JPH034819B2 - - Google Patents

Info

Publication number
JPH034819B2
JPH034819B2 JP19560084A JP19560084A JPH034819B2 JP H034819 B2 JPH034819 B2 JP H034819B2 JP 19560084 A JP19560084 A JP 19560084A JP 19560084 A JP19560084 A JP 19560084A JP H034819 B2 JPH034819 B2 JP H034819B2
Authority
JP
Japan
Prior art keywords
temperature
target
compressor
heating capacity
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19560084A
Other languages
Japanese (ja)
Other versions
JPS6172960A (en
Inventor
Masafumi Satomura
Shozo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59195600A priority Critical patent/JPS6172960A/en
Priority to EP85104355A priority patent/EP0175836B1/en
Priority to EP88102744A priority patent/EP0330701A3/en
Priority to DE8585104355T priority patent/DE3568860D1/en
Publication of JPS6172960A publication Critical patent/JPS6172960A/en
Priority to US07/161,951 priority patent/US4901537A/en
Publication of JPH034819B2 publication Critical patent/JPH034819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は、太陽熱および空気熱を熱源とするヒ
ートポンプ式の集熱装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a heat pump type heat collecting device that uses solar heat and air heat as heat sources.

<従来技術> 従来、ヒートポンプを用いた太陽熱・空気熱を
熱源とする集熱装置において、圧縮機の容量制御
を行なう方法として、外気温を検知し外気温度が
高くなるに従い圧縮機の回転速度が低くなるよう
に制御する方法が考えられている。この方法は圧
縮機の消費電力を低減して装置の成積係数を向上
する目的では有効であるが、加温能力が外気条件
に左右されるために目標沸き上げ温度に達しない
ことや、湯の使用量が多くなる夕方になつても沸
き上げが完了していないということが起こる場合
が考えられ、湯の利用の面からみて不都合であつ
た。
<Prior art> Conventionally, in a heat collecting device using solar heat or air heat as a heat source using a heat pump, a method for controlling the compressor capacity is to detect the outside temperature and increase the rotation speed of the compressor as the outside temperature increases. Methods are being considered to control this so that it becomes lower. This method is effective for reducing the power consumption of the compressor and improving the build-up coefficient of the equipment, but since the heating capacity is affected by outside air conditions, it may not reach the target boiling temperature, or the hot water may not reach the target boiling temperature. Even in the evening, when the amount of hot water used is high, there may be cases where the boiling water is not completed, which is inconvenient from the point of view of hot water usage.

<目的> 本発明は、上記に鑑み、目標沸き上げ時刻には
確実に目標沸き上げ温度の湯が利用できるように
した太陽熱・空気熱集熱装置の提供を目的とした
ものである。
<Purpose> In view of the above, the present invention aims to provide a solar heat/air heat collector that can reliably use hot water at a target boiling temperature at a target boiling time.

