JPS6172960A - Heat collecting device - Google Patents

Heat collecting device

Info

Publication number
JPS6172960A
JPS6172960A JP59195600A JP19560084A JPS6172960A JP S6172960 A JPS6172960 A JP S6172960A JP 59195600 A JP59195600 A JP 59195600A JP 19560084 A JP19560084 A JP 19560084A JP S6172960 A JPS6172960 A JP S6172960A
Authority
JP
Japan
Prior art keywords
temperature
heat
compressor
fluid
heating capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59195600A
Other languages
Japanese (ja)
Other versions
JPH034819B2 (en
Inventor
Masafumi Satomura
雅史 里村
Shozo Tanaka
章三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59195600A priority Critical patent/JPS6172960A/en
Priority to EP88102744A priority patent/EP0330701A3/en
Priority to DE8585104355T priority patent/DE3568860D1/en
Priority to EP85104355A priority patent/EP0175836B1/en
Publication of JPS6172960A publication Critical patent/JPS6172960A/en
Priority to US07/161,951 priority patent/US4901537A/en
Publication of JPH034819B2 publication Critical patent/JPH034819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To obtain the hot-water of objective heat-up temperature substantially every day at an objective heat-up time by a method wherein a fluid temperature in a hot-water reserving tank upon starting operation is detected and an objective heating capacity is operated from a temperature difference between the detected temperature and the objective heat-up temperature and a heat collecting time from the starting of the operation to the objective heat-up time. CONSTITUTION:The inlet and outlet temperature of a liquid heater 8 are being inputted into a main control circuit 13A from first and second temperature detectors 11, 12 and the heating capacity is being detected at all times in the main control circuit 13A by employing a temperature difference between them and a preset amount of flow of water. The objective heating capacity is operated in the control circuit 13 by the temperature difference between the fluid temperature in the hot-water reserving tank upon starting the operation, which is detected by the third temperature detector 15, and the objective heat-up temperature and the heat collecting time from the starting time of operation to the objective heat-up time while the objective heating capacity, thus operated, is memorized in the main control circuit 13A. The revolving number of a compressor 1 is controlled in accordance with the change of atmospheric condition so as to obtain the objective heating capacity being memorized in the main control circuit 13A.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、太陽熱および空気熱を熱源とするヒートポン
プ式の集熱装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a heat pump type heat collecting device that uses solar heat and air heat as heat sources.

く従来技術〉 従来、ヒートポンプを用いた太陽熱・空気熱を熱源とす
る集熱装置において、圧縮機の容量制御を行なう方法と
して、外気温を検知し外気温度が高くなるに従い圧縮機
の回転速度が低くなるように制御する方法が考えられて
いる。この方法は圧縮機の消費電力を低減して装置の成
積係数を向上する目的では有効であるが、加温能力が外
気条件に左右されるために目標沸き上げ温度に達しない
ことや、湯の使用量が多くなる夕方になっても沸き上げ
が完了していないということが起こる場合が考えられ、
湯の利用の面からみて不都合であった。
Conventional technology> Conventionally, in a heat collection device using solar heat or air heat as a heat source using a heat pump, a method for controlling the capacity of the compressor is to detect the outside temperature and increase the rotation speed of the compressor as the outside temperature increases. Methods are being considered to control this so that it becomes lower. This method is effective for reducing the power consumption of the compressor and improving the build-up coefficient of the equipment, but since the heating capacity is affected by outside air conditions, it may not reach the target boiling temperature, or the hot water may not reach the target boiling temperature. There may be cases where boiling is not completed even in the evening when the amount of water used is high.
This was inconvenient in terms of access to hot water.

〈  目  的  〉 本発明は、上記に鑑み、目標沸き上げ時刻には確実に目
標沸き上げ温度の湯が利用できるようにした太陽熱・空
気熱集熱装置の提供を目的としたものである。
<Purpose> In view of the above, the present invention aims to provide a solar heat/air heat collecting device that makes it possible to reliably use hot water at a target boiling temperature at a target boiling time.

