JPS58185912A - Motive power generator - Google Patents

Motive power generator

Info

Publication number
JPS58185912A
JPS58185912A JP6728482A JP6728482A JPS58185912A JP S58185912 A JPS58185912 A JP S58185912A JP 6728482 A JP6728482 A JP 6728482A JP 6728482 A JP6728482 A JP 6728482A JP S58185912 A JPS58185912 A JP S58185912A
Authority
JP
Japan
Prior art keywords
heat
temperature
heat medium
heat source
inlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6728482A
Other languages
Japanese (ja)
Inventor
Masahiko Fujita
雅彦 藤田
Masaharu Ishii
石井 雅治
Seigo Miyamoto
宮本 誠吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6728482A priority Critical patent/JPS58185912A/en
Publication of JPS58185912A publication Critical patent/JPS58185912A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the heat efficiency of a motive power generator which utilizes solar heat or waste heat of a plant or so by determining a quantity of heat medium circulated which may produce a maximum energy efficiency, according to a difference between an optimum value of a temperature of heat medium at the inlet side of a heat source and a detected value of said temperature. CONSTITUTION:If an intense of solar radiation is increased when a plant is stopped and a temperature T2 of heat medium inside a heat collector 1 therefore becomes higher than a temperature T1 of a heat accumulation tank 3, said temperatures being detected by detectors 15 and 16, respectively, electric current is fed through a pump exciting coil 24 via a comparator 20b and other means to start pumps 4, 8a and 8b. A three-way valve controller 26 is also electrified to control three-way valves 11a and 11b for cutting off a bypass flow passage 30, hence generating power in a Rankine cycle 2. A computing circuit 27 receives outputs of detectors 13 and 14 with respect to a temperature Ta of open air and an intense Q of solar radiation, calculates an optimum value T0 of a temperature of heat medium at the inlet side of the heat collector, makes detection 19 on a difference DELTAT between the value T0 and said temperature T1, and sends a signal for producing a maximum energy efficiency to a revolution number controller 28 of the pump 4.

Description

【発明の詳細な説明】 本発明は、太陽熱や工場廃熱等を利用して動力を発生さ
せる動力発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power generation device that generates power using solar heat, factory waste heat, or the like.

太陽熱や工場廃熱等を利用した従来の動力発生装置は、
熱源、蓄熱槽および熱媒循環ポンプ金偏える集熱ループ
と、該集熱ルーズで集熱された熱量を動力に変換する機
*’e有するランキンサイクルとからなるが、熱源の熱
的状態(太陽熱を利用する場合の日射量、廃熱を利用す
る場合の熱源温度)と、外界の熱的状態(気温あるいは
ランキンサイクルの凝縮温度)と、熱源入口側熱媒温度
に無関係に集熱ルーズの熱媒循環量を設定していたので
、熱源における入熱量の増大に対して(nちに最適運転
条件を実現することができないという欠点があった。こ
れを、太1場熱を熱源とする場合のエクセルギ効率線図
である第1図を用いて説明する。ここで、エクセルギと
は(1)式で定義される。
Conventional power generation devices that utilize solar heat, factory waste heat, etc.
It consists of a heat source, a heat storage tank, a heat medium circulation pump, a heat collection loop, and a Rankine cycle that converts the collected heat into power. The heat collection rate is independent of the amount of solar radiation when using solar heat, the heat source temperature when using waste heat), the thermal state of the outside world (air temperature or condensation temperature of Rankine cycle), and the temperature of the heating medium at the inlet of the heat source. Since the amount of heat medium circulation was set, there was a drawback that it was not possible to achieve the optimum operating conditions in response to an increase in the amount of heat input at the heat source. This will be explained using FIG. 1 which is an exergy efficiency diagram for the case where exergy is defined by equation (1).

ただし、Q:高温熱源から供給される全熱量TA:高湛
熱源温度 TB:低温熱源温度 Tc:高温熱源絶対温度 また、エクセルギ効率とは、集熱面日射量に含まれるエ
クセルギに対する集熱器によって集められるエクセルギ
の割合である。
However, Q: total amount of heat supplied from the high temperature heat source TA: high heat source temperature TB: low temperature heat source temperature Tc: high temperature heat source absolute temperature Also, exergy efficiency refers to the amount of heat the collector provides for the exergy included in the solar radiation on the heat collecting surface. It is the rate of exergi that can be collected.