<実施例> 以下、本発明の一実施例を第1,2図に基いて
説明すると、これは、熱媒を圧縮して吐出する圧
縮機1と、該圧縮機の吐出側に接続された凝縮器
2と、一側が絞り装置3を介して前記凝縮器2に
接続され他側が前記圧縮機1に接続された集熱器
4とから集熱回路5が構成され、使用流体を貯え
る貯湯槽6と、該貯湯槽6外で循環ポンプ7を介
して配され前記凝縮器2と熱交換関係にある使用
流体加熱器8とが互に接続されて流体熱回路9が
構成された集熱装置において、前記圧縮機1は容
量可変形とされ、前記流体加熱器8の入口に第一
温度検出器11が設けられると共に該流体加熱器
8の出口に第二温度検出器12が設けられ、前記
貯湯槽6内の運転開始時の流体の温度を検出する
複数の第三温度検出器15が設けられ、該第一、
第二、第三温度検出器11,12,15の出力信
号により前記圧縮機1の容量を制御する制御回路
13が設けられ、制御回路13は、該該第三温度
検出器15の出力信号から運転開始時の貯湯槽内
の流体温度を検出し、該検出温度と目標沸き上げ
温度との差温と、運転開始時から目標沸き上げ時
刻までの集熱運転時間とから目標加温能力を演算
し、また前記第一、第二温度検出器11,12に
より検出された温度から集熱回路5の加温能力を
算出し該加温能力が前記目標加温能力となるよう
に前記圧縮機1に容量制御信号を出力するよう構
成されたものである。
<Example> An example of the present invention will be described below with reference to FIGS. 1 and 2. This includes a compressor 1 that compresses and discharges a heat medium, and a compressor connected to the discharge side of the compressor. A heat collection circuit 5 is constituted by a condenser 2 and a heat collector 4 whose one side is connected to the condenser 2 via a throttle device 3 and the other side is connected to the compressor 1, and is a hot water storage tank for storing the fluid to be used. 6 and a working fluid heater 8 arranged outside the hot water storage tank 6 via a circulation pump 7 and having a heat exchange relationship with the condenser 2 are connected to each other to form a fluid heat circuit 9. In the compressor 1, the capacity is variable, a first temperature detector 11 is provided at the inlet of the fluid heater 8, and a second temperature sensor 12 is provided at the outlet of the fluid heater 8. A plurality of third temperature detectors 15 are provided for detecting the temperature of the fluid in the hot water storage tank 6 at the start of operation, and the first,
A control circuit 13 is provided that controls the capacity of the compressor 1 based on the output signals of the second and third temperature detectors 11, 12, and 15. Detects the fluid temperature in the hot water storage tank at the start of operation, and calculates the target heating capacity from the temperature difference between the detected temperature and the target boiling temperature, and the heat collection operation time from the start of operation to the target boiling time. In addition, the heating capacity of the heat collecting circuit 5 is calculated from the temperatures detected by the first and second temperature detectors 11 and 12, and the heating capacity of the compressor 1 is adjusted so that the heating capacity becomes the target heating capacity. It is configured to output a capacity control signal to the