〈実施例〉 以下、本発明の一実施例を第1.2図に基いて説明する
と、これは、熱媒を圧縮して吐出する圧縮821と、該
圧縮機の吐出側に接続された凝縮器2と、一側が絞り装
置3を介して前記凝縮器2に接続され他側が前記圧縮(
晟1に接続された集熱器4とから集熱回路5が構成され
、使用流体を貯える貯湯槽6と、該貯湯槽6外で循環ポ
ンプ7を介して配され前記凝縮器2と熱交換関係にある
使用流体加熱器8とが互に接続されて流体加熱回路9が
11寸成された集熱装置において、前記圧縮機1は8呈
1す°変形とさtz、前記IICIC熱加熱器人口に第
一温度検出器11が設けられると共に該流体jllJ4
W器8の出口に第二温度検出器12が設けられ、前記貯
湯槽6内の運転開始時の流体の温度を検出する複数の第
三温度検出器15が設けられ、該第−1第二、第三温度
検出器11,12.15の出力信号により前記圧NIP
21の容量を制御する制御回路13が設けられ、該制御
回路13は、該第三温度検出器15の出力信号から運転
開始時の貯湯槽内の流体温度を検出し、該検出温度と目
標沸き上げ温度との差温と、運転開始時がら目標沸き上
げ時刻までの集熱運転時間とから目標加温能力を演ユし
、また前記第一、第二温度検出器11.12により検出
された温度がら集熱回路5の加温能力を算出し該加温能
力が前記目標加温能力となるように前記圧縮へ1に容量
制御信号を出力するよう構成されたものである。
<Embodiment> Hereinafter, an embodiment of the present invention will be explained based on FIG. One side is connected to the condenser 2 via the expansion device 3, and the other side is connected to the compressor (2).
A heat collection circuit 5 is constituted by a heat collector 4 connected to the heat collector 4, a hot water storage tank 6 for storing the fluid to be used, and a circulation pump 7 disposed outside the hot water storage tank 6 to exchange heat with the condenser 2. In the heat collecting device in which the fluid heating circuit 9 is formed by 11 dimensions by connecting the related working fluid heaters 8 to each other, the compressor 1 is deformed by 8 degrees and the IICIC thermal heater The population is provided with a first temperature detector 11 and the fluid jllJ4
A second temperature detector 12 is provided at the outlet of the W vessel 8, and a plurality of third temperature detectors 15 are provided for detecting the temperature of the fluid in the hot water tank 6 at the start of operation. , the pressure NIP is determined by the output signals of the third temperature detectors 11, 12.15.
A control circuit 13 is provided to control the capacity of the hot water tank 21, and the control circuit 13 detects the fluid temperature in the hot water tank at the start of operation from the output signal of the third temperature detector 15, and compares the detected temperature with the target boiling temperature. The target heating capacity is calculated based on the difference in temperature from the heating temperature and the heat collection operation time from the start of operation to the target boiling time, and the temperature detected by the first and second temperature detectors 11 and 12 is calculated. The heating capacity of the heat collecting circuit 5 is calculated based on the temperature, and a capacity control signal is output to the compressor 1 so that the heating capacity becomes the target heating capacity.

gi図において、前記集熱器4は、黒色塗装されたフィ
ンを装着したバイブがら41可成され、太陽熱及び空気
熱を集熱可能とされている。また前記圧昂俄1は、周波
数変換回路14により回転数可変とされる。また前記絞
り装r113としてステッピングモータでffi動され
るIkj5張弁が用いられる。該膨張弁3は集熱器4の
出入口に設置された温度センサー(図示せず)により集
熱器4での集熱が最適条件でイテなおれる様に熱媒の流
量を制御している。
In the figure, the heat collector 4 is made up of a vibrator 41 equipped with black-painted fins, and is capable of collecting solar heat and air heat. Further, the rotation speed of the pressure 1 is made variable by a frequency conversion circuit 14. Further, as the restricting device r113, an Ikj5 tension valve which is ffi operated by a stepping motor is used. The expansion valve 3 controls the flow rate of the heat medium using a temperature sensor (not shown) installed at the entrance and exit of the heat collector 4 so that the heat collector 4 can collect heat under optimal conditions.

