JPS58185911A - Motive power generator - Google Patents

Motive power generator

Info

Publication number
JPS58185911A
JPS58185911A JP6728382A JP6728382A JPS58185911A JP S58185911 A JPS58185911 A JP S58185911A JP 6728382 A JP6728382 A JP 6728382A JP 6728382 A JP6728382 A JP 6728382A JP S58185911 A JPS58185911 A JP S58185911A
Authority
JP
Japan
Prior art keywords
heat
temperature
storage tank
heat storage
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6728382A
Other languages
Japanese (ja)
Inventor
Masahiko Fujita
雅彦 藤田
Masaharu Ishii
石井 雅治
Seigo Miyamoto
宮本 誠吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6728382A priority Critical patent/JPS58185911A/en
Publication of JPS58185911A publication Critical patent/JPS58185911A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

PURPOSE:To collect heat always at the maximum energy efficiency in a plant which generates power by use of sun heat or waste heat of a plant by integrating a plurality of heat accumulation tanks which differs in temperature of accumulated heat, in a heat collection loop and by selecting an appropriate one from those tanks according to condition of a heat source or so. CONSTITUTION:A heat collection loop is made up of a heat collector 1, three-way valves 11a and 11b, a steam generator 5, a heat accumulation tank unit 3, a heat medium circulation pump 4 and a bypass flow passage 40 which are properly connected to each other. The heat accumulation tank unit 3 consists of low and high temperature heat accumulation tanks 3a and 3b which differ in temperature of accumulated heat. A Rankine cycle 2 is formed by piping the steam generator 5, an expansion mechanism 6, a condenser 7 and a pump 8a. An optimum value of a temperature of heat medium at the inlet of the heat collector, determined according to temperature of open air and intense of solar radiation is shown by T0 and temperatures of heat accumulation tanks 3a and 3b are shown by T1 and T2. The three-way valves 12a and 12b are placed under change-over control as to select the low temperature heat accumulation tank 3a for T2>T0>T1 and select the high temperature heat accumulation tank 3b for T0>T2.

Description

【発明の詳細な説明】 本発明は、太陽熱や工場廃熱等全利用して動力全発生さ
せる動力発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power generation device that fully utilizes solar heat, factory waste heat, etc. to generate power.

太陽熱や工場廃熱等全利用した従来の動力発生装置は、
熱源、蓄熱槽および熱媒循環ポンプ全備える集熱ループ
と、該集熱ループで果熱さnた熱量?動力に変換する機
構會有するランキンサイクルとからなるが、熱源の熱的
状態(太陽熱を利用する場合の日射量、廃熱全利用する
場合の熱源温度)と、外界の熱的状態(気温あるいはラ
ンキンサイクルの縦組温度)と、熱源入口側熱媒温度に
無関係に集熱ループの熱媒循項量會設定していたので、
熱源における入熱量の増大に対して直ちに最適運転条件
全実現することができないという欠点があった。これ金
、太陽熱を熱源とする場合のエクセルギ効率線図である
第1図ないし第3図を用いて説明する。ここで、エクセ
ルギ、!ft(1)式で定義さA、6゜ ただし、Q:高温熱源から供給さnる全熱量TA :篩
部熱源温度 TB:低温熱源温度 j[’c:高温熱源絶対温度 筐た、エクセルギ効率とは、集熱面日射口に含1れるエ
クセルギに対する集熱器によって集められるエクセルギ
の割合である。
Conventional power generation equipment that makes full use of solar heat and factory waste heat,
A heat collection loop that includes a heat source, a heat storage tank, and a heat medium circulation pump, and the amount of heat generated by the heat collection loop? It consists of a Rankine cycle that has a mechanism to convert it into power, but it depends on the thermal state of the heat source (insolation when using solar heat, heat source temperature when using all waste heat) and the thermal state of the outside world (air temperature or Rankine cycle). Since the heat medium circulation rate of the heat collection loop was set regardless of the vertical assembly temperature of the cycle) and the heat medium temperature on the heat source inlet side,
There was a drawback in that it was not possible to immediately achieve all optimal operating conditions in response to an increase in the amount of heat input at the heat source. This will be explained using FIGS. 1 to 3, which are exergy efficiency diagrams when gold and solar heat are used as heat sources. Here, exergi! ft defined by the formula (1) A, 6° where Q: total amount of heat supplied from the high temperature heat source TA: sieve heat source temperature TB: low temperature heat source temperature j['c: high temperature heat source absolute temperature, exergy efficiency is the ratio of exergy collected by the heat collector to the exergy contained in the heat collecting surface solar radiation aperture.