第1図において、前記集熱器4は、黒色塗装さ
れたフインを装着したパイプから構成され、太陽
熱及び空気熱を集熱可能とされている。また前記
圧縮機1は、周波数変換回路14により回転数可
変とされる。また前記絞り装置3としてステツピ
ングモータで駆動される膨張弁が用いられる。該
膨張弁3は集熱器4の出入口に設置された温度セ
ンサー(図示せず)により集熱器4での集熱が最
適条件で行なわれる様に熱媒の流量を制御してい
る。一方、流体加熱回路9は、貯湯槽6、循環ポ
ンプ7、流体加熱器8、貯湯槽6が順次接続され
て成る。そして前記凝縮器2と流体加熱器8は熱
交換関係に保持されており、例えば二重管構造熱
交換器10をなしている。そして前記制御回路1
3は、目標沸き上げ温度を設定するための目標沸
き上げ温度設定手段20aと、目標沸き上げ時刻
を設定するための目標沸き上げ時刻設定手段20
bとを有する設定器13Bと、前記第三温度検出
器15からの運転開始時貯湯槽内の流体温度と目
標沸き上げ温度設定手段20aからの目標沸き上
げ温度との差により加温負荷を演算する加温負荷
演算手段21aと、運転開始時刻と前記目標沸き
上げ時刻設定手段20bからの目標沸き上げ時刻
との差である集熱運転時間と、加温負荷演算手段
21aからの加温負荷とにより、運転開始時の目
標加温能力を算出する運転開始時目標加温能力算
出手段21bと、前記第一温度検出器11及び第
二温度検出器12からの検出温度差から加温能力
を算出する加温能力算出手段21cと、前記目標
加温能力算出手段21bからの目標加温能力と加
温能力演算手段21cからの加温能力とを比較演
算する比較演算手段21dとを有する主制御回路
13Aと、該主制御回路13Aの比較演算手段2
1dからの出力信号に基づき、目標加温能力より
も加温能力が大のときに圧縮機の回転数を下げ、
目標加温能力よりも加温能力が小のときに圧縮機
の回転数を上げるよう、前記圧縮機1に運転周波
信号を出力する周波数変換回路14とから構成さ
れている。
In FIG. 1, the heat collector 4 is composed of a pipe equipped with black-painted fins, and is capable of collecting solar heat and air heat. Further, the compressor 1 has a variable rotation speed by a frequency conversion circuit 14. Further, as the throttle device 3, an expansion valve driven by a stepping motor is used. The expansion valve 3 controls the flow rate of the heat medium using a temperature sensor (not shown) installed at the entrance and exit of the heat collector 4 so that the heat collection in the heat collector 4 is performed under optimal conditions. On the other hand, the fluid heating circuit 9 is formed by sequentially connecting a hot water tank 6, a circulation pump 7, a fluid heater 8, and a hot water storage tank 6. The condenser 2 and the fluid heater 8 are held in a heat exchange relationship, forming, for example, a double tube heat exchanger 10. and the control circuit 1
3 is a target boiling temperature setting means 20a for setting a target boiling temperature, and a target boiling time setting means 20 for setting a target boiling time.
The heating load is calculated based on the difference between the fluid temperature in the hot water storage tank at the start of operation from the third temperature detector 15 and the target boiling temperature from the target boiling temperature setting means 20a. heating load calculation means 21a, a heat collection operation time which is the difference between the operation start time and the target boiling time from the target boiling time setting means 20b, and a heating load from the heating load calculation means 21a. The operation start target heating capacity calculation means 21b calculates the target heating capacity at the start of operation, and the heating capacity is calculated from the detected temperature difference from the first temperature detector 11 and the second temperature detector 12. A main control circuit comprising a heating capacity calculation means 21c for calculating the target heating capacity, and a comparison calculation means 21d for comparing and calculating the target heating capacity from the target heating capacity calculation means 21b and the heating capacity from the heating capacity calculation means 21c. 13A and the comparison calculation means 2 of the main control circuit 13A.
Based on the output signal from 1d, the rotation speed of the compressor is lowered when the heating capacity is greater than the target heating capacity,
It is comprised of a frequency conversion circuit 14 that outputs an operating frequency signal to the compressor 1 so as to increase the rotation speed of the compressor when the heating capacity is smaller than the target heating capacity.

前記主制御回路13Aは、例えば、一般的なワ
ンチツプマイクロコンピユータで、内部にデータ
RAM、プログラムROM、ALU等を有し、クロ
ツク発振回路により駆動されるものである。ま
た、前記周波数変換回路14は、例えばインバー
タ回路で、圧縮機用電動機の三相交流電源周波数
を変換する信号を出力するものである。また、前
記温度検出器11,12,15は、例えばサーミ
スタが使用され、該サーミスタで検出される温度
変化による電圧降下はデジタル値に変換されて主
制御回路13Aに入力される。
The main control circuit 13A is, for example, a general one-chip microcomputer that stores data internally.
It has RAM, program ROM, ALU, etc., and is driven by a clock oscillation circuit. Further, the frequency conversion circuit 14 is, for example, an inverter circuit, and outputs a signal for converting the three-phase AC power frequency of the compressor motor. Further, the temperature detectors 11, 12, and 15 are, for example, thermistors, and the voltage drop detected by the thermistors due to temperature changes is converted into a digital value and input to the main control circuit 13A.