一方、流体加熱回路っけ、貯湯槽6、循環ポンプ7、流
体加熱器8、貯湯セm6が順次接続されて成る。そして
前記凝縮器2と流体加熱器8は熱交換関係に保持されて
おり、例えば二重雪構遺熱交換器10をなしている。そ
して前記制御回路13は、目標沸き上げ温度及び目標沸
き上げ時刻を設定する設定器13Bと、前記第一、第二
温度検出器11.12がらの検品温度差から加温能力を
算出しまた前記設定器13Bと第三温度検出器15とに
より算出される目標加温能力に応じて制御信号を出力す
る主制御回路13Aと、該主制御回路13Aの出力信号
に基いて前記圧!ii概1に運転周波数信号を出力する
周波数変換回路14とから構成される。
On the other hand, a fluid heating circuit, a hot water storage tank 6, a circulation pump 7, a fluid heater 8, and a hot water storage tank m6 are connected in sequence. The condenser 2 and the fluid heater 8 are held in a heat exchange relationship, forming, for example, a double snow structure heat exchanger 10. The control circuit 13 calculates the heating capacity from the inspection temperature difference between the setter 13B that sets the target boiling temperature and the target boiling time, and the first and second temperature detectors 11.12. A main control circuit 13A outputs a control signal according to the target heating capacity calculated by the setting device 13B and the third temperature detector 15, and the pressure! is determined based on the output signal of the main control circuit 13A. ii) and a frequency conversion circuit 14 which outputs an operating frequency signal.

+if記主飼主制御回路13A例えば、一般的なワンチ
ップマイクロコンピュータで、内部にデータRAM、プ
ログラムROM、ΔLU等を有し、クロック発振回路に
より駆動されるものである。また、前記周波数変換回路
14は、例えばインバータ回路で、圧M6磯用電動弐の
三相交流電源周波数を変換する信号を出力するものであ
る。また、前記温度検品器i 1,12.15は、例え
ばサーミスタが使用され、該サーミスタで検出される温
度変化による電圧降下はデジタル値に変換されて主制御
回路13Aに入力される。
+if The owner/keeper control circuit 13A is, for example, a general one-chip microcomputer, which has internal data RAM, program ROM, ΔLU, etc., and is driven by a clock oscillation circuit. Further, the frequency conversion circuit 14 is, for example, an inverter circuit, and outputs a signal for converting the three-phase AC power frequency of the pressure M6 rock electric motor 2. Further, the temperature inspection device i1, 12.15 uses, for example, a thermistor, and the voltage drop detected by the thermistor due to a temperature change is converted into a digital value and inputted to the main control circuit 13A.

なお、目標加温能力は次のように決定できる。Note that the target heating capacity can be determined as follows.

すなわち、目標とする加温能力は、運転開始時の貯湯槽
内の流体温度(水温)と目標沸き上げ温度の差と貯湯槽
容量から計算できる加温負荷と、実験開始時刻と目標沸
き上げ時刻の差である集熱運転時間から計算する。
In other words, the target heating capacity is determined by the difference between the fluid temperature (water temperature) in the hot water tank at the start of operation and the target boiling temperature, the heating load that can be calculated from the hot water tank capacity, the experiment start time, and the target boiling time. Calculated from the heat collection operation time, which is the difference between

加温負荷=(目標沸き上げ温度−運転開始時貯湯槽内の
流体温度) ×貯湯!:l容量 日楳加温能力=加温負荷/集熱運転時間大に集熱作用を
説明する。圧縮機1で圧縮された高温高圧の熱媒ガスは
、凝縮器2に流入し、熱交換関係にある流体加熱器8を
流れる流体(水)と熱交換して凝縮液化し膨張弁3に至
り、膨張弁3を通過する際に断熱膨張して減圧され、低
温低圧の未蒸発熱媒となる。熱媒は次に集熱器4へ流入
して太陽熱・空気熱を吸熱してガス化し、再び圧1rl
lに入り上記サイクルを繰返す、−力計湯槽6内の水は
循環ポンプ7により流体加熱器8へ送られ加熱昇温され
て貯湯槽6へ流入する。
Heating load = (Target boiling temperature - Fluid temperature in the hot water storage tank at the start of operation) x Hot water storage! The heat collection effect is explained in terms of: 1 capacity/day heating capacity = heating load/heat collection operation time. The high-temperature, high-pressure heating medium gas compressed by the compressor 1 flows into the condenser 2, exchanges heat with the fluid (water) flowing through the fluid heater 8, which has a heat exchange relationship, condenses and liquefies, and reaches the expansion valve 3. When passing through the expansion valve 3, the heat medium undergoes adiabatic expansion and is depressurized, becoming a low-temperature, low-pressure unevaporated heat medium. The heat medium then flows into the heat collector 4, absorbs solar heat and air heat, becomes gasified, and returns to a pressure of 1 rl.
The water in the force meter hot water tank 6 is sent to the fluid heater 8 by the circulation pump 7, heated and heated, and then flows into the hot water storage tank 6.