第1図において、縦軸は太陽熱集熱器入口側熱媒温度、
横軸は熱媒循環量、図中の数値はエクセルギ効率、実線
はある日射量および気温におけるエクセルギ効率等高線
、破線はエクセルギ効率を最大とする集熱器入口側熱媒
温度と熱媒循環量との組合わせを示す。
In Figure 1, the vertical axis is the temperature of the heating medium at the inlet of the solar collector;
The horizontal axis is the heat medium circulation amount, the numerical value in the figure is the exergy efficiency, the solid line is the exergy efficiency contour line at a certain solar radiation amount and temperature, and the broken line is the heat medium temperature at the collector inlet side and the heat medium circulation amount that maximizes the exergy efficiency. Indicates the combination of

日射量が増加する場合、破線に示す最適運転条件に対し
て実際の運転条件はA点にある。このとき、従来の動力
発生装置においては、集熱ループにおける加熱量が増し
、いくらからの時間遅れの後に運転条件は最適点Bに達
するが、その間はエクセルギ効率の低い状態で運転しな
ければならない。即ち、日射量の増加に対し、発生動力
の増加は徐々にしか行われないのである。
When the amount of solar radiation increases, the actual operating condition is at point A with respect to the optimum operating condition shown by the broken line. At this time, in conventional power generators, the amount of heating in the heat collection loop increases, and after some time delay, the operating conditions reach optimal point B, but during that time, they must be operated in a state with low exergy efficiency. . In other words, as the amount of solar radiation increases, the generated power increases only gradually.

この欠点は、熱源が太陽熱以外である場合、例えば廃熱
を熱源とする場合にも同様にみられる。
This drawback also occurs when the heat source is other than solar heat, for example when waste heat is used as the heat source.

この場合には、第1図における日射量の代わりに熱源温
度全置換えると同様の事情が成立する。
In this case, the same situation will hold if the total heat source temperature is substituted for the amount of solar radiation in FIG. 1.

本発明は、上述の欠点をなくし、熱源における入熱量の
増加に対して直ちにエクセルギ効率最大の集線条件を実
現することのできる動力発生装置を提供するにある。
SUMMARY OF THE INVENTION The present invention aims to eliminate the above-mentioned drawbacks and to provide a power generation device that can immediately realize a line concentration condition that maximizes exergy efficiency in response to an increase in the amount of heat input in a heat source.

本発明は、熱源と外界の熱的状態および熱源入口側熱媒
温度をそれぞれ検出する検出器を設けると共に、該各検
出器からの検出信号を基にして集熱ループにおける熱源
入口側熱媒温度の最適値の演算を行い、該演算結果と熱
源入口側熱媒温度検出値との差温からエクセルギ効率を
最大とする流量の熱媒を流すようにしたこと全特徴とす
る。
The present invention provides a detector that detects the thermal state of the heat source and the outside world, and the temperature of the heat medium at the inlet of the heat source, and detects the temperature of the heat medium at the inlet of the heat source in the heat collection loop based on the detection signals from each detector. The main feature is that the optimum value of is calculated, and the heat medium is flowed at a flow rate that maximizes the exergy efficiency based on the temperature difference between the calculation result and the detected value of the heat medium temperature on the heat source inlet side.

以下本発明を図面に示す実施例により説明する。The present invention will be explained below with reference to embodiments shown in the drawings.