なお、目標加温能力は次のように決定できる。
すなわち、目標とする加温能力は、運転開始時の
貯湯槽内の流体温度(水温)と目標沸き上げ温度
の差と貯湯槽容量から計算できる加温負荷と、運
転開始時刻と目標沸き上げ時刻の差である集熱運
転時間から計算する。
Note that the target heating capacity can be determined as follows.
In other words, the target heating capacity is determined by the difference between the fluid temperature (water temperature) in the hot water tank at the start of operation and the target boiling temperature, the heating load that can be calculated from the hot water tank capacity, the start time of operation, and the target boiling time. Calculated from the heat collection operation time, which is the difference between

加温負荷=(目標沸き上げ温度−運転開始時貯
湯槽内の流体温度) ×貯湯槽容量 目標加温能力=加温負荷/集熱運転時間 次に集熱作用を説明する。圧縮機1で圧縮され
た高温高圧の熱媒ガスは、凝縮器2に流入し、熱
交換関係にある流体加熱器8を流れる流体(水)
と熱交換して凝縮液化し膨張弁3に至り、膨張弁
3を通過する際に断熱膨張して減圧され、低温低
圧の未蒸発熱媒となる。熱媒は次に集熱器4へ流
入して太陽熱・空気熱を吸熱してガス化し、再び
圧縮機1に入り上記サイクルを繰返す。一方貯湯
槽6内の水は循環ポンプ7により流体加熱器8へ
送られ加熱昇温されて貯湯槽6へ流入する。
Heating load = (Target boiling temperature - Fluid temperature in the hot water storage tank at the start of operation) × Hot water storage tank capacity Target heating capacity = Heating load / Heat collection operation time Next, the heat collection action will be explained. The high-temperature, high-pressure heating medium gas compressed by the compressor 1 flows into the condenser 2, and fluid (water) flows through the fluid heater 8 in a heat exchange relationship.
It exchanges heat, condenses and liquefies, and reaches the expansion valve 3. When passing through the expansion valve 3, it expands adiabatically and is depressurized, becoming a low-temperature, low-pressure unevaporated heat medium. The heat medium then flows into the heat collector 4, absorbs solar heat and air heat, is gasified, and enters the compressor 1 again to repeat the above cycle. On the other hand, the water in the hot water storage tank 6 is sent to the fluid heater 8 by the circulation pump 7, heated and heated, and then flows into the hot water storage tank 6.

このとき、流体加熱器8の入口・出口の温度は
第一、第二温度検出器11,12から主制御回路
13Aに入力されており、主制御回路13Aで
は、それらの差温とあらかじめ一定に設定された
水流量を用いて加温能力が常に検知されている。
そして第三温度検出器15により検知される運転
開始時の貯湯槽内の流体温度と目標沸き上げ温度
との差温と、運転開始時から目標沸き上げ時刻ま
での集熱運転時間とから制御回路13にて上述の
方法で目標加温能力を演算して主制御回路13A
に記憶する。
At this time, the temperatures at the inlet and outlet of the fluid heater 8 are input to the main control circuit 13A from the first and second temperature detectors 11 and 12, and in the main control circuit 13A, the temperatures at the inlet and outlet of the fluid heater 8 are adjusted to a constant temperature in advance. The heating capacity is constantly detected using the set water flow rate.
Then, the control circuit is based on the temperature difference between the fluid temperature in the hot water storage tank at the start of operation and the target boiling temperature detected by the third temperature detector 15, and the heat collection operation time from the start of operation to the target boiling time. 13, the target heating capacity is calculated using the method described above, and the main control circuit 13A is
to be memorized.

そして主制御回路13Aに記憶されている目標
加温能力になるように外気条件の変化に応じて圧
縮機1の回転数を制御する。
Then, the rotation speed of the compressor 1 is controlled according to changes in outside air conditions so as to achieve the target heating capacity stored in the main control circuit 13A.