このとき、流体加熱器8の入口・出口の温度は第一、第
二温度検出器11.12から主制御回路13Aに入力さ
れており、主制御回路13Aでは、それらの差温とあら
かじめ一定に設定された水流量を月いて加温FIB力が
常に検知されている。そして第三温度検出器15により
検知される運転開始時の貯湯槽内の流体温度と目標沸き
上げ温度との差温と、運転開始時がら目標沸き上げ時刻
までの集熱運転時間とから制御回路13にて上述の方法
で目標加温能力を演算して主制御回路13Aに記憶する
At this time, the temperatures at the inlet and outlet of the fluid heater 8 are input to the main control circuit 13A from the first and second temperature detectors 11.12, and the main control circuit 13A adjusts the temperature difference between them to a constant value in advance. The heating FIB force is constantly detected based on the set water flow rate. Then, the control circuit is based on the temperature difference between the fluid temperature in the hot water tank at the start of operation and the target boiling temperature detected by the third temperature detector 15, and the heat collection operation time from the start of operation to the target boiling time. At step 13, the target heating capacity is calculated using the method described above and stored in the main control circuit 13A.

そして主制御回路13Aに記憶されている目標加温能力
になるように外気条件の変化に応じて圧縮機1の回転数
を制御する。即ち、日射・外気温等が高くなり、集熱器
4での集熱量が増加すれば、圧縮t′;′11の回転数
を落して圧縮機1の仕事量つまり消費電力を小さくして
高い成績係数で運転する。
Then, the rotation speed of the compressor 1 is controlled according to changes in outside air conditions so as to achieve the target heating capacity stored in the main control circuit 13A. That is, if the amount of heat collected by the heat collector 4 increases due to solar radiation, outside temperature, etc., increasing the amount of heat collected by the heat collector 4, the rotation speed of the compressor t'; Driving with a coefficient of performance.

また日射・外気温等が低(なれぼ圧縮機1の回転数を上
げて圧縮[1の仕事量を増し、目標加温能力が得られる
ように運転する。その制御の7o−チャートを第2図に
示す。
In addition, when solar radiation, outside temperature, etc. are low, the rotation speed of Narebo compressor 1 is increased to increase the work of compression [1, and the operation is performed so that the target heating capacity is obtained. As shown in the figure.

〈効果〉 以上の説明から明らかな通り、本発明は、熱媒を圧縮し
て吐出する圧縮機と、該圧縮機の吐出側に接続された凝
!a器と、一側が絞り装置を介して前記凝縮器に接続さ
れ他側が前記圧縮機に接続されたjA熱器とから集熱回
路が措威され、使眉流体を貯乏る貯渇栢と、訊貯湯糟外
で!1;j記凝411器と熱交換関係にある使用流体加
熱器とが互に接続されて流体加熱回路が構成された集熱
装置において、前記圧縮機は容量可変形とされ、前記流
体加熱器の人口に第一温度検出器が設けられると共に該
流体加熱器の出口に第二温度検出器が設けられ、前記貯
湯槽内の流体の温度を検出する第三温度検出器が設けら
れ、該第−1第二、第三温度検出器の出力信号により前
記圧縮機の容量を制御する制御回路が設けられ、該制御
回路は、該第三温度検出器の出力信号から運転開始時の
貯湯槽内の流体温度を検出し、該検出温度と目標沸き上
げ温度との差温と、運転開始時から目標沸き上げ時刻ま
での集熱運転rvf開とから目線加温能力を演算し、ま
た前記第一、第二温度検出器により検出された温度から
集熱回路の加温能力を算出し該加温能力が前記目標加温
能力となるように前記圧縮機に容量制御信号、を出力す
るよう構成されたちのである。
<Effects> As is clear from the above description, the present invention includes a compressor that compresses and discharges a heat medium, and a condenser connected to the discharge side of the compressor. A heat collection circuit is installed from the A heater and the JA heater, which is connected to the condenser on one side and the compressor on the other side via a throttle device, and is used as a storage tank for storing the used fluid. , outside the hot water bath! 1; In a heat collecting device in which a fluid heating circuit is configured by connecting a condenser 411 and a fluid heater in a heat exchange relationship with each other, the compressor is of a variable capacity type, and the fluid heater A first temperature sensor is provided at the outlet of the fluid heater, a second temperature sensor is provided at the outlet of the fluid heater, a third temperature sensor is provided for detecting the temperature of the fluid in the hot water storage tank, and a third temperature sensor is provided at the outlet of the fluid heater; -1 A control circuit is provided that controls the capacity of the compressor based on the output signals of the second and third temperature detectors, and the control circuit controls the capacity of the hot water storage tank at the start of operation based on the output signals of the third temperature detector. detects the fluid temperature of the fluid, and calculates the line-of-sight heating capacity from the temperature difference between the detected temperature and the target boiling temperature and the opening of the rvf in the heat collection operation from the start of operation to the target boiling time; , is configured to calculate the heating capacity of the heat collection circuit from the temperature detected by the second temperature detector and output a capacity control signal to the compressor so that the heating capacity becomes the target heating capacity. It's ours.