第1図ないし第3図において、縦軸は太陽熱集熱器入口
側熱媒温度、横軸は熱媒循環量、図中の数値はエクセル
ギ効率、実線はある日射量および気温におけるエクセル
ギ効率等高線、破fi!はエクセルギ効率全最大とする
集熱器入口側熱媒温度と熱媒循環量との組合わせを示す
In Figures 1 to 3, the vertical axis is the heat medium temperature at the inlet of the solar collector, the horizontal axis is the heat medium circulation amount, the numerical values in the figures are exergy efficiency, and the solid lines are exergy efficiency contours at a certain amount of solar radiation and temperature. Breaking fi! represents the combination of the heat medium temperature at the collector inlet side and the heat medium circulation amount that maximizes the total exergy efficiency.

第1図に示されるように、運転条件がA点、即ち最適運
転条件[ある日射IIの状態から日射量が1+Δ■に増
7Jl]すると、気温一定と仮定した場合、最適運転条
件は、第2図に示すように高温側に移行し、反対に、日
射量が■−Δ■に減少すると、第3図に示すように最適
運転条件は低温側に移行する。第2図に示すように日射
量が増加した時には、集熱器における加熱址が増し、い
くらかの時間遅れの後に運転条件は最適点B[達するが
、集熱器入口熱媒部層がB点のレベル圧到達するまでは
エクセルギ効率の低い状態で運転しなければならない。
As shown in Figure 1, when the operating conditions are at point A, that is, the optimal operating conditions [the solar radiation increases from a certain solar radiation II state to 1 + Δ■ by 7 Jl], assuming that the temperature is constant, the optimal operating conditions are at point A. As shown in FIG. 2, when the temperature shifts to the high temperature side, and conversely, when the amount of solar radiation decreases to -Δ■, the optimum operating condition shifts to the low temperature side, as shown in FIG. As shown in Figure 2, when the amount of solar radiation increases, the heating mass in the collector increases, and after some time delay the operating conditions reach the optimum point B [but the heat medium layer at the collector inlet reaches point B]. It is necessary to operate in a state with low exergy efficiency until the level of pressure is reached.

また反対に、第3図に示すように日射量が減少した時に
は、動力発生装置の集熱ループの温度レベルが高過ぎる
ことによつ−Cエクセルギ効率の低下が生じる。
Conversely, when the amount of solar radiation decreases as shown in FIG. 3, the temperature level of the heat collection loop of the power generator is too high, resulting in a decrease in -C exergy efficiency.

このような欠点は、熱源が太Is熱以外である場合、例
えば廃熱全熱ωλとする場合にも同僚にみられる。この
場合には、第1図ないし第3図における日射量の代わり
に熱源温度を置換えると同様の事情が成立する。
Such a shortcoming is also seen by colleagues when the heat source is other than large Is heat, for example when waste heat total heat ωλ is used. In this case, the same situation holds true when the heat source temperature is substituted for the amount of solar radiation in FIGS. 1 to 3.

本発明は、上述の欠点會なくし、熱源および外界の状態
の変動に対して最大のエクセルギ幼率で集熱することの
可能な動力発生装置全提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an entire power generation device that can eliminate the above-mentioned drawbacks and can collect heat at the maximum exergy rate against fluctuations in the heat source and the external environment.

本発明幻1、集熱ループに蓄熱温度の異なる複数の蓄熱
槽を設けると共に、熱源、外界の熱的状態および蓄熱槽
温度をそれぞγし検出する検出器?設け、該検出結果に
従って集熱に用いる蓄熱槽を選択し、かつ集熱ループの
熱媒循環量を制御するようにしたこと全特徴とする。
Vision 1 of the present invention: A detector that provides a plurality of heat storage tanks with different heat storage temperatures in the heat collection loop, and detects the heat source, the thermal state of the outside world, and the temperature of the heat storage tank, respectively. The present invention is characterized in that the heat storage tank used for heat collection is selected according to the detection result, and the amount of heat medium circulated in the heat collection loop is controlled.

以下本発明を図面に示す実施例により説明する。The present invention will be explained below with reference to embodiments shown in the drawings.