この制御を第2図に基づいて詳述すると、加温
能力>目標加温能力(加温負荷/集熱運転時間)
であると、目標沸き上げ時刻までに貯湯槽6内の
流体温度が目標沸き上げ温度に達してしまうの
で、圧縮機1の回転数を下げて目標沸き上げ時刻
に目標沸き上げ温度となるよう制御する。また、
加温能力<目標加温能力であると、目標沸き上げ
時刻までに貯湯槽6内の流体温度が目標沸き上げ
温度に達しないので、圧縮機1の回転数を上げて
目標沸き上げ時刻に目標沸き上げ温度となるよう
制御する。
To explain this control in detail based on Figure 2, heating capacity>target heating capacity (heating load/heat collection operation time)
In this case, the fluid temperature in the hot water storage tank 6 will reach the target boiling temperature by the target boiling time, so the rotation speed of the compressor 1 is lowered and control is performed so that the target boiling temperature is reached at the target boiling time. do. Also,
If heating capacity < target heating capacity, the fluid temperature in the hot water storage tank 6 will not reach the target boiling temperature by the target boiling time, so the rotation speed of the compressor 1 will be increased to reach the target temperature at the target boiling time. Control the boiling temperature.

即ち、日射・外気温等が高くなり、集熱器4で
の集熱量が増加すれば、圧縮機1のの回転数を落
して圧縮機1の仕事量つまり消費電力を小さくし
て高い成績係数で運転する。また日射・外気温等
が低くなれば圧縮機1の回転数を上げて圧縮機1
の仕事量を増し、目標加温能力が得られるように
運転する。
In other words, if the amount of heat collected by the heat collector 4 increases due to the increase in solar radiation, outside temperature, etc., the rotation speed of the compressor 1 will be lowered to reduce the amount of work of the compressor 1, that is, the power consumption, thereby achieving a high coefficient of performance. drive with Also, if the sunlight, outside temperature, etc. become low, the rotation speed of compressor 1 will be increased to
Increase the amount of work done and operate to achieve the target heating capacity.

したがつて、目標沸き上げ時刻には確実に目標
沸き上げ温度の湯が利用でき、また日射・外気温
等が高いときは、目標加温能力を小さくして圧縮
機への負担を小さくできるので、経済的な運転が
可能となる。
Therefore, hot water at the target boiling temperature can be reliably used at the target boiling time, and when the sunlight or outside temperature is high, the target heating capacity can be reduced to reduce the load on the compressor. , economical operation becomes possible.