第2図は本発明を熱源が太陽熱である場合に適用した実
施例である。集熱ループは、集熱器1と、集熱器1に三
方弁11 af介して接続された蒸気発生器5と、蒸気
発生器5の熱媒出口側に接続された蓄熱槽3と、該蓄熱
槽3と集熱器1の熱媒入口側との間に設けられた熱媒循
環ポンプ4および三方弁11bと、三方弁11aとll
bとの間に設けられたバイパス流路30とからなる。
FIG. 2 shows an embodiment in which the present invention is applied when the heat source is solar heat. The heat collection loop includes a heat collector 1, a steam generator 5 connected to the heat collector 1 via a three-way valve 11af, a heat storage tank 3 connected to the heat medium outlet side of the steam generator 5, and a heat storage tank 3 connected to the heat medium outlet side of the steam generator 5. A heat medium circulation pump 4 and a three-way valve 11b provided between the heat storage tank 3 and the heat medium inlet side of the heat collector 1, and a three-way valve 11a and ll.
and a bypass flow path 30 provided between the

一方、ランキンサイクル2ば、蒸気発生器5、膨張機構
6、凝縮器7およびポンプ8aからなり、凝縮器7は、
り吋リンクタワー9に対してポンプ8b’に介して接続
されており、また、膨張機構6において発生した動力は
負荷10に供給される。
On the other hand, the Rankine cycle 2 consists of a steam generator 5, an expansion mechanism 6, a condenser 7, and a pump 8a.
It is connected to the rear link tower 9 via a pump 8b', and the power generated in the expansion mechanism 6 is supplied to a load 10.

第3図は第2図の動力発生装置の制(財)装置であり、
13は外界の熱的状態としての温度T1の検出器、14
は熱源の熱的状態である日射量Qの検出器、17は外界
温度T、と日射量Qとから集熱器1の入口側熱媒温度の
最適値To  (第1図における破線平坦部の示す温度
)全演算する演算回路である。15は集熱器1へ導入さ
れる熱媒の温度T、(本実施例においてはこれと実質的
に等し5蓄熱槽3の温度全検出している)を検出する検
出器、16は集熱器1の内部熱媒温度T2の検出器、1
8は蓄熱槽3の下限温度TLの設定回路である。
Figure 3 shows the control device for the power generator shown in Figure 2.
13 is a detector for temperature T1 as the thermal state of the external world; 14
17 is a detector for the amount of solar radiation Q, which is the thermal state of the heat source, and 17 is the outside temperature T, and from the amount of solar radiation Q, the optimal value To of the heating medium temperature on the inlet side of the heat collector 1 (in the flat part of the broken line in FIG. This is an arithmetic circuit that performs all calculations (temperature indicated). 15 is a detector for detecting the temperature T of the heat medium introduced into the heat collector 1 (in this embodiment, it is substantially equal to this and the entire temperature of the heat storage tank 3 is detected); 16 is a collector; Detector for internal heating medium temperature T2 of heating device 1, 1
8 is a circuit for setting the lower limit temperature TL of the heat storage tank 3.

19は、前記検出器15により検出される集熱器入口側
熱媒温度T、と、前記演算回路17により算出される最
適値T。との差温ΔTを検出する差温検出器である。2
0aは、前記設定回路18に設定される蓄勢槽3の下限
温度TLと、検出器15により検出される前記温度T1
とを比較し、TI>TLのときに出力=i ” 1”と
し、そうでないときに出力を“°0′″とする比較器で
ある。20bは、前記雨検出器15.16によって検出
される温度T+ 、T2 k比較し、集熱器1の内部温
度T2が蓄熱槽温度T1 よりも高いときに出力全“1
”とし、そうでないときに出力を0″とする比較器であ
る。
Reference numeral 19 denotes the heat medium temperature T at the inlet of the collector detected by the detector 15 and the optimum value T calculated by the arithmetic circuit 17. This is a temperature difference detector that detects the temperature difference ΔT between the 2
0a is the lower limit temperature TL of the energy storage tank 3 set in the setting circuit 18 and the temperature T1 detected by the detector 15.
This is a comparator that compares the values of TI and TL, and outputs i ``1'' when TI>TL, and outputs ``0''' when this is not the case. 20b compares the temperatures T+ and T2 k detected by the rain detectors 15 and 16, and when the internal temperature T2 of the heat collector 1 is higher than the heat storage tank temperature T1, the output is "1".
This is a comparator that outputs 0 when it is not.