第4図は本発明全熱源が太陽熱である場合に適用した実
施例である。集熱ループは、集熱器1と、集熱器1に三
方弁11ai介して接続された蒸気発生器5と、蒸気発
生器5の熱媒出口側に接続された蓄熱僧都3と、熱媒循
環ポンプ4と、該ポンプ4から吐出される熱媒を集熱器
1に潤してバイパスさせるバイパス流路40と、該バイ
パス流路40と熱媒の集熱器1への入口流路との接続部
に設けられた三方弁11bとからなる。前記蓄熱摺部3
は、蓄熱温度の異なる2つの蓄熱槽3a。
FIG. 4 shows an embodiment in which the present invention is applied when the total heat source is solar heat. The heat collection loop includes a heat collector 1, a steam generator 5 connected to the heat collector 1 via a three-way valve 11ai, a heat storage 3 connected to the heat medium outlet side of the steam generator 5, and a heat medium A circulation pump 4, a bypass channel 40 for moistening and bypassing the heat medium discharged from the pump 4 into the heat collector 1, and a bypass flow channel 40 and an inlet flow channel for the heat medium to the heat collector 1. It consists of a three-way valve 11b provided at the connection part. The heat storage sliding part 3
are two heat storage tanks 3a having different heat storage temperatures.

3b(3ai高温蓄熱槽、3b全低温蓄熱槽とする)か
らなり、これらのいずnに熱媒全通すかは、三方弁12
a、12bの切換えによって選択しうるようになってい
る。
3b (3ai high-temperature heat storage tank, 3b all low-temperature heat storage tank), and the three-way valve 12 determines whether the heat medium is completely passed through which of them.
It can be selected by switching a and 12b.

一万、ランキノサイクル2は、蒸気発生器5、膨張F!
に構6、凝m器7およびポンプ8aからなり、凝縮器7
は、クーリングタワー9に対してポンプgb(z介して
接続されており、筐た、膨張機構6において発生した動
力は負荷10に供給さnる。
10,000, Rankino cycle 2, steam generator 5, expansion F!
It consists of a structure 6, a condenser 7 and a pump 8a, and the condenser 7
is connected to the cooling tower 9 via a pump gb (z), and the power generated in the expansion mechanism 6 is supplied to the load 10.

第5図は第4図の動力発生装置の制御装置の構成を示し
ており、13は外界tmlf、’T’、の検出器、14
け日射量Qの検出器、20は外界温度T、と日射tQ、
とから集熱器1の入口側熱媒温度の最適値’I’o(第
1図ないし第3図における破線平坦部の示す温度)全演
算する演算回路、15は基準日射t Q、 oの設定器
、16は低温蓄熱槽3bの製置゛I″lを検出する検出
器、17は低温蓄熱槽3bの下限温度IJI ILの該
定回路、18は高温蓄熱槽3aの温度T2の検出器、1
9は高温蓄熱槽3aの下限温度T2Lの設定回路、21
aは日射量Qが基準日射1: Q o より大きく場合
に出力゛1″全出し他の場合に“0″?出力する比較器
、21bは低温蓄熱槽3bの温度trlがその下限温度
TILより高い場合に出力”1″?出し他の場合に“0
″全出力する比較器、21cけ高温蓄熱槽3aの温度゛
1′2がその下限温度’J”2 Lより高い場合に出力
”1″を出し他の場合に”O″ケ出力る比較器、21d
は前記最適@Toが低温蓄熱槽3bの温度T+  より
も高い場合に出力を“1″とし、他の場合に出力を“0
″とする比較器、21eは前記最適値Toが高温蓄熱槽
3aの温度T2+よシも高い場合に出力を“1″とし、
他の場合に出力を“0″とする比較器、22a〜22e
はアンド回路、23はナンド回路、24a〜24cは反
転回路、25a。
FIG. 5 shows the configuration of the control device of the power generator shown in FIG.
A detector for solar radiation Q, 20 is an external temperature T, and a solar radiation tQ,
15 is an arithmetic circuit that calculates the optimum value 'I'o of the heat medium temperature on the inlet side of the heat collector 1 (the temperature indicated by the flat part of the broken line in FIGS. 1 to 3) from A setting device, 16 a detector for detecting the installation position "I"l of the low temperature heat storage tank 3b, 17 a corresponding circuit for the lower limit temperature IJIIL of the low temperature heat storage tank 3b, 18 a detector for the temperature T2 of the high temperature heat storage tank 3a ,1
9 is a setting circuit for the lower limit temperature T2L of the high temperature heat storage tank 3a; 21
21b is a comparator that outputs "0" if the solar radiation amount Q is larger than the reference solar radiation 1: Q o , and 21b is a comparator that outputs "0" when the solar radiation amount Q is larger than the reference solar radiation 1: Q o . Output “1” when high?Output “0” in other cases
A comparator that outputs full output, outputs ``1'' when the temperature of the 21c high temperature heat storage tank 3a is higher than its lower limit temperature ``J''2L, and outputs ``O'' in other cases. , 21d
sets the output to "1" when the optimum @To is higher than the temperature T+ of the low-temperature heat storage tank 3b, and sets the output to "0" in other cases.
”, the comparator 21e outputs “1” when the optimum value To is higher than the temperature T2+ of the high temperature heat storage tank 3a,
Comparators whose output is "0" in other cases, 22a to 22e
23 is an AND circuit, 24a to 24c are inverting circuits, and 25a.