従って本発明によると、第三温度検出器により貯湯槽内
の運転開始時の流体温度が検知でき、該検出温度と目標
沸き上げ温度との差温と、& ’IIA IJil始時
から目標沸き上げ時刻までの集熱運転時間力ら目標加温
能力を検出し、第一、第二温度検出器の信号によって圧
縮機を運転制御でき、はぼ毎日目標沸き上げ温度の湯が
目標沸き上げ時刻に得られ、また日射・外気温等が高い
ときは、目標加温能力を小さくして圧斤磯への負担を小
さくでき、経済的な運転が可能となる。
Therefore, according to the present invention, the fluid temperature in the hot water storage tank at the start of operation can be detected by the third temperature detector, and the temperature difference between the detected temperature and the target boiling temperature, and the target boiling temperature from the start of &'IIA IJil. The target heating capacity can be detected from the heat collection operation time up to the time, and the compressor can be controlled by the signals from the first and second temperature detectors, so that hot water at the target boiling temperature is delivered every day at the target boiling time. Furthermore, when solar radiation, outside temperature, etc. are high, the target heating capacity can be reduced to reduce the burden on the pressure rock, making economical operation possible.

【図面の簡単な説明】[Brief explanation of the drawing]

fIS1図は本発明の一実施例を示す太陽熱・空気熱集
熱装はの構成図、第2図は同制御70−チャートである
。 1:圧紺i礪、2:凝縮器、3:絞り装置、4:集熱器
、5:集熱回路、6:貯湯槽、7:循環ポンプ、8:加
熱器、9:加熱回路、10:熱交換器、11.12:温
度検出器、13:制御回路、15:第三温度検出器。
Fig. fIS1 is a configuration diagram of a solar heat/air heat collector showing an embodiment of the present invention, and Fig. 2 is a control 70-chart of the same. 1: Pressure blue ivy, 2: Condenser, 3: Squeezing device, 4: Heat collector, 5: Heat collection circuit, 6: Hot water storage tank, 7: Circulation pump, 8: Heater, 9: Heating circuit, 10: Heat exchanger, 11.12: Temperature detector, 13: Control circuit, 15: Third temperature detector.

Claims (1)