21aは前記比較器20bの出力が’1″(即ち’r2
>’r、 )のときにのみ前記差温検出器19の出力Δ
T (=T、 −’ro ) k電圧発生回路27に通
すアンド回路、28は該電圧発生回路27に接続された
前記熱媒循環ポンプ4の回転数制御部である。
21a, the output of the comparator 20b is '1' (i.e. 'r2').
>'r, ), the output Δ of the temperature difference detector 19
T (=T, -'ro)k An AND circuit 28 passing through the voltage generation circuit 27 is a rotation speed control section of the heat medium circulation pump 4 connected to the voltage generation circuit 27.

22は前記比較器20aと20bの出力を入力とするオ
ア回路であり、24はその出力が′°1″のときに励磁
されるポンプ4,8a、8bの起動用励磁コイルである
。21bは前記比較器20aの出力と、反転回路23を
介する前記比較器20bの出力とを入力とするアンド回
路、25は前記三方弁11a、llbの駆動装置を作動
させて熱媒がバイパス流路30を流れるようにして動力
を発生させる運転状態でるる。29は該アンド回路21
bの出力が′1#であるときにのみ前記回転数制御部2
8に定電圧を加える定電圧発生回路である。26は前記
三方弁11a、llbの駆動装置を作動させて集熱を行
う運転状態である。
22 is an OR circuit which inputs the outputs of the comparators 20a and 20b, and 24 is an excitation coil for starting the pumps 4, 8a, and 8b, which is excited when the output is '1''. An AND circuit 25 inputs the output of the comparator 20a and the output of the comparator 20b via the inverting circuit 23, and operates the driving device of the three-way valves 11a and 11b so that the heat medium flows through the bypass flow path 30. The AND circuit 21 is in an operating state in which power is generated by flowing the flow.
The rotation speed control section 2 only when the output of b is '1#.
This is a constant voltage generation circuit that applies a constant voltage to 8. Reference numeral 26 indicates an operating state in which the driving devices for the three-way valves 11a and 11b are activated to collect heat.

次にこの実施例の作用について説明する。装置が停止し
ている状態において、日射量が増し、集熱器1内の熱媒
温度T2が蓄熱槽温度T、  より高くなると、比較器
20bの出力が1#となり、オア回路22を介してポン
プ4.8a、8bの起動用励磁コイル24に通電されて
これらが起動され、かつ三方弁11a、llbがバイパ
ス流路30′f、s断する方向に操作され、熱媒はポン
プ4、三方弁11b1集熱器1、三方弁11a1蒸気発
生器5、蓄熱槽3の経路で循環し、ランキンサイクル2
にて動力を発生させる(26の運転状態)。
Next, the operation of this embodiment will be explained. While the device is stopped, when the amount of solar radiation increases and the heat medium temperature T2 in the heat collector 1 becomes higher than the heat storage tank temperature T, the output of the comparator 20b becomes 1#, and the The excitation coils 24 for starting the pumps 4.8a and 8b are energized to start them, and the three-way valves 11a and llb are operated in the direction of cutting off the bypass flow path 30'f, so that the heat medium is supplied to the pump 4, the three-way It circulates through the path of the valve 11b1 heat collector 1, the three-way valve 11a1 steam generator 5, and the heat storage tank 3, and the Rankine cycle 2
(26 operating states).

このときの熱媒循環量は、次のように決定される。The amount of heat medium circulated at this time is determined as follows.

前記検出器13によって検出される外気温度T。outside air temperature T detected by the detector 13;

と前記検出器14によって検出される日射量Qとにより
、演算回路17にて集熱器入口側熱媒温度の最適値To
の演算を行い、該最適値Toと蓄熱槽3の温度T1との
差ΔTを差温検出器19で検出し、該差温ΔTに相当す
る信号全アンド回路21a’に介して電圧発生回路27
に送り、ポンプ4の回転数制御部28にエクセルギ効率
を最大とする循環量制御のだめの信号を伝達する。
and the amount of solar radiation Q detected by the detector 14, the calculation circuit 17 determines the optimum value To of the heat medium temperature at the inlet side of the collector.
The difference ΔT between the optimum value To and the temperature T1 of the heat storage tank 3 is detected by the temperature difference detector 19, and a signal corresponding to the temperature difference ΔT is sent to the voltage generating circuit 27 via the all-AND circuit 21a'.
A signal is sent to the rotation speed control section 28 of the pump 4 to control the circulation amount to maximize the exergy efficiency.