25bはオア回IM、26a、26bけ三方弁12a。25b is OR time IM, 26a and 26b are three-way valves 12a.

12bによって低温蓄熱槽3bによる熱媒循環状態う状
態、27a、271)は三方弁12 a、  ] 2b
によって高温蓄熱槽3aによる熱媒循ffl’(r行う
状態、28は集熱器1の熱媒循環状態う状態、29はバ
イパス流路40に熱媒全流す状態、30はポンプ4,8
a、sbの励磁コイル、31は前記最適値To と低温
蓄熱槽3bの温度TI との差温検出器、32は前記最
適値Toと高温蓄熱槽3aの温度T2との差温検出器、
33け電圧発生回路、34はポンプ4の回転数制御部、
35は定電圧発生回路である。
12b indicates the state of heat medium circulation by the low temperature heat storage tank 3b, 27a, 271) indicates the three-way valve 12a, ] 2b
28 indicates a state in which the heat medium is circulated in the heat collector 1, 29 indicates a state in which the heat medium is completely flowed through the bypass passage 40, and 30 indicates a state in which the heat medium is circulated through the bypass flow path 40.
excitation coils a and sb; 31 is a temperature difference detector between the optimum value To and the temperature TI of the low temperature heat storage tank 3b; 32 is a temperature difference detector between the optimum value To and the temperature T2 of the high temperature heat storage tank 3a;
33 voltage generation circuit, 34 rotation speed control section of pump 4,
35 is a constant voltage generating circuit.

なお、前記電圧発生回路33は第6図に示すような特性
を有するものである。即ち蓄熱槽3aまたは3bの温度
T+ 、T2  (即ち集熱器10入口側熱媒温度)と
前記最適値To との差温がマイナスである場合には差
が大きい種出力電圧を低くし、TI、T2≧Toとなれ
ば出力電圧全一定とする。
Note that the voltage generating circuit 33 has characteristics as shown in FIG. That is, when the difference in temperature between the temperature T+, T2 of the heat storage tank 3a or 3b (i.e., the heat medium temperature on the inlet side of the heat collector 10) and the optimum value To is negative, the output voltage of the species with a large difference is lowered, and the TI , T2≧To, the output voltage is completely constant.

ポン140回転数制御部34は、該出力電圧に比例した
回転数で回転さnる。
The pump 140 rotation speed control section 34 rotates at a rotation speed proportional to the output voltage.

次に本実施例の動作?説明する。まず起動時の動作を、
日射付増大に関連させて説明する。日射tQ、が増じて
基準日射IQ。よりも犬きくなると、比較器21aの出
力が“1″となり、状態28、即ち三方弁11a、1l
bt”動作させて集熱器1に熱媒を循環させる状態を実
現すると同時に、オア回路25bi介してポンプ4.8
a、8b起動用励磁コイル30に信号力旬口えらnてポ
ンプ4゜8a、8bが起動さn5ランキンサイクル2は
動力全発生する。
Next, what is the operation of this embodiment? explain. First, the operation at startup,
This will be explained in relation to increased solar radiation. Solar radiation tQ increases to standard solar radiation IQ. When the signal becomes sharper than that, the output of the comparator 21a becomes "1", and the state 28 occurs, that is, the three-way valves 11a and 1l.
At the same time, the pump 4.8 is operated via the OR circuit 25bi to achieve a state in which the heat medium is circulated to the heat collector 1.
When a signal is applied to the excitation coil 30 for starting a and 8b, the pumps 4.8a and 8b are started, and the Rankine cycle 2 generates full power.

このときの熱媒循itは次のようにして決定さnる。外
界温度T1および日射量Qより演算回路20にで集熱r
:i入ロ入熱側熱媒温度適値Toの演算全行い、こnと
低温蓄熱槽3bの温度TIおよび高温蓄熱槽3aの温度
T、、と比較し、’]”2>To >TIであれば比較
器21dの出力が1#、21eの出力が“O”となるの
で1アンド回路22aの出力が1”となり、三方弁12
a、12be低温蓄熱槽3b側に切換えて熱媒を該低温
蓄熱槽3bに循環させる熱媒循環状態26a’t:実現
する。これと同時に、アンド回路22bが開いて、差温
検出器31の出力であるTI  ToK相当する信号全
電圧発生回路33に送り、ポンプ4の回転数制御部34
にエクセルギ効率全最大とする循環量制御のための信号
を伝送する。
The heat medium circulation it at this time is determined as follows. Heat is collected in the calculation circuit 20 from the outside temperature T1 and the amount of solar radiation Q.
: i Perform all calculations of the appropriate value To of the heat medium temperature on the input side, and compare it with the temperature TI of the low temperature heat storage tank 3b and the temperature T of the high temperature heat storage tank 3a, ']"2>To>TI In this case, the output of the comparator 21d becomes 1# and the output of the comparator 21e becomes "O", so the output of the 1-AND circuit 22a becomes 1", and the three-way valve 12
a, 12be Heat medium circulation state 26a't: Realized by switching to the low temperature heat storage tank 3b side and circulating the heat medium to the low temperature heat storage tank 3b. At the same time, the AND circuit 22b opens and sends a signal corresponding to TI ToK, which is the output of the temperature difference detector 31, to the total voltage generation circuit 33, and outputs the signal to the rotation speed control section 34 of the pump 4.
A signal is transmitted to control the circulation amount to maximize exergy efficiency.