<効 果> 以上の説明から明らかな通り、本発明は、熱媒
を圧縮して吐出する圧縮機と、該圧縮機の吐出側
に接続された凝縮器と、一側が絞り装置を介して
前記凝縮器に接続され他側が前記圧縮機に接続さ
れた集熱器とから集熱回路が構成され、使用流体
を貯える貯湯槽と、該貯湯槽外で前記凝縮器と熱
交換関係にある使用流体加熱器とが互に接続され
て流体加熱回路が構成された集熱装置において、
前記圧縮機は容量可変形とされ、前記流体加熱器
の入口に第一温度検出器が設けられると共に該流
体加熱器の出口に第二温度検出器が設けられ、前
記貯湯槽内の流体の温度を検出する第三温度検出
器が設けられ、該第一、第二、第三温度検出器の
出力信号により前記圧縮機の容量を制御する制御
回路が設けられ、該制御回路は、目標沸き上げ温
度を設定するための目標沸き上げ温度設定手段
と、目標沸き上げ時刻を設定するための目標沸き
上げ時刻設定手段と、前記第三温度検出器からの
運転開始時貯湯槽内の流体温度と目標沸き上げ温
度設定手段からの目標沸き上げ温度との差により
加温負荷を演算する加温負荷演算手段と、運転開
始時刻と前記目標沸き上げ時刻設定手段からの目
標沸き上げ時刻との差である集熱運転時間と、加
温負荷演算手段からの加温負荷とにより、運転開
始時の目標加温能力を算出する運転開始時目標加
温能力算出手段と、前記第一温度検出器及び第二
温度検出器からの検出温度差から加温能力を算出
する加温能力算出手段と、前記目標加温能力算出
手段からの目標加温能力と加温能力演算手段から
の加温能力とを比較演算する比較演算手段と、該
比較演算手段からの出力信号に基づき、目標加温
能力よりも加温能力が大のときに圧縮機の回転数
を下げ、目標加温能力よりも加温能力が小のとき
に圧縮機の回転数を上げるよう、前記圧縮機に運
転周波数信号を出力する周波数変換回路とから構
成されたものである。
<Effects> As is clear from the above description, the present invention includes a compressor that compresses and discharges a heat medium, a condenser connected to the discharge side of the compressor, and one side of which compresses and discharges the heat medium through a throttle device. A heat collection circuit is constituted by a heat collector connected to a condenser and the other side connected to the compressor, a hot water storage tank for storing a working fluid, and a working fluid that is in a heat exchange relationship with the condenser outside the hot water storage tank. In a heat collection device in which a fluid heating circuit is configured by connecting heaters to each other,
The compressor is of a variable capacity type, and a first temperature sensor is provided at the inlet of the fluid heater, and a second temperature sensor is provided at the outlet of the fluid heater, and the temperature of the fluid in the hot water storage tank is determined by the compressor. A third temperature detector is provided to detect the target boiling temperature, and a control circuit is provided to control the capacity of the compressor based on the output signals of the first, second, and third temperature detectors. target boiling temperature setting means for setting the temperature; target boiling time setting means for setting the target boiling time; and the fluid temperature in the hot water storage tank at the start of operation and the target from the third temperature detector. heating load calculation means that calculates the heating load based on the difference between the target boiling temperature from the boiling temperature setting means, and the difference between the operation start time and the target boiling time from the target boiling time setting means. operation start target heating capacity calculation means for calculating a target heating capacity at the start of operation based on the heat collection operation time and the heating load from the heating load calculation means; and the first temperature detector and the second temperature detector. A heating capacity calculation means that calculates the heating capacity from the temperature difference detected by the temperature detector, and a comparison calculation between the target heating capacity from the target heating capacity calculation means and the heating capacity from the heating capacity calculation means. Based on the output signal from the comparison calculation means, the rotation speed of the compressor is lowered when the heating capacity is larger than the target heating capacity, and the rotation speed of the compressor is lowered when the heating capacity is smaller than the target heating capacity. and a frequency conversion circuit that outputs an operating frequency signal to the compressor so as to increase the rotational speed of the compressor when .

従つて本発明によると、第三温度検出器により
貯湯槽内の運転開始時の流体温度が検知でき、こ
の検出温度と目標沸き上げ温度との差温とから加
温負荷を演算し、この加温負荷と運転開始時から
目標沸き上げ時刻までの集熱運転時間とから目標
加温能力を検出し、第一、第二温度検出器からの
検出温度差によつて加温能力を検出し、目標加温
能力と加温能力とを比較して圧縮機を運転制御で
きるので、ほぼ毎日目標沸き上げ温度の湯が目標
沸き上げ時刻に得られ、また日射・外気温等が高
いときは、目標加温能力を小さくして圧縮機への
負担を小さくできるので、経済的な運転が可能と
なる。
Therefore, according to the present invention, the fluid temperature in the hot water storage tank at the start of operation can be detected by the third temperature detector, and the heating load is calculated from the difference between this detected temperature and the target boiling temperature, and the heating load is calculated from the temperature difference between this detected temperature and the target boiling temperature. The target heating capacity is detected from the temperature load and the heat collection operation time from the start of operation to the target boiling time, and the heating capacity is detected from the detected temperature difference from the first and second temperature detectors, The compressor operation can be controlled by comparing the target heating capacity with the heating capacity, so hot water at the target boiling temperature can be obtained almost every day at the target boiling time, and when the solar radiation and outside temperature are high, the compressor operation can be controlled by comparing the target heating capacity with the heating capacity. Since the heating capacity can be reduced and the load on the compressor can be reduced, economical operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す太陽熱・空気
熱集熱装置の構成図、第2図は同制御フローチヤ
ート、第3図は同機能ブロツク図である。 1:圧縮機、2:凝縮器、3:絞り装置、4:
集熱器、5:集熱回路、6:貯湯槽、7:循環ポ
ンプ、8:加熱器、9:加熱回路、10:熱交換
器、11,12:温度検出器、13:制御回路、
13A:設定器、13B:主制御回路、14:周
波数変換回路、15:第三温度検出器、20a:
目標沸き上げ温度設定手段、20b:目標沸き上
げ時刻設定手段、21a:加温負荷演算手段、2
1b:運転開始時目標加温能力算出手段、21
c:加温能力算出手段、21d:比較演算手段。
FIG. 1 is a block diagram of a solar/air heat collector showing an embodiment of the present invention, FIG. 2 is a control flowchart of the same, and FIG. 3 is a functional block diagram of the same. 1: Compressor, 2: Condenser, 3: Squeezing device, 4:
Heat collector, 5: Heat collection circuit, 6: Hot water storage tank, 7: Circulation pump, 8: Heater, 9: Heating circuit, 10: Heat exchanger, 11, 12: Temperature detector, 13: Control circuit,
13A: Setting device, 13B: Main control circuit, 14: Frequency conversion circuit, 15: Third temperature detector, 20a:
Target boiling temperature setting means, 20b: Target boiling time setting means, 21a: Heating load calculation means, 2
1b: Target heating capacity calculation means at the start of operation, 21
c: heating capacity calculation means, 21d: comparison calculation means.