この循環量制御は次のようになされる。第4図は電圧発
生回路27における入力信号(ΔT)と出力電圧との関
係を示し、ΔTが負である領域(即ちT、(T。)にお
いては、その差温か大きい程ポンプ4の回転数制御部2
8に加える電圧を低く、即ち回転数を小さくして流t’
を少とする。これを第1図について説明する払T+ <
’I”oの場合、即ち例えばA点の運転条件が与えられ
ている場合には、0点の運転条件に到るまで熱媒循環量
を少なくし、T1≧Toに到った場合には、一定の回転
数でポンプ4を運転して熱媒の循環量を一定とする。こ
のような制御を行うことにより、日射量増大時には、第
1図におして、最適運転条件として示した破線上の運転
条件を直ちに実現することができる。
This circulation amount control is performed as follows. FIG. 4 shows the relationship between the input signal (ΔT) and the output voltage in the voltage generation circuit 27. In the region where ΔT is negative (i.e., T, (T.), the larger the difference, the more the rotation speed of the pump 4. Control part 2
Lower the voltage applied to 8, that is, lower the rotational speed, and
Let be less. To explain this with reference to Figure 1, T + <
In the case of 'I''o, that is, for example, when the operating conditions at point A are given, the amount of heat medium circulation is reduced until the operating conditions at point 0 are reached, and when T1≧To is reached, , the pump 4 is operated at a constant rotational speed to keep the circulation amount of the heat medium constant.By performing such control, when the amount of solar radiation increases, the temperature will rise above the dashed line shown as the optimum operating condition in Fig. 1. operating conditions can be immediately achieved.

一方、日射量が減少し、集熱器内部温度T2が蓄熱槽3
の温度T、より低くなり(Tl >T2 ) 、かつ蓄
熱槽温度T1がその設定下限温度TLより高い(Tl>
TL)場合には、比較器20aの出力が′1”、比較器
20bの出力がI Ojlとなるので、アンド回路21
bの出力が′1j′となり、三方弁11a、llbが切
換わり、熱媒はバイパス流路30を介して循環し、集熱
は行わないが動力を発生する状態25を実現する。即ち
、熱媒を、ポンプ4、三方弁11b1バイパス流路30
、三方弁11a1蒸気発生器5、蓄熱槽3の経路で循環
させる。このときのポンプ4の熱媒循環量は定電圧発生
回路29の信号により決定される。蓄熱槽3の温度T、
かさらに下がり、設定下限温度TLよシ低くなると、比
較器20aの出力も@0”となるから、オア回路22の
出力もl Ojlとなり、ボ/プ4,8a、8bが停止
する。
On the other hand, the amount of solar radiation decreases, and the internal temperature T2 of the heat collector decreases
temperature T becomes lower (Tl > T2 ), and the heat storage tank temperature T1 is higher than the set lower limit temperature TL (Tl >
TL), the output of the comparator 20a is '1'' and the output of the comparator 20b is IOjl, so the AND circuit 21
The output of b becomes '1j', the three-way valves 11a and llb are switched, the heat medium is circulated through the bypass passage 30, and a state 25 is realized in which heat is not collected but power is generated. That is, the heat medium is transferred to the pump 4, the three-way valve 11b1, and the bypass channel 30.
, the three-way valve 11a1, the steam generator 5, and the heat storage tank 3. The amount of heat medium circulated by the pump 4 at this time is determined by the signal from the constant voltage generating circuit 29. Temperature T of heat storage tank 3,
When the temperature drops further and becomes lower than the set lower limit temperature TL, the output of the comparator 20a also becomes @0'', so the output of the OR circuit 22 also becomes lOjl, and the ports 4, 8a, and 8b stop.