次に、日射tQが増し、集熱器10入口側熱媒の最適1
[T oが高温蓄熱槽3aの温度T2よりも高くなった
場合には、比較1W21eの出力が1”となり、三方弁
12aおよび12bk切換えて高温蓄熱槽3aによる熱
媒循環状態27 af実現する。こnと同時に、差温検
出器32の出力、即ちT2−Toに相当する信号がアン
ド回路22c?r通して電圧発生回路33に加えらlL
1循猿祉制御のための信号が回転数制御部34に送らγ
Lる。
Next, the solar radiation tQ increases, and the optimum heat medium on the inlet side of the heat collector 10
[If T o becomes higher than the temperature T2 of the high-temperature heat storage tank 3a, the output of the comparison 1W21e becomes 1'', and the three-way valves 12a and 12bk are switched to realize the heat medium circulation state 27 af by the high-temperature heat storage tank 3a. At the same time, the output of the temperature difference detector 32, that is, a signal corresponding to T2-To is applied to the voltage generation circuit 33 through the AND circuit 22c?r.
A signal for one-cycle monkey welfare control is sent to the rotation speed control section 34.
L.

こγしまでに説明した制備1は、第2図に示すように、
日射景増大によって破線平坦部に示す最適値Toが上昇
した場合に、蓄熱槽3aまたは3bの(9) 温度T1またはT2′に最ll14値T。よりも低い状
態とし、(−コ点の運転条件に到るまで熱媒循環量を少
なくするん1]御であり、これによりエクセルギ効率の
扁い運転条件が実現できる。
As shown in Figure 2, the equipment 1 explained so far is as follows:
When the optimal value To shown in the flat part of the broken line increases due to an increase in the solar radiation scene, the maximum value T is reached at the temperature T1 or T2' of the heat storage tank 3a or 3b (9). (by reducing the amount of heat medium circulation until the operating condition reaches the -C point), it is possible to realize an operating condition with low exergy efficiency.