Claims (1)

【特許請求の範囲】 1 熱媒を圧縮して吐出する圧縮機と、 該圧縮機の吐出側に接続された凝縮器と、 一側が絞り装置を介して前記凝縮器に接続され
他側が前記圧縮機に接続された集熱器とから集熱
回路が構成され、 使用流体を貯える貯湯槽と、 該貯湯槽外で前記凝縮器と熱交換関係にある使
用流体加熱器とが互に接続されて流体加熱回路が
構成された集熱装置において、 前記圧縮機は容量可変形とされ、 前記流体加熱器の入口に第一温度検出器が設け
られると共に該流体加熱器の出口に第二温度検出
器が設けられ、 前記貯湯槽内の流体の温度を検出する第三温度
検出器が設けられ、 該第一、第二、第三温度検出器の出力信号によ
り前記圧縮機の容量を制御する制御回路が設けら
れ、 該制御回路は、 目標沸き上げ温度を設定するための目標沸き上
げ温度設定手段と、 目標沸き上げ時刻を設定するための目標沸き上
げ時刻設定手段と、 前記第三温度検出器からの運転開始時貯湯槽内
の流体温度と目標沸き上げ温度設定手段からの目
標沸き上げ温度との差により加温負荷を演算する
加温負荷演算手段と、 運転開始時刻と前記目標沸き上げ時刻設定手段
からの目標沸き上げ時刻との差である集熱運転時
間と、加温負荷演算手段からの加温負荷とによ
り、運転開始時の目標加温能力を算出する運転開
始時目標加温能力算出手段と、 前記第一温度検出器及び第二温度検出器からの
検出温度差から加温能力を算出する加温能力算出
手段と、 前記目標加温能力算出手段からの目標加温能力
と加温能力演算手段からの加温能力とを比較演算
する比較演算手段と、 比較演算手段からの出力信号に基づき、目標加
温能力よりも加温能力が大のときに圧縮機の回転
数を下げ、目標加温能力よりも加温能力が小のと
きに圧縮機の回転数を上げるよう、前記圧縮機に
運転周波数信号を出力する周波数変換回路とから
構成されたことを特徴とする集熱装置。
[Claims] 1. A compressor that compresses and discharges a heat medium, a condenser connected to the discharge side of the compressor, one side connected to the condenser via a throttle device, and the other side connected to the compressor. A heat collection circuit is constituted by a heat collector connected to the machine, and a hot water storage tank that stores the working fluid and a working fluid heater that is in a heat exchange relationship with the condenser outside the hot water storage tank are connected to each other. In the heat collection device configured with a fluid heating circuit, the compressor is of a variable capacity type, and a first temperature sensor is provided at the inlet of the fluid heater, and a second temperature sensor is provided at the outlet of the fluid heater. a third temperature detector for detecting the temperature of the fluid in the hot water storage tank; and a control circuit for controlling the capacity of the compressor based on the output signals of the first, second, and third temperature detectors. The control circuit includes: target boiling temperature setting means for setting a target boiling temperature; target boiling time setting means for setting a target boiling time; and from the third temperature detector. heating load calculation means for calculating a heating load based on the difference between the fluid temperature in the hot water storage tank at the start of operation and the target boiling temperature from the target boiling temperature setting means; and the operation start time and the target boiling time setting. Target heating capacity calculation at the start of operation to calculate the target heating capacity at the start of operation based on the heat collection operation time which is the difference from the target boiling time from the means and the heating load from the heating load calculation means means, heating capacity calculation means for calculating heating capacity from the detected temperature difference from the first temperature detector and the second temperature detector; and target heating capacity and heating from the target heating capacity calculation means. Comparison calculation means for comparing the heating capacity from the capacity calculation means; and based on the output signal from the comparison calculation means, when the heating capacity is greater than the target heating capacity, the rotation speed of the compressor is reduced; A heat collection device comprising: a frequency conversion circuit that outputs an operating frequency signal to the compressor so as to increase the rotation speed of the compressor when the heating capacity is smaller than the target heating capacity.
JP59195600A 1984-09-18 1984-09-18 Heat collecting device Granted JPS6172960A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59195600A JPS6172960A (en) 1984-09-18 1984-09-18 Heat collecting device
EP85104355A EP0175836B1 (en) 1984-09-18 1985-04-10 Solar heat collector system
EP88102744A EP0330701A3 (en) 1984-09-18 1985-04-10 Heat collector
DE8585104355T DE3568860D1 (en) 1984-09-18 1985-04-10 Solar heat collector system
US07/161,951 US4901537A (en) 1984-09-18 1988-02-29 Solar heat collector system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195600A JPS6172960A (en) 1984-09-18 1984-09-18 Heat collecting device

