ガスを
用いて2×10弓Torrで、周波数13.56MHz
、電力300Wのスパッタにより行った。
Each layer of the first wiring layer was deposited using argon (Ar) gas at 2×10 Torr and a frequency of 13.56 MHz.
, by sputtering with a power of 300W.

つぎにパターニングにより層間接続部の41層9を凸状
に残して、その他の部分をエツチングして除去する。
Next, by patterning, the 41st layer 9 of the interlayer connection portion is left in a convex shape, and the other portions are removed by etching.

つぎにパターニングしてエミッタ電極5E、ベース電極
5B、コレクタ電極5Cを形成する。
Next, patterning is performed to form an emitter electrode 5E, a base electrode 5B, and a collector electrode 5C.

第1図(b)において、眉間絶縁層としてPSG層6を
被着し、層間接続部の凸状の41層9の頂部を露出する
In FIG. 1(b), a PSG layer 6 is deposited as an insulating layer between the eyebrows, and the top of the convex 41 layer 9 of the interlayer connection portion is exposed.

この方法は例えば、つぎのように行う。PSG層6を基
板全面に被着した後、その上にレジストを基板表面が平
坦になるように厚く塗布し、PSGとレジストに対する
選択比が1のエツチングガスを用いてリアクティブ・イ
オン・エツチング(RIE)法による異方性エツチング
で、基板に対して垂直方向のみエツチングして層間接続
部の凸状の41層9の頂部を露出させるまで行う。この
ようにエツチングするとPSG層6の表面は平坦化され
る。
This method is carried out, for example, as follows. After depositing the PSG layer 6 on the entire surface of the substrate, a resist is applied thickly thereon so that the substrate surface is flat, and reactive ion etching ( By anisotropic etching using RIE method, etching is performed only in the direction perpendicular to the substrate until the top of the convex 41 layer 9 of the interlayer connection portion is exposed. By etching in this manner, the surface of the PSG layer 6 is planarized.

前記A1層9の露出部を覆って第2層目配線層・とじて
AI層7°を被着し、配線パターンにパターニングする
A second wiring layer 7° is deposited to cover the exposed portion of the A1 layer 9, and patterned into a wiring pattern.

第1の配線層の各層のエツチングは、AIのエツチング
ガスは三塩化硼素(BCl2)、三塩化燐(pc+3)
等を、Ti−の工・7チングガスは弗素(F)を用いて
、0、15Torrで、周波数13.56MH2の電力
300−を印加して行った。
For etching each layer of the first wiring layer, the etching gas for AI was boron trichloride (BCl2) and phosphorus trichloride (PC+3).
The processing was carried out using fluorine (F) as the Ti-etching gas and applying a power of 300 mm at a frequency of 13.56 MH2 at 0.15 Torr.

実施例では、エツチングレートの小さい異種導電層とし
てTiWを用いたが、これの代わりに窒化チタン(Ti
N) 、チタン(Ti)等を用いても発明の要旨は変わ
らない。
In the example, TiW was used as the dissimilar conductive layer with a small etching rate, but titanium nitride (TiW) was used instead.
Even if N), titanium (Ti), etc. are used, the gist of the invention does not change.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、層間接続を
第1の配線層上に被着された層間絶縁層にスルーホール
を形成しないで行うため、層間接続部における平坦性は
良く、従って半導体装置の高集積化、高密度化が可能と
なる。
As explained in detail above, according to the present invention, since interlayer connections are made without forming through holes in the interlayer insulating layer deposited on the first wiring layer, the flatness of the interlayer connection portions is good, and therefore It becomes possible to increase the integration and density of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (blは本発明による層間接続を工程
順に示す基板断面図、 第2図(a)、 (b)は従来例による層間接続を工程
順に示す基板断面図である。 図において、 1はn型Si基板、  2はベース領域23はエミッタ
領域、  4はSTO□層、5はA1層、 (5,8,
9は第1の配線層)8はTiW層、 9はへ1層、 5Eはエミッタ電極、 5Bはベース電極、5Cはコレ
クタ電極、 7はA1層(第2の配線層) を示す。
FIGS. 1A and 1B are cross-sectional views of a substrate showing interlayer connections according to the present invention in order of process, and FIGS. 2A and 2B are cross-sectional views of a substrate showing interlayer connections according to a conventional example in order of processes. In, 1 is an n-type Si substrate, 2 is a base region 23 is an emitter region, 4 is a STO□ layer, 5 is an A1 layer, (5, 8,
9 is the first wiring layer) 8 is the TiW layer, 9 is the first layer, 5E is the emitter electrode, 5B is the base electrode, 5C is the collector electrode, and 7 is the A1 layer (second wiring layer).