日射量が減少し始めると、実際の運転条件と最適運転条
件との関係は第3図のA点と破線で示さCるものとなる
。即ち、集熱器1の入口側熱媒温度(高温蓄熱槽3aの
温度T2 )が最適1直To よジも楠くなる。このと
きは比較器21dの出力が“1″、比較器21eの出力
が”0“となることにより、アンド回路22aの出力が
”■”となり、26aの状態、即ち低温蓄熱槽3bによ
る熱媒循環を実現する。さらに日射mQが減少し、基準
日射量Qo よりも少なくなり、かつ蓄熱槽温度TIま
たはT2が各々の設定下限温度TILまたはlp2.、
よりも高い場合は、比較器21aの出力が”0″、比較
6211)または21cの出力が“1″となるから、オ
ア回路25aと反転回路24bKよりアンド回路22f
の出力が”1′となり、三方弁11aおよび1lb(i
7バイパス流路40側V(切換(101 え、集熱は行わないが動力は発生する熱媒循環状態29
を実現する。このとき、ポンプ4にょる熱媒循4量は定
電圧発生回路35からの信号によって決定される。この
ときに熱媒循環に用いる蓄熱槽は、高温蓄熱槽3aの温
度T2がその設定下限温度T2Lより高い場合には、比
較器21Cの出力が1”、21eの出力が0”がナンド
回路23の出力が11nであって、アンド回路22eの
出力が”1”となることにより、状a27b、即ち高温
畜熱悄3aであり、また、尚温畜熱槽3aの温度T2が
設定下限(詰度T2Lよりもはく、かつ低温畜熱槽3b
の温度Tlが設定下限IMf□lit、Lよりも尚い場
合には、比較器21bと反転回路24Cの出力が”1″
となり、アンド回路22dの出力がl″と72/)こと
KよV、状態26 b、 a+ts低―蓄熱憎3bとな
る。
When the amount of solar radiation begins to decrease, the relationship between the actual operating conditions and the optimal operating conditions becomes as indicated by point A and the broken line C in FIG. 3. That is, the temperature of the heat medium on the inlet side of the heat collector 1 (temperature T2 of the high-temperature heat storage tank 3a) is the same as the optimum temperature. At this time, the output of the comparator 21d becomes "1" and the output of the comparator 21e becomes "0", so the output of the AND circuit 22a becomes "■", and the state of 26a, that is, the heat medium by the low temperature heat storage tank 3b. Realize circulation. Furthermore, the solar radiation mQ decreases and becomes lower than the reference solar radiation amount Qo, and the thermal storage tank temperature TI or T2 is lower than the respective set lower limit temperature TIL or lp2. ,
If it is higher than , the output of the comparator 21a is "0" and the output of the comparator 6211) or 21c is "1", so the AND circuit 22f is
output becomes "1", and the three-way valves 11a and 1lb (i
7 Bypass flow path 40 side V (switching (101) Heat medium circulation state where no heat is collected but power is generated 29
Realize. At this time, the amount of heat medium circulating through the pump 4 is determined by a signal from the constant voltage generating circuit 35. At this time, in the heat storage tank used for heat medium circulation, when the temperature T2 of the high temperature heat storage tank 3a is higher than the set lower limit temperature T2L, the output of the comparator 21C is 1'' and the output of the comparator 21e is 0''. Since the output of the AND circuit 22e is 11n and the output of the AND circuit 22e is "1", the state a27b, that is, the high temperature storage tank 3a is reached, and the temperature T2 of the high temperature storage tank 3a is at the lower limit (clogging). Temperature higher than T2L and low temperature heat storage tank 3b
If the temperature Tl is still lower than the set lower limit IMf□lit,L, the output of the comparator 21b and the inverting circuit 24C becomes "1".
Then, the output of the AND circuit 22d becomes l'' and 72/), that is, K and V, and the state 26b, a+ts low-heat storage 3b.

次いで、蓄熱槽3aおよび3bの温1fTz、Tlが共
にそrしぞn設定下限姉朋l112L、 Ill、L工
り低くなると、オア四路25bに入る信号は全て”0”
となり、ポンプ゛4,8a、8bは停止する。
Next, when the temperatures 1fTz and Tl of the heat storage tanks 3a and 3b both become lower than the set lower limit, all the signals entering the four-way circuit 25b are "0".
Therefore, the pumps 4, 8a, and 8b stop.

(11) 本実施例によれば、日射量の増大、減少の両方の場合に
最適運転条件を実現できることは言うに及ばず、さらに
日射がなくなった後でも蓄熱槽3a、3bの余剰熱全利
用して動力発生全有効に行うことができる。
(11) According to this embodiment, it goes without saying that optimal operating conditions can be achieved in both cases of increase and decrease in the amount of solar radiation, and furthermore, even after the amount of solar radiation disappears, the surplus heat of the heat storage tanks 3a and 3b can be fully utilized. Power generation can be done fully effectively.

以上太陽熱全熱源とする実施例を示したが、廃熱等全熱
源とする場合には、日射量に該当する箇所全熱源温度に
置換えれば本実施例全応用しうる。
Although an embodiment using a total heat source of solar heat has been shown above, in the case of using a total heat source such as waste heat, all of the present embodiments can be applied by replacing the temperature with the total heat source temperature at a location corresponding to the amount of solar radiation.

−!た、熱媒循環量の制御は、実施例のようなポンプ回
転数制御のみならず、熱媒循環ポンプ4に並列にバイパ
ス弁7il−設けてぞの弁開度紫制御することによって
も行うことができる。、捷た、外界温KT、の代わりに
、ランキンサイクル2の凝縮温度を用いることも考えら
れる。さらに、動力発生手段としては、ランキンサイク
ル以外に、冷凍機、フレートンサイクル、スターリング
サイクル等、他の動力発生装置も用いられる。
-! In addition, the amount of heat medium circulation can be controlled not only by controlling the pump rotation speed as in the embodiment, but also by providing a bypass valve 7il in parallel with the heat medium circulation pump 4 and controlling the opening degree of each valve. I can do it. It is also possible to use the condensation temperature of Rankine cycle 2 instead of the outside temperature KT. In addition to the Rankine cycle, other power generating devices such as a refrigerator, a Freyton cycle, a Stirling cycle, etc. can also be used as the power generating means.