本実施例によれば、日射量の多いときには、集熱器入口
側熱媒温度が低くとも、日射熱を動力に有効に変換でき
る。また、日射がなくなった後でも、蓄熱槽3に蓄えら
れた熱を集熱器よp失うこ(9) となく動力に変換できる。
According to this embodiment, when the amount of solar radiation is large, solar heat can be effectively converted into motive power even if the temperature of the heat medium at the collector inlet side is low. In addition, even after the solar radiation disappears, the heat stored in the heat storage tank 3 can be converted into power without losing it to the heat collector (9).

なお、実施例においては、太陽熱全熱源とする場合につ
いて示したが、廃熱等全熱源とする場合には、日射量に
該当する個所に#I源湿温度置換えれば該実施例を応用
できる。また、熱媒循環量の制御は、実施例のようなポ
ンプ回転数制御のみならず、熱媒循環ポンプ4に並列に
バイパス弁を設けてその弁開度を制御することによって
も行うことができる。さらに、動力発生手段としては、
ランキンサイクル以外に、冷凍機、プレートンサイクル
、スターリングサイクル等、他の動力発生装置も用いら
れる。
In addition, in the example, the case where the solar total heat source is used is shown, but when using the total heat source such as waste heat, the example can be applied by replacing #I source humidity temperature at the location corresponding to the amount of solar radiation. . Further, the amount of heat medium circulation can be controlled not only by controlling the pump rotation speed as in the embodiment, but also by providing a bypass valve in parallel with the heat medium circulation pump 4 and controlling the opening degree of the valve. . Furthermore, as a means of generating power,
In addition to the Rankine cycle, other power generating devices such as refrigerators, Platon cycles, Stirling cycles, etc. are also used.

以上述べたように、本発明においては、熱源、外界の熱
的状態および熱源入口側熱媒温度全それぞれ検出する検
出器を設け、前記熱源の状態と外気温度とから集熱ルー
プにおける熱源入口側熱媒温度の最適値の演算を行い、
核演算結果と熱源入口側熱媒温度の検出値と全比較して
その差温によりエクセルギ効率を最大とする熱媒循環量
を流すようにしたので、熱源における入熱量の増加に対
(10) して、直ちにエクセルギ効率最大の集熱条件を実現する
ことができる。
As described above, in the present invention, a detector is provided to detect the heat source, the thermal state of the outside world, and the temperature of the heat medium on the heat source inlet side, and the heat source inlet side in the heat collection loop is determined based on the state of the heat source and the outside air temperature. Calculate the optimal value of the heating medium temperature,
By comparing the nuclear calculation results and the detected value of the heating medium temperature at the heat source inlet side, we decided to flow the heating medium circulation amount that maximizes the exergy efficiency based on the temperature difference between them. As a result, heat collection conditions with maximum exergy efficiency can be immediately achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は太陽熱集熱器における集熱器入口側熱媒温度お
よび熱媒循環量とエクセルギ効率の関係を示す図、第2
図は本発明の一実施例の系統図、第3図は核実施例の制
御ブロック線図、第4図は該実施例に用いる電圧発生回
路の特性図である。 1・・・集熱器、2・・・ランキンサイクル、・3・・
・蓄熱槽、4・・・熱媒循環ポンプ、11・・・三方弁
、13・・・気温検出器、14・・・日射量検出器、1
5・・・蓄熱槽温度検出器、17・・・演算回路、19
・・・差温検出器、24・・・ポンプ励磁コイル、25
.26・・・三方弁動作制御部、27・・・電圧発生回
路、28・・・ポンプ回転数制御部、29・・・定電圧
発生回路。 C11) 第 1  (2) りJシ゛々ブ1イf@デ1町−豐ニ
Figure 1 is a diagram showing the relationship between the heat medium temperature at the collector inlet side and the amount of heat medium circulation in a solar heat collector, and the exergy efficiency.
FIG. 3 is a system diagram of an embodiment of the present invention, FIG. 3 is a control block diagram of the core embodiment, and FIG. 4 is a characteristic diagram of a voltage generating circuit used in the embodiment. 1... Heat collector, 2... Rankine cycle, 3...
- Heat storage tank, 4... Heat medium circulation pump, 11... Three-way valve, 13... Temperature detector, 14... Solar radiation amount detector, 1
5... Heat storage tank temperature detector, 17... Arithmetic circuit, 19
... Temperature difference detector, 24 ... Pump excitation coil, 25
.. 26... Three-way valve operation control section, 27... Voltage generation circuit, 28... Pump rotation speed control section, 29... Constant voltage generation circuit. C11) 1st (2) Ri J Sheb 1 If @ De 1 Town - Toyo Ni