Publications (2)

Publication Number Publication Date
JPS6172960A JPS6172960A (en) 1986-04-15
JPH034819B2 true JPH034819B2 (en) 1991-01-24

Family

ID=16343846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195600A Granted JPS6172960A (en) 1984-09-18 1984-09-18 Heat collecting device

Country Status (1)

Country Link
JP (1) JPS6172960A (en)

Also Published As

Publication number Publication date
JPS6172960A (en) 1986-04-15

Similar Documents

Publication Publication Date Title
Huang et al. Performance test of solar-assisted ejector cooling system
JP3855695B2 (en) Heat pump water heater
JPH034820B2 (en)
JPH08338207A (en) Exhaust heat recovery device
JPH034819B2 (en)
JPH0445739B2 (en)
JPH1019375A (en) Heat pump type bath hot water heating system
JPH034818B2 (en)
JPS6155553A (en) Hot water supplying device utilizing solar heat
JPS6172962A (en) Solar heat collecting device
JPS5952159A (en) Heat collecting device
JP2950474B1 (en) Solar powered refrigerator
JPH0686959B2 (en) Heat pump solar collector
JPS61173055A (en) Solar heat collecting unit
JPS58205053A (en) Hot-water supplying machine utilizing solar heat
JPS60233453A (en) Solar heat collector
JPS5845437A (en) Control system for solar-heat-utilizing absorption type refrigerating machine
JPS60155861A (en) Heat collector utilizing solar heat
JPS58127046A (en) Method of controlling solar heat collector
JPS61246553A (en) Solar-heat utilizing heat collector
JPS58198651A (en) Solar heat utilizing hot-water supplying machine
JPS589736Y2 (en) solar heat collector
CN2802360Y (en) High-efficiency heat pump water heater of quickly direct hot water discharging
JPS6066056A (en) Heat collecting device utilizing solar heat
JPS58110951A (en) Hot-water supplying apparatus