JPH08338207A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device

Info

Publication number
JPH08338207A
JPH08338207A JP14867695A JP14867695A JPH08338207A JP H08338207 A JPH08338207 A JP H08338207A JP 14867695 A JP14867695 A JP 14867695A JP 14867695 A JP14867695 A JP 14867695A JP H08338207 A JPH08338207 A JP H08338207A
Authority
JP
Japan
Prior art keywords
working medium
exhaust heat
heat recovery
heat
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14867695A
Other languages
Japanese (ja)
Inventor
Masaru Kondo
勝 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14867695A priority Critical patent/JPH08338207A/en
Publication of JPH08338207A publication Critical patent/JPH08338207A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To improve conversion efficiency between the heating value cast into a boiler and electric power generated by using perfluorocarbon, which is out of the object of regulations, as a working medium and reducing the quantity of heating in an exhaust heat recovery boiler. CONSTITUTION: Perfluorocarbon steam, which is generated by means of exhaust heat at an exhaust heat recovery boiler 1, is introduced into a dynamo-turbine 2. The working medium steam coming out of the turbine 2 is introduced into a heat exchanger 7 in order to heat up a working medium, which is liquefied by a condenser 4, whose pressure is increased, and which is introduced into the heat exchanger 7. Due to the heat exchange among the working mediums, the quantity of cooling water for the condenser 4 can be reduced, while the quantity of heating in the exhaust heat recovery boiler 1 can also be reduced. Thus, the conversion efficiency between the heating value cast into the boiler and the electric power generated can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、約100〜200℃の
水蒸気などを高温側の熱源に用いた排熱回収装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery apparatus using steam of about 100 to 200 ° C. as a heat source on the high temperature side.

【0002】[0002]

【従来の技術】従来の排熱回収装置では、作動媒体とし
てフロン11などのフロン系の熱媒体をいることが多
い。そのような従来の排熱回収装置の構成図を図7に示
している。図7に示すように従来の技術では、発電用タ
ービン2から出てきた作動媒体は導管6を通じて凝縮器
4に流入し、そこで顕熱、潜熱を奪い凝縮させていた。
凝縮器4で凝縮された作動媒体はポンプ5で加圧され、
廃熱回収用ボイラ1に入り、加熱され蒸気を発生させタ
ービン2に導かれる。作動媒体のフロン11は、フロン
規制対象となっている熱媒体である。
2. Description of the Related Art In a conventional exhaust heat recovery apparatus, a freon-based heat medium such as freon 11 is often used as a working medium. A block diagram of such a conventional exhaust heat recovery system is shown in FIG. As shown in FIG. 7, in the conventional technique, the working medium coming out of the power generation turbine 2 flows into the condenser 4 through the conduit 6, where sensible heat and latent heat are taken away and condensed.
The working medium condensed in the condenser 4 is pressurized by the pump 5,
It enters the waste heat recovery boiler 1, is heated, generates steam, and is guided to the turbine 2. The working medium CFC 11 is a heat medium that is a CFC regulation target.

【0003】[0003]

【発明が解決しようとする課題】前記したように従来の
排熱回収装置ではフロン11のようなフロン系の熱媒体
を用いているが、フロン系の作動媒体(R−11)は、
フロン規制の対象となっており、規制対象外の熱媒を用
いる必要がある。また、従来用いられていたR−11
は、ボイラで投入した熱量に対する電力への交換効率が
よい熱媒体である。
As described above, the conventional exhaust heat recovery device uses a freon-based heat medium such as freon 11, but the freon-based working medium (R-11) is
It is subject to CFC regulations and it is necessary to use a heat medium that is not regulated. In addition, R-11 which has been conventionally used
Is a heat medium that has a high efficiency of exchanging the amount of heat input in the boiler with electric power.

【0004】一方、フロン規制対象外のパーフロロカー
ボンはR−11と同じように用いるとその効率はR−1
1に比べよくない。例えば、約150℃の低温排熱を回
収する場合R−11では、ボイラでの回収熱量の約18
%程度が原理的には電力に交換可能であるが、従来装置
にパーフロロカーボンとしてC6 14を用いた場合は約
13%程度の変換となる。
On the other hand, if perfluorocarbons not subject to CFC regulation are used in the same manner as R-11, their efficiency is R-1.
Not as good as 1. For example, in the case of recovering low temperature exhaust heat of about 150 ° C., in R-11, about 18 times the recovered heat amount in the boiler is used.
% Can be exchanged for electric power in principle, but when C 6 F 14 is used as perfluorocarbon in the conventional apparatus, conversion is about 13%.

【0005】本発明は、規制対象外のパーフロロカーボ
ンを作動媒体として用い、かつ、排熱回収用ボイラでの
加熱量を低減してボイラに投入した熱量に対する電力へ
の変換効率を上昇させうるよう構成した排熱回収装置を
提供することを課題としている。
The present invention uses non-regulated perfluorocarbon as a working medium and reduces the heating amount in the exhaust heat recovery boiler so that the efficiency of conversion into electric power with respect to the amount of heat input to the boiler can be increased. It is an object to provide an exhaust heat recovery device configured.

【0006】[0006]

【課題を解決するための手段】本発明は前記課題を解決
するため、作動媒体として、フロン規制対象外のパーフ
ロロカーボンを用いる。本発明で採用するパーフロロカ
ーボンは、C(炭素)とF(フッ素)とのみからなる化
合物であり、フロン規制の対象外の熱媒体で、具体的に
は例えば、C6 14又はC5 12などである。
In order to solve the above problems, the present invention uses perfluorocarbon, which is not subject to CFC regulation, as a working medium. The perfluorocarbon employed in the present invention is a compound consisting only of C (carbon) and F (fluorine), and is a heat medium not subject to CFC regulation, and specifically, for example, C 6 F 14 or C 5 F 12 and so on.

【0007】また、本発明では、蒸気タービンを出て凝
縮器に流入する前のパーフロロカーボンの蒸気の顕熱
と、凝縮器を出てポンプにより昇圧されたパーフロロカ
ーボンの液の顕熱とを熱交換するための熱交換手段を設
け、排熱回収ボイラに流入する前の作動媒体(液体)の
温度を上昇させる。
Further, according to the present invention, the sensible heat of the perfluorocarbon vapor before it leaves the steam turbine and flows into the condenser, and the sensible heat of the perfluorocarbon liquid that has left the condenser and is pressurized by a pump are heated. A heat exchange means for exchanging is provided to raise the temperature of the working medium (liquid) before flowing into the exhaust heat recovery boiler.

【0008】[0008]

【作用】本発明によれば、作動媒体として規制対象外の
パーフロロカーボンを用いながらも、前記したように
「発電用タービンから流出する作動媒体(蒸気)」と、
「凝縮器を出てポンプにより昇圧された作