【特許請求の範囲】[Claims] 熱媒を圧縮して吐出する圧縮機と、該圧縮機の吐出側に
接続された凝縮器と、一側が絞り装置を介して前記凝縮
器に接続され他側が前記圧縮機に接続された集熱器とか
ら集熱回路が構成され、使用流体を貯える貯湯槽と、該
貯湯槽外で前記凝縮器と熱交換関係にある使用流体加熱
器とが互に接続されて流体加熱回路が構成された集熱装
置において、前記圧縮機は容量可変形とされ、前記流体
加熱器の入口に第一温度検出器が設けられると共に該流
体加熱器の出口に第二温度検出器が設けられ、前記貯湯
槽内の流体の温度を検出する第三温度検出器が設けられ
、該第一、第二、第三温度検出器の出力信号により前記
圧縮機の容量を制御する制御回路が設けられ、該制御回
路は、該第三温度検出器の出力信号から運転開始時の貯
湯槽内の流体温度を検出し、該検出温度と目標沸き上げ
温度との差温と、運転開始時から目標沸き上げ時刻まで
の集熱運転時間とから目標加温能力を演算し、また前記
第一、第二温度検出器により検出された温度から集熱回
路の加温能力を算出し該加温能力が前記目標加温能力と
なるように前記圧縮機に容量制御信号を出力するよう構
成されたことを特徴とする集熱装置。
A compressor that compresses and discharges a heat medium, a condenser connected to the discharge side of the compressor, and a heat collector connected on one side to the condenser via a throttling device and on the other side connected to the compressor. A fluid heating circuit was constructed by connecting a hot water storage tank for storing a working fluid and a working fluid heater having a heat exchange relationship with the condenser outside the hot water storage tank. In the heat collection device, the compressor is of variable capacity type, a first temperature sensor is provided at the inlet of the fluid heater, a second temperature sensor is provided at the outlet of the fluid heater, and the compressor is of a variable capacity type, and a second temperature sensor is provided at the outlet of the fluid heater. A third temperature detector is provided to detect the temperature of the fluid in the compressor, and a control circuit is provided to control the capacity of the compressor based on the output signals of the first, second, and third temperature detectors, and the control circuit detects the fluid temperature in the hot water storage tank at the start of operation from the output signal of the third temperature sensor, and calculates the temperature difference between the detected temperature and the target boiling temperature and the temperature from the start of operation to the target boiling time. The target heating capacity is calculated from the heat collection operation time, and the heating capacity of the heat collection circuit is calculated from the temperatures detected by the first and second temperature detectors, and the heating capacity is determined as the target heating capacity. A heat collecting device configured to output a capacity control signal to the compressor so that the following is achieved.
JP59195600A 1984-09-18 1984-09-18 Heat collecting device Granted JPS6172960A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59195600A JPS6172960A (en) 1984-09-18 1984-09-18 Heat collecting device
EP88102744A EP0330701A3 (en) 1984-09-18 1985-04-10 Heat collector
DE8585104355T DE3568860D1 (en) 1984-09-18 1985-04-10 Solar heat collector system
EP85104355A EP0175836B1 (en) 1984-09-18 1985-04-10 Solar heat collector system
US07/161,951 US4901537A (en) 1984-09-18 1988-02-29 Solar heat collector system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195600A JPS6172960A (en) 1984-09-18 1984-09-18 Heat collecting device

Publications (2)

Publication Number Publication Date
JPS6172960A true JPS6172960A (en) 1986-04-15
JPH034819B2 JPH034819B2 (en) 1991-01-24

Family

ID=16343846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195600A Granted JPS6172960A (en) 1984-09-18 1984-09-18 Heat collecting device

Country Status (1)

Country Link
JP (1) JPS6172960A (en)

Also Published As

Publication number Publication date
JPH034819B2 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
EP0069996A1 (en) Heat pump air conditioning system
JPS6172960A (en) Heat collecting device
JPS6172961A (en) Heat collecting device
JPH034818B2 (en)
JP2950474B1 (en) Solar powered refrigerator
JP2906507B2 (en) Heat pump water heater
JPH07139847A (en) High/low temperature heat pump system
JPS58185911A (en) Motive power generator
JPS6155553A (en) Hot water supplying device utilizing solar heat
JPS6172962A (en) Solar heat collecting device
JPS5952159A (en) Heat collecting device
JPH0686959B2 (en) Heat pump solar collector
JPH0718935Y2 (en) Operation control device for air conditioner with radiant panel
Rasson et al. The double-effect regenerative absorption heat pump: cycle description and experimental test results
JPS5883153A (en) Heat-pump type water heater
JPS61246553A (en) Solar-heat utilizing heat collector
JPS5845437A (en) Control system for solar-heat-utilizing absorption type refrigerating machine
JPS60155861A (en) Heat collector utilizing solar heat
JPS5857664B2 (en) solar water heating device
JPS58142153A (en) Hot water freeder
JPS62206343A (en) Solar heat and air heat collecting device
JPS5899640A (en) Water heater
JPS60213773A (en) Heat collector utilizing solar heat
JPS62217068A (en) Heat pump device
Chen et al. A Novel Design of An Air Conditioner Water Heater