Claims (1)

【特許請求の範囲】[Claims]  導電層と導電層との間にこれらの導電層よりエッチン
グレートの小さい異種導電層を介在してなる第1の配線
層を基板上に被着し、最上層の該導電層を層間接続部を
残して除去した後、残った該導電層の頂部を露出するよ
うにして層間絶縁層を被着し、該導電層の頂部および該
層間絶縁層を覆って第2の配線層を被着することを特徴
とする半導体装置の製造方法。
A first wiring layer is formed by interposing a different type of conductive layer with a lower etching rate than these conductive layers between the conductive layers, and the uppermost conductive layer is connected to the interlayer connection portion. After removing the remaining conductive layer, depositing an interlayer insulating layer so as to expose the top of the remaining conductive layer, and depositing a second wiring layer covering the top of the conductive layer and the interlayer insulating layer. A method for manufacturing a semiconductor device, characterized by:
JP19511284A 1984-09-18 1984-09-18 Manufacture of semiconductor device Pending JPS6173350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19511284A JPS6173350A (en) 1984-09-18 1984-09-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19511284A JPS6173350A (en) 1984-09-18 1984-09-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6173350A true JPS6173350A (en) 1986-04-15

Family

ID=16335693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19511284A Pending JPS6173350A (en) 1984-09-18 1984-09-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6173350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087578A (en) * 1986-09-26 1992-02-11 Kabushiki Kaisha Toshiba Semiconductor device having multi-layered wiring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087578A (en) * 1986-09-26 1992-02-11 Kabushiki Kaisha Toshiba Semiconductor device having multi-layered wiring

Similar Documents

Publication Publication Date Title
JPS6173350A (en) Manufacture of semiconductor device
JPH04199628A (en) Manufacture of semiconductor device
JPS62277750A (en) Formation of multilayer interconnection
JPS62155537A (en) Manufacture of semiconductor device
JPS613431A (en) Semiconductor device with multilayer interconnection and manufacture thereof
JP3033171B2 (en) Method for manufacturing semiconductor device
JPH0642481B2 (en) Manufacturing method of semiconductor device
JP2702010B2 (en) Method for manufacturing semiconductor device
JP3168629B2 (en) Method for manufacturing semiconductor device
JPS63258043A (en) Manufacture of semiconductor device
JPH0235731A (en) Manufacture of semiconductor device
JP2001351972A (en) Semiconductor device and its manufacturing method
JPS5932153A (en) Manufacture of semiconductor device
JP2001351971A (en) Semiconductor device and its manufacturing method
JPH0797583B2 (en) Method for forming interlayer insulating film
JPH0645278A (en) Manufacture of semiconductor device
JPS62115744A (en) Semiconductor device
JPH03112151A (en) Active layer stacked element
JPH05152444A (en) Manufacture of semiconductor device
JPH0298960A (en) Manufacture of semiconductor device
JPH03248533A (en) Semiconductor integrated circuit device
JPS63175443A (en) Manufacture of semiconductor device
JPS6327038A (en) Formation of multilayer interconnection
JPH0682657B2 (en) Method for manufacturing semiconductor device
JPH04216629A (en) Semiconductor device