Claims (1)

【特許請求の範囲】[Claims] 熱源および熱媒循環ポンプを備える集熱ルーズと、該乗
載ループで集熱された熱量を動力に変換する手段とから
なる動力発生装置において、熱源および外界の熱的状態
の検出器と、これらの検出器の検出信号に基づいて熱源
入口側熱媒温度の最適値を求める演算手段と、熱源入口
側熱媒温度検出器と、該検出器による熱源入口側熱媒温
度検出値と前記最適値との差温により、エクセルギ効率
が最大となるような熱媒循環量を熱源に流す手段とを備
えたこと全特徴とする動力発生装置。
A power generation device comprising a heat collecting loop equipped with a heat source and a heat medium circulation pump, and a means for converting the amount of heat collected in the riding loop into power, comprising: a detector for the thermal state of the heat source and the outside world; a calculation means for determining the optimum value of the heat medium temperature on the heat source inlet side based on the detection signal of the detector; a heat source inlet side heat medium temperature detector; a detected value of the heat source inlet side heat medium temperature by the detector and the optimum value; A power generating device characterized by comprising means for circulating a heat medium to a heat source such that the exergy efficiency is maximized due to the temperature difference between the heat source and the heat source.
JP6728482A 1982-04-23 1982-04-23 Motive power generator Pending JPS58185912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6728482A JPS58185912A (en) 1982-04-23 1982-04-23 Motive power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6728482A JPS58185912A (en) 1982-04-23 1982-04-23 Motive power generator

Publications (1)

Publication Number Publication Date
JPS58185912A true JPS58185912A (en) 1983-10-29

Family

ID=13340517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6728482A Pending JPS58185912A (en) 1982-04-23 1982-04-23 Motive power generator

Country Status (1)

Country Link
JP (1) JPS58185912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147577A (en) * 1984-01-13 1985-08-03 Toshiba Corp Power device
JPH0240061A (en) * 1988-07-30 1990-02-08 Aisin Seiki Co Ltd Output control method for stirling engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147577A (en) * 1984-01-13 1985-08-03 Toshiba Corp Power device
JPH0240061A (en) * 1988-07-30 1990-02-08 Aisin Seiki Co Ltd Output control method for stirling engine

Similar Documents

Publication Publication Date Title
JP5053922B2 (en) Waste heat utilization device for internal combustion engine
US4593527A (en) Power plant
JP2014120465A (en) Apparatus and method for controlling coolant temperature of fuel cell system
JPH04299099A (en) Stirling generator utilizing solar heat
JPH11313406A (en) Cooler for hybrid vehicle
JPH1155860A (en) Energy supply system
KR20160032172A (en) System for generating power from fuel cell waste heat
JPS58185912A (en) Motive power generator
JPH0721362B2 (en) Waste heat recovery power generator
JPS5921933A (en) Air conditioner
JPH0529013A (en) Fuel cell power generation system
JPH01144101A (en) Fuel cost minimum operation controller for co-generation plant
JPH0445739B2 (en)
JP2001323806A (en) Steam circulation system, and cogeneration system
JPH10266812A (en) Electric power control method of steam supply power generating gas turbine combined plant
JP2003031250A (en) Fuel cell power plant
JPS58185911A (en) Motive power generator
JPH08135411A (en) Control device of exhaust heat using power plant
JPH0518212A (en) Waste heat utilizing power generation control device
JPS58127046A (en) Method of controlling solar heat collector
JP2005005040A (en) Cooling control unit of fuel cell
JPS5845437A (en) Control system for solar-heat-utilizing absorption type refrigerating machine
JPS5911817B2 (en) Temperature control method for solar heat collector
CN114094138B (en) Pile cooling water system, fuel cell system and working method of pile cooling water system
JPH10184316A (en) Power generation control device utilizing exhaust heat