以上述べたように、本発明においては、集熱ルー フI
ICd熱1fiA度の異なる複数の蓄熱槽全役けると共
に、熱源、外界の熱的状態および蓄熱槽温度を(12) それぞれ検出する検出器と、熱源と外界の熱的状態とか
ら熱源人口側熱媒温度の最適で直を演算する演算手段と
、該最適匝と蓄熱槽温度の検出値との差温によってエク
セルギ幼率全最大とする熱媒循環叶を流す手段と、該差
温によって蓄熱槽全選択する手段とを備えたので、熱源
および外界の熱的状態の変動に対して常に最大のエクセ
ルギ効率で集熱できるのみならず、蓄熱槽の選択により
、前記熱的状態の変動に対応した好適な状態で蓄熱を行
うことができる。
As described above, in the present invention, the heat collecting roof I
ICd heat 1fiA In addition to all of the multiple heat storage tanks with different degrees of heat, a detector that detects the thermal state of the heat source, the outside world, and the temperature of the heat storage tank (12) respectively, and the thermal state of the heat source and the outside world are used to detect the heat on the heat source population side. calculation means for calculating the optimum temperature of the medium temperature, means for flowing a heat medium circulation blade that maximizes the exergy rate based on the temperature difference between the optimum temperature and the detected value of the temperature of the heat storage tank; Not only can heat be collected with maximum exergy efficiency in response to fluctuations in the thermal conditions of the heat source and the outside world, but also the selection of heat storage tanks can accommodate fluctuations in the thermal conditions. Heat storage can be performed in a suitable state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は太陽熱集熱器における集熱器入口側熱媒温度お
よび熱媒循環量とエクセルギ効率の関係ケ示す図、第2
図は日射量が多い場合の第1図相当図、第3図は日射)
訛が少ない場合の第1図相当図、第4図は本発明の一実
施例會示す系統図、第5図は該実施例の制御ブロック図
、第6図は該実施例に用いる電圧発生回路の特性図であ
る。 1・・・集熱器、2・・・ランキンサイクル、3a・・
・高温蓄熱槽、3b・・・低温蓄熱槽、4・・・熱媒循
環ポンプ、(13) 21.12・・・三方弁、13・・・外界温度検出器、
14・・・日射量検出器、16・・・低温蓄熱槽温度検
出ど私 18・・・高温蓄熱槽温度検出器、26・・・
低温蓄熱槽熱媒循環状態、27・・・商温蓄熱槽熱媒循
猿状態、28・・・集熱器による集熱状態、29・・・
集熱器バイパス状態、30・・・ポンプ励磁コイル、3
1゜32・・・差温検出器、33・・・電圧発生回路、
34・・・回転数制御部、35・・・定電圧発生回路。 (14) Y 1  図 可 4 図 フ
Figure 1 is a diagram showing the relationship between the heat medium temperature at the collector inlet side and the amount of heat medium circulation in a solar heat collector, and the exergy efficiency.
The figure is equivalent to Figure 1 when the amount of solar radiation is high, and Figure 3 is the solar radiation)
Fig. 1 is a diagram corresponding to a case where there are few accents, Fig. 4 is a system diagram showing an embodiment of the present invention, Fig. 5 is a control block diagram of the embodiment, and Fig. 6 is a diagram of the voltage generating circuit used in the embodiment. It is a characteristic diagram. 1... Heat collector, 2... Rankine cycle, 3a...
- High temperature heat storage tank, 3b... Low temperature heat storage tank, 4... Heat medium circulation pump, (13) 21.12... Three-way valve, 13... Outside temperature detector,
14...Solar radiation amount detector, 16...Low temperature heat storage tank temperature detection device 18...High temperature heat storage tank temperature detector, 26...
Low-temperature heat storage tank heat medium circulation state, 27... Commercial temperature heat storage tank heat medium circulation state, 28... Heat collection state by heat collector, 29...
Heat collector bypass state, 30... Pump excitation coil, 3
1゜32... Temperature difference detector, 33... Voltage generation circuit,
34... Rotation speed control unit, 35... Constant voltage generation circuit. (14) Y 1 Drawing allowed 4 Drawing F

Claims (1)

