JPH034818B2 - - Google Patents

Info

Publication number
JPH034818B2
JPH034818B2 JP19559984A JP19559984A JPH034818B2 JP H034818 B2 JPH034818 B2 JP H034818B2 JP 19559984 A JP19559984 A JP 19559984A JP 19559984 A JP19559984 A JP 19559984A JP H034818 B2 JPH034818 B2 JP H034818B2
Authority
JP
Japan
Prior art keywords
compressor
heating capacity
temperature
heat
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19559984A
Other languages
Japanese (ja)
Other versions
JPS6172959A (en
Inventor
Masafumi Satomura
Masaharu Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59195599A priority Critical patent/JPS6172959A/en
Priority to DE8585104355T priority patent/DE3568860D1/en
Priority to EP85104355A priority patent/EP0175836B1/en
Priority to EP88102744A priority patent/EP0330701A3/en
Publication of JPS6172959A publication Critical patent/JPS6172959A/en
Priority to US07/161,951 priority patent/US4901537A/en
Publication of JPH034818B2 publication Critical patent/JPH034818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

【発明の詳細な説明】 <技術分野> 本発明は、太陽熱および空気熱を熱源とするヒ
ートポンプ式の集熱装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a heat pump type heat collecting device that uses solar heat and air heat as heat sources.

<従来技術> 従来、ヒートポンプを用いた太陽熱・空気熱を
熱源とする集熱装置において、圧縮機の容量制御
を行なう方法として、外気温を検知し外気温度が
高くなるに従い圧縮機の回転速度が低くなるよう
に制御する方法が考えられている。この方法は圧
縮機の消費電力を低減して装置の成積係数を向上
する目的では有効であるが、加温能力が外気条件
に左右されるため、特に冬場には供給流体の温度
(市水温度)が低いにもかかわらず外気温が高け
れば圧縮機の回転速度が低くなり、能力不足のた
め目標沸き上げ温度に達しない場合が考えられ、
湯の利用の面からみて不都合であつた。
<Prior art> Conventionally, in a heat collecting device using solar heat or air heat as a heat source using a heat pump, a method for controlling the compressor capacity is to detect the outside temperature and increase the rotation speed of the compressor as the outside temperature increases. Methods are being considered to control this so that it becomes lower. This method is effective for reducing the power consumption of the compressor and improving the equipment's bulk coefficient, but since the heating capacity is affected by outside air conditions, especially in winter, the temperature of the supplied fluid (city water If the outside temperature is high even though the temperature is low, the rotation speed of the compressor will be low, and the target boiling temperature may not be reached due to insufficient capacity.
This was inconvenient in terms of access to hot water.

<目 的> 本発明は、上記に鑑み、加温能力が目標加温能
力となるように圧縮機の容量制御を行ない、加温
能力の不足を防止することのできる太陽熱・空気
熱集熱装置の提供を目的としたものである。
<Purpose> In view of the above, the present invention provides a solar heat/air heat collector capable of controlling the capacity of a compressor so that the heating capacity reaches a target heating capacity, thereby preventing a lack of heating capacity. The purpose is to provide

<実施例> 以下、本発明の一実施例を第1,2図に基いて
説明すると、これは、熱媒を圧縮して吐出する圧
縮機1と、該圧縮機の吐出側に接続された凝縮器
2と、一側が絞り装置3を介して前記凝縮器2に
接続され他側が前記圧縮機1に接続された集熱器
4とから集熱回路5が構成され、使用流体を貯え
る貯湯槽6と、該貯湯槽6外で循環ポンプ7を介
して配され前記凝縮器2と熱交換関係にある使用
流体加熱器8とが互に接続されて流体熱回路9が
構成された集熱装置において、前記圧縮機1は容
量可変形とされ、前記流体加熱器8の入口に第一
温度検出器11が設けられると共に該流体熱器8
の出口に第二温度検出器12が設けられ、外気温
あるいは貯湯槽6への供給流体の温度を検出する
第三温度検出器15が設けられ、該第一、第二、
第三温度検出器11,12,15の出力信号によ
り前記圧縮機1の容量を制御する制御回路13が
設けられ、該制御回路13は、前記第三温度検出
器15により検出された温度から季節に応じた目
標加温能力を決定する目標加加温能力決定手段2
0aと、前記第一温度検出器11及び第二温度検
出器12からの検出温度差から集熱回路5の加温
能力を算出する加温能力算出手段20bと、前記
目標加温能力決定手段20aからの目標加温能力
と加温能力算出手段20bからの加温能力とを比
較演算する比較演算手段20cと、該比較演算手
段20cからの出力信号に基づき、目標加温能力
よりも加温能力が大のときに圧縮機1の運転周波
数を下げ、目標加温能力よりも加温能力が小のと
きに圧縮機1の運転周波数を上げるよう、前記圧
縮機1に運転周波数信号を出力する周波数変換回
路14とから構成されたものである。
<Example> An example of the present invention will be described below with reference to FIGS. 1 and 2. This includes a compressor 1 that compresses and discharges a heat medium, and a compressor connected to the discharge side of the compressor. A heat collection circuit 5 is constituted by a condenser 2 and a heat collector 4 whose one side is connected to the condenser 2 via a throttle device 3 and the other side is connected to the compressor 1, and is a hot water storage tank for storing the fluid to be used. 6 and a working fluid heater 8 arranged outside the hot water storage tank 6 via a circulation pump 7 and having a heat exchange relationship with the condenser 2 are connected to each other to form a fluid heat circuit 9. , the compressor 1 is of variable capacity type, and a first temperature detector 11 is provided at the inlet of the fluid heater 8.
A second temperature sensor 12 is provided at the outlet of the hot water tank 6, and a third temperature sensor 15 is provided for detecting the outside temperature or the temperature of the fluid supplied to the hot water tank 6.
A control circuit 13 is provided that controls the capacity of the compressor 1 based on the output signals of the third temperature detectors 11, 12, and 15. Target heating capacity determining means 2 for determining target heating capacity according to
0a, a heating capacity calculation means 20b for calculating the heating capacity of the heat collecting circuit 5 from the temperature difference detected from the first temperature detector 11 and the second temperature detector 12, and the target heating capacity determination means 20a. Comparison calculation means 20c compares and calculates the heating capacity from the heating capacity calculation means 20b with the target heating capacity from the heating capacity calculation means 20b, and based on the output signal from the comparison calculation means 20c, the heating capacity is higher than the target heating capacity. A frequency at which an operating frequency signal is output to the compressor 1 so that the operating frequency of the compressor 1 is lowered when the heating capacity is larger than the target heating capacity, and the operating frequency of the compressor 1 is increased when the heating capacity is smaller than the target heating capacity. It is composed of a conversion circuit 14.

第1図において、前記集熱器4は、黒色塗装さ
れたフインを装着したパイプから構成され、太陽
熱及び空気熱を集熱可能とされている。また前記
圧縮機1は、周波数変換回路14により回転数可
変とされる。また前記絞り装置3としてステツピ
ングモータで駆動される膨張弁が用いられる。該
膨張弁3は集熱器4の出入口に設置された温度セ
ンサー(図示せず)により集熱器4での集熱が最
適条件で行なわれる様に熱媒の流量を制御してい
る。一方、流体加熱回路9は、貯湯槽6、循環ポ
ンプ7、流体加熱器8、貯湯槽6が順次接続され
て成る。そして前記凝縮器2と流体加熱器8は熱
交換関係に保持されており、例えば二重管構造熱
交換器10をなしている。そして前記制御回路1
3は、前記第一、第二温度検出器11,12から
の検出温度差から加温能力を算出し目標加温能力
に応じて制御信号を出力する主制御回路13A
と、該主制御回路13Aの出力信号に基いて前記
圧縮機1に運転周波数信号を出力する周波数変換
回路14とから構成される。
In FIG. 1, the heat collector 4 is composed of a pipe equipped with black-painted fins, and is capable of collecting solar heat and air heat. Further, the compressor 1 has a variable rotation speed by a frequency conversion circuit 14. Further, as the throttle device 3, an expansion valve driven by a stepping motor is used. The expansion valve 3 controls the flow rate of the heat medium using a temperature sensor (not shown) installed at the entrance and exit of the heat collector 4 so that the heat collection in the heat collector 4 is performed under optimal conditions. On the other hand, the fluid heating circuit 9 is formed by sequentially connecting a hot water tank 6, a circulation pump 7, a fluid heater 8, and a hot water storage tank 6. The condenser 2 and the fluid heater 8 are held in a heat exchange relationship, forming, for example, a double tube heat exchanger 10. and the control circuit 1
3 is a main control circuit 13A that calculates heating capacity from the temperature difference detected from the first and second temperature detectors 11 and 12 and outputs a control signal according to the target heating capacity;
and a frequency conversion circuit 14 that outputs an operating frequency signal to the compressor 1 based on the output signal of the main control circuit 13A.

なお、目標加温能力は次のように決定できる。
即ち、流体供給(給水)温度は季節によつて変化
し、それに対して目標沸き上げ温度は年間通して
一定である場合、冬期の給湯負荷(加熱負荷)は
大きくなり、夏期は小さく、中間期は両者の中間
的な負荷となる。そこである時刻(目標沸き上げ
時刻)に目標沸き上げ温度の湯が貯湯槽6の容量
分だけ貯えるためには、冬期の目標加温能力を大
きくする必要があり、逆に夏期は目標加温能力を
小さくすることができる。即ち、できるかぎり圧
縮機1での仕事量を低減することにより成績係数
を上げることが可能である。変化させる目標加温
能力は朝のある一定時刻での外気温を検知し、制
御回路13にてこの外気温から季節を判定して決
定される。本例では、目標加温能力を検出するた
めに外気温検出器15が設けられ、該外気温検出
器15の出力信号は主制御回路13Aに入力され
る。次に集熱作用を説明する。圧縮機1で圧縮さ
れた高温高圧の熱媒ガスは、凝縮器2に流入し、
熱交換関係にある流体加熱器8を流れる流体
(水)と熱交換して凝縮液化し膨張弁3に至り、
膨張弁3を通過する際に断熱膨張して減圧され、
低温低圧の未蒸発熱媒となる。熱媒は次に集熱器
4へ流入して太陽熱・空気熱を吸熱してガス化
し、再び圧縮機1に入り上記サイクルを繰返す。
一方貯湯槽6内の水は循環ポンプ7により流体加
熱器8へ送られ加熱昇温されて貯湯槽6へ流入す
る。
Note that the target heating capacity can be determined as follows.
In other words, if the fluid supply (water supply) temperature changes depending on the season, but the target boiling temperature is constant throughout the year, the hot water supply load (heating load) will be large in the winter, small in the summer, and low in the intermediate period. is an intermediate load between the two. Therefore, in order to store hot water at the target boiling temperature equal to the capacity of the hot water storage tank 6 at a certain time (target boiling time), it is necessary to increase the target heating capacity in the winter, and conversely, in the summer, the target heating capacity must be increased. can be made smaller. That is, it is possible to increase the coefficient of performance by reducing the amount of work in the compressor 1 as much as possible. The target heating capacity to be changed is determined by detecting the outside temperature at a certain time in the morning and determining the season from this outside temperature in the control circuit 13. In this example, an outside temperature detector 15 is provided to detect the target heating capacity, and the output signal of the outside temperature detector 15 is input to the main control circuit 13A. Next, the heat collecting effect will be explained. The high-temperature, high-pressure heating medium gas compressed by the compressor 1 flows into the condenser 2,
It exchanges heat with the fluid (water) flowing through the fluid heater 8 which is in a heat exchange relationship, condenses and liquefies, and reaches the expansion valve 3.
When passing through the expansion valve 3, it expands adiabatically and is depressurized.
It becomes an unevaporated heat medium at low temperature and low pressure. The heat medium then flows into the heat collector 4, absorbs solar heat and air heat, is gasified, and enters the compressor 1 again to repeat the above cycle.
On the other hand, the water in the hot water storage tank 6 is sent to the fluid heater 8 by the circulation pump 7, heated and heated, and then flows into the hot water storage tank 6.

このとき、流体加熱器8の入口・出口の温度は
第一、第二温度検出器11,12から主制御回路
13Aに入力されており、主制御回路13Aで
は、それらの差温とあらかじめ一定に設定された
水流量を用いて加温能力が常に検知されている。
そして朝ののある一定時刻に外気温検出器15に
よつて外気温を検知して季節を判定しておき、目
標加温能力を自動的に決定して主制御回路13A
に記憶する。
At this time, the temperatures at the inlet and outlet of the fluid heater 8 are input to the main control circuit 13A from the first and second temperature detectors 11 and 12, and in the main control circuit 13A, the temperatures at the inlet and outlet of the fluid heater 8 are adjusted to a constant temperature in advance. The heating capacity is constantly detected using the set water flow rate.
Then, at a certain time in the morning, the outside temperature is detected by the outside temperature detector 15 to determine the season, the target heating capacity is automatically determined, and the main control circuit 13A
to be memorized.

そして当日の運転は目標加温能力になるように
外気条件の変化に応じて圧縮機1の回転数を制御
する。即ち、日射・外気温等が高くなり、集熱器
4での集熱量が増加すれば、圧縮機1の回転数を
落して圧縮機1の仕事量つまり消費電力を小さく
して高い成績係数で運転する。また日射・外気温
等が低くなれば圧縮機1の回転数を上げて圧縮機
1の仕事量を増し、目標加温能力が得られるよう
に運転する。その制御のフローチヤートを第2図
に示す。
During that day's operation, the rotation speed of the compressor 1 is controlled according to changes in outside air conditions so that the target heating capacity is achieved. That is, if the amount of heat collected by the heat collector 4 increases due to the increase in solar radiation, outside temperature, etc., the rotation speed of the compressor 1 will be lowered to reduce the amount of work of the compressor 1, that is, the power consumption, and achieve a high coefficient of performance. drive. Furthermore, when sunlight, outside temperature, etc. become low, the rotation speed of the compressor 1 is increased to increase the amount of work of the compressor 1, and the compressor 1 is operated so as to obtain the target heating capacity. A flowchart of the control is shown in FIG.

なお、目標加温能力は前記方法以外にも決定で
きる。即ち、第1図において、外気温検出器15
の代わりに貯湯槽6の流体供給口6aに供給流体
温度検出器16を設け、該温度検出器16によつ
て前日の給湯時に貯湯槽6の供給口6aより供給
される流体の温度を検知しておき、供給流体によ
つて季節を判定する。そして当日の運転時の目標
加温能力を自動的に決定する。なお圧縮機1の容
量制御は上記と同様である。この制御のフローチ
ヤートを第3図に示す。
Note that the target heating capacity can be determined by methods other than those described above. That is, in FIG.
Instead, a supplied fluid temperature detector 16 is provided at the fluid supply port 6a of the hot water storage tank 6, and the temperature detector 16 detects the temperature of the fluid supplied from the supply port 6a of the hot water storage tank 6 during hot water supply on the previous day. The season is determined based on the supplied fluid. Then, the target heating capacity for that day's operation is automatically determined. Note that the capacity control of the compressor 1 is the same as described above. A flowchart of this control is shown in FIG.

<効果> 以上の説明から明らかな通り、本発明は、熱媒
を圧縮して吐出する圧縮機と、該圧縮機の吐出側
に接続された凝縮器と、一側が絞り装置を介して
前記凝縮器に接続され他側が前記圧縮機に接続さ
れた集熱器とから集熱回路が構成され、使用流体
を貯える貯湯槽と、該貯湯槽外で前記凝縮器と熱
交換関係にある使用流体加熱器とが互に接続され
て流体加熱回路が構成された集熱装置において、
前記圧縮機は容量可変形とされ、前記流体加熱器
の入口に第一温度検出器が設けられると共に該流
体加熱器の出口に第二温度検出器が設けられ、外
気温あるいは貯湯槽への供給流体の温度を検出す
る第三温度検出器が設けられ、該第一、第二、第
三温度検出器の出力信号により前記圧縮機の容量
を制御する制御回路が設けられ、該制御回路は、
前記第三温度検出器により検出された温度から季
節に応じた目標加温能力を決定する目標加温能力
決定手段と、前記第一温度検出器及び第二温度検
出器からの検出温度差から集熱回路の加温能力を
算出する加温能力算出手段と、前記目標加温能力
決定手段からの目標加温能力と加温能力算出手段
からの加温能力とを比較演算する比較演算手段
と、該比較演算手段からの出力信号に基づき、目
標加温能力よりも加温能力が大のときに圧縮機の
運転周波数を下げ、目標加温能力よりも加温能力
が小のときに圧縮機の運転周波数を上げるよう、
前記圧縮機に運転周波数信号を出力する周波数変
換回路とから構成されたものである。
<Effects> As is clear from the above description, the present invention includes a compressor that compresses and discharges a heat medium, a condenser connected to the discharge side of the compressor, and a condenser connected to the discharge side of the compressor. A heat collection circuit is constituted by a heat collector connected to the compressor on one side and a heat collector connected on the other side to the compressor; In a heat collection device in which a fluid heating circuit is configured by interconnecting vessels,
The compressor is of a variable capacity type, and a first temperature sensor is provided at the inlet of the fluid heater, and a second temperature sensor is provided at the outlet of the fluid heater, and the compressor is configured to adjust the outside temperature or the supply to the hot water storage tank. A third temperature detector is provided to detect the temperature of the fluid, and a control circuit is provided to control the capacity of the compressor based on the output signals of the first, second, and third temperature detectors, and the control circuit includes:
target heating capacity determination means for determining a target heating capacity according to the season from the temperature detected by the third temperature detector; heating capacity calculation means for calculating the heating capacity of the thermal circuit; comparison calculation means for comparing and calculating the target heating capacity from the target heating capacity determination means and the heating capacity from the heating capacity calculation means; Based on the output signal from the comparison calculation means, the operating frequency of the compressor is lowered when the heating capacity is larger than the target heating capacity, and the operating frequency of the compressor is reduced when the heating capacity is smaller than the target heating capacity. To increase the operating frequency,
and a frequency conversion circuit that outputs an operating frequency signal to the compressor.

従つて、本発明によると、季節に応じた目標加
温能力を決定して、加熱器の入口、出口間の温度
差により常に加温能力を検出しながら、加温能力
が目標加温能力になるように圧縮機の運転周波数
を制御することにより、ほぼ毎日目標沸き上げ温
度の湯が目標沸き上げ時刻に得ることが可能とな
る。
Therefore, according to the present invention, the target heating capacity is determined depending on the season, and the heating capacity is constantly detected based on the temperature difference between the inlet and outlet of the heater, and the heating capacity is adjusted to the target heating capacity. By controlling the operating frequency of the compressor so as to achieve the desired boiling temperature, it becomes possible to obtain hot water at the target boiling temperature almost every day at the target boiling time.

また夏期には、目標加温能力が小さいので、加
温能力も小さくて済み、冬期でも日射・外気温等
が高いときは、目標加温能力が小さくなり、圧縮
機への負担を小さくでき、経済的な運転が可能と
なる。
In addition, in the summer, the target heating capacity is small, so the heating capacity is also small, and even in the winter, when the sunlight and outside temperature are high, the target heating capacity is small, reducing the load on the compressor. Economical driving becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す太陽熱・空気
熱集熱装置の構成図、第2図は同制御フローチヤ
ート、第3図は本発明の他の実施例を示す制御フ
ローチヤート、第4図は本発明の機能ブロツク図
である。 1:圧縮機、2:凝縮器、3:絞り装置、4:
集熱器、5:集熱回路、6:貯湯槽、7:循環ポ
ンプ、8:加熱器、9:加熱回路、10:熱交換
器、11,12:温度検出器、13:制御回路。
Fig. 1 is a block diagram of a solar/air heat collector showing one embodiment of the present invention, Fig. 2 is a control flowchart of the same, and Fig. 3 is a control flowchart showing another embodiment of the present invention. FIG. 4 is a functional block diagram of the present invention. 1: Compressor, 2: Condenser, 3: Squeezing device, 4:
Heat collector, 5: heat collection circuit, 6: hot water storage tank, 7: circulation pump, 8: heater, 9: heating circuit, 10: heat exchanger, 11, 12: temperature detector, 13: control circuit.

Claims (1)

【特許請求の範囲】 1 熱媒を圧縮して吐出する圧縮機と、 該圧縮機の吐出側に接続された凝縮器と、 一側が絞り装置を介して前記凝縮器に接続され
他側が前記圧縮機に接続された集熱器とから集熱
回路が構成され、 使用流体を貯える貯湯槽と、 該貯湯槽外で前記凝縮器と熱交換関係にある使
用流体加熱器とが互に接続されて流体加熱回が構
成された集熱装置において、 前記圧縮機は容量可変形とされ、 前記流体加熱器の入口に第一温度検出器が設け
られると共に該流体加熱器の出口に第二温度検出
器が設けられ、 外気温あるいは貯湯槽への供給流体の温度を検
出する第三温度検出器が設けられ、 該第一、第二、第三温度検出器の出力信号によ
り前記圧縮機の容量を制御する制御回路が設けら
れ、 該制御回路は、前記第三温度検出器により検出
された温度から季節に応じた目標加温能力を決定
する目標加温能力決定手段と、 前記第一温度検出器及び第二温度検出器からの
検出温度差から集熱回路の加温能力を算出する加
温能力算出手段と、 前記目標加温能力決定手段からの目標加温能力
と加温能力演算手段からの加温能力とを比較演算
する比較演算手段と、 該比較演算手段からの出力信号に基づき、目標
加温能力よりも加温能力が大のときに圧縮機の運
転周波数を下げ、目標加温能力よりも加温能力が
小のときに圧縮機の運転周波数を上げるよう、前
記圧縮機に運転周波数信号を出力する周波数変換
回路とから 構成されたことを特徴とする集熱装置。
[Claims] 1. A compressor that compresses and discharges a heat medium, a condenser connected to the discharge side of the compressor, one side connected to the condenser via a throttle device, and the other side connected to the compressor. A heat collection circuit is constituted by a heat collector connected to the machine, and a hot water storage tank that stores the working fluid and a working fluid heater that is in a heat exchange relationship with the condenser outside the hot water storage tank are connected to each other. In the heat collection device configured with a fluid heating circuit, the compressor is of a variable capacity type, and a first temperature detector is provided at the inlet of the fluid heater, and a second temperature detector is provided at the outlet of the fluid heater. A third temperature detector is provided to detect the outside air temperature or the temperature of the fluid supplied to the hot water storage tank, and the capacity of the compressor is controlled by the output signals of the first, second, and third temperature detectors. A control circuit is provided, the control circuit includes: target heating capacity determining means for determining a target heating capacity depending on the season from the temperature detected by the third temperature detector; heating capacity calculation means for calculating the heating capacity of the heat collecting circuit from the temperature difference detected by the second temperature detector; a comparison calculation means for comparing the heating capacity with the heating capacity; and based on the output signal from the comparison calculation means, the operating frequency of the compressor is lowered when the heating capacity is greater than the target heating capacity, and 1. A heat collection device comprising: a frequency conversion circuit that outputs an operating frequency signal to the compressor so as to increase the operating frequency of the compressor when the heating capacity is low.
JP59195599A 1984-09-18 1984-09-18 Heat collecting device Granted JPS6172959A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59195599A JPS6172959A (en) 1984-09-18 1984-09-18 Heat collecting device
DE8585104355T DE3568860D1 (en) 1984-09-18 1985-04-10 Solar heat collector system
EP85104355A EP0175836B1 (en) 1984-09-18 1985-04-10 Solar heat collector system
EP88102744A EP0330701A3 (en) 1984-09-18 1985-04-10 Heat collector
US07/161,951 US4901537A (en) 1984-09-18 1988-02-29 Solar heat collector system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195599A JPS6172959A (en) 1984-09-18 1984-09-18 Heat collecting device

Publications (2)

Publication Number Publication Date
JPS6172959A JPS6172959A (en) 1986-04-15
JPH034818B2 true JPH034818B2 (en) 1991-01-24

Family

ID=16343828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195599A Granted JPS6172959A (en) 1984-09-18 1984-09-18 Heat collecting device

Country Status (1)

Country Link
JP (1) JPS6172959A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019224870A1 (en) * 2018-05-21 2019-11-28 三菱電機株式会社 Showcase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205053A (en) * 1982-05-26 1983-11-29 Matsushita Electric Ind Co Ltd Hot-water supplying machine utilizing solar heat

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205053A (en) * 1982-05-26 1983-11-29 Matsushita Electric Ind Co Ltd Hot-water supplying machine utilizing solar heat

Also Published As

Publication number Publication date
JPS6172959A (en) 1986-04-15

Similar Documents

Publication Publication Date Title
US4165619A (en) Method of controlling a heat pump, and a heat pump device adapted to operate in accordance with said method
Hammad et al. Performance of a solar LiBr-water absorption refrigeration system
JPH034818B2 (en)
JPH1019375A (en) Heat pump type bath hot water heating system
JPH034820B2 (en)
JPH034819B2 (en)
JPH0621736B2 (en) Absorption refrigerator
JP2950474B1 (en) Solar powered refrigerator
JPH025319Y2 (en)
JPS58213153A (en) Latent heat transferring device
JP2642048B2 (en) Heat storage type air conditioner using midnight power
JPS5563337A (en) Air conditioner by solar heat
JPH0225094Y2 (en)
JPS6172962A (en) Solar heat collecting device
JPH0686959B2 (en) Heat pump solar collector
JPS5952159A (en) Heat collecting device
JPS5918359A (en) Air-conditioning hot-water supply device
JPS5918360A (en) Air-conditioning hot-water supply device
KR930004387B1 (en) Drain control device in refrigerator
JPS5883153A (en) Heat-pump type water heater
SU1451471A1 (en) Waste-heat recovery installation
JPS6146847A (en) Solar heat type hot water feeding device
JPS61153456A (en) Solar-heat utilizing heat pump hot-water supply device
JPH0225106B2 (en)
JPS5845437A (en) Control system for solar-heat-utilizing absorption type refrigerating machine