【特許請求の範囲】[Claims] 熱源、蓄熱槽および熱媒循環ポンプ會備えた集熱ループ
と、該集熱ループで集熱さnた熱量を動力に変換する手
段とからなる動力発生装置tT/Cおいて、集熱ループ
に蓄熱温度の異なる複数の蓄熱槽を設けると共に、熱源
と外界の熱的状態および蓄熱槽温度全それぞれ検出する
検出器と、熱源と外界の熱的状態から熱源入口側熱媒温
度の最適値?演算する演算手段と、該最適値と蓄熱槽温
度の検出値との差温によってエクセルギ効率全最大とす
る熱媒循壊童奮流す手段と、該差温によって蓄熱槽を選
択する手段とを備えたこと全特徴とする動力発生装置。
In the power generation device tT/C, which consists of a heat collection loop equipped with a heat source, a heat storage tank, and a heat medium circulation pump, and a means for converting the amount of heat collected in the heat collection loop into power, heat is stored in the heat collection loop. In addition to providing multiple heat storage tanks with different temperatures, we also need a detector that detects the thermal conditions of the heat source and the outside world as well as the temperatures of the heat storage tanks, and what is the optimal value for the temperature of the heat medium at the inlet of the heat source based on the thermal conditions of the heat source and the outside world? A calculation means for calculating, a means for circulating a heat medium to maximize exergy efficiency based on a temperature difference between the optimum value and a detected value of the temperature of the heat storage tank, and a means for selecting a heat storage tank based on the temperature difference. A power generation device with all the features.
JP6728382A 1982-04-23 1982-04-23 Motive power generator Pending JPS58185911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6728382A JPS58185911A (en) 1982-04-23 1982-04-23 Motive power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6728382A JPS58185911A (en) 1982-04-23 1982-04-23 Motive power generator

Publications (1)

Publication Number Publication Date
JPS58185911A true JPS58185911A (en) 1983-10-29

Family

ID=13340487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6728382A Pending JPS58185911A (en) 1982-04-23 1982-04-23 Motive power generator

Country Status (1)

Country Link
JP (1) JPS58185911A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124899A1 (en) * 2012-02-24 2013-08-29 株式会社 日立製作所 Solar heat assisted gas turbine system
JP2014031787A (en) * 2012-08-06 2014-02-20 Toshiba Corp Power generation plant and heat supply method
JPWO2013124899A1 (en) * 2012-02-24 2015-05-21 三菱日立パワーシステムズ株式会社 Solar assisted gas turbine system
CN110206598A (en) * 2019-06-04 2019-09-06 中国科学院工程热物理研究所 It is a kind of based on the heat pump energy-storing and power-generating system for storing up cold heat accumulation indirectly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124899A1 (en) * 2012-02-24 2013-08-29 株式会社 日立製作所 Solar heat assisted gas turbine system
CN104220727A (en) * 2012-02-24 2014-12-17 三菱日立电力系统株式会社 Solar heat assisted gas turbine system
JPWO2013124899A1 (en) * 2012-02-24 2015-05-21 三菱日立パワーシステムズ株式会社 Solar assisted gas turbine system
JP2014031787A (en) * 2012-08-06 2014-02-20 Toshiba Corp Power generation plant and heat supply method
US9512826B2 (en) 2012-08-06 2016-12-06 Kabushiki Kaisha Toshiba Power plant and heat supply method
CN110206598A (en) * 2019-06-04 2019-09-06 中国科学院工程热物理研究所 It is a kind of based on the heat pump energy-storing and power-generating system for storing up cold heat accumulation indirectly
CN110206598B (en) * 2019-06-04 2022-04-01 中国科学院工程热物理研究所 Heat pump energy storage power generation system based on indirect cold storage and heat storage

Similar Documents

Publication Publication Date Title
US9816491B2 (en) Solar power system and method therefor
US8171733B2 (en) Systems and methods involving combined cycle plants
EP2980383B1 (en) Solar/air turbine generator system
US10954852B2 (en) Compressed air energy storage power generation device
JP5868809B2 (en) Power plant and heat supply method
AU2015258171B2 (en) Solar thermal power generation system
JP2016044848A (en) Photovoltaic power generation device cooperation heat pump hot water storage type hot water supply system
JP2006313048A (en) Waste heat utilizing system and its operating method
JP6184243B2 (en) Solar thermal energy generator
JPS58185911A (en) Motive power generator
CN103282726A (en) Cooling system
JPS63183346A (en) Solar system for generating steam
EP3256805B1 (en) Improvement of efficiency in power plants
JP3784616B2 (en) Thermoelectric ratio control method for small capacity gas turbine cogeneration system
JPH05264072A (en) Device for heating or cooling
WO2016170653A1 (en) Steam turbine system
Schäfer et al. Experimental plant for analyzing the technical feasibility of decentralized solar heat feed-in
JPS58185912A (en) Motive power generator
JPS5895155A (en) Solar heat collecting device
JPH0529013A (en) Fuel cell power generation system
JPS5845437A (en) Control system for solar-heat-utilizing absorption type refrigerating machine
JP2504939Y2 (en) Boiler level controller
JPS6155553A (en) Hot water supplying device utilizing solar heat
JPH034820B2 (en)
Falsafioon et al. Demonstration of a Solar-Driven Ejector Chiller Assisting the Air Conditioning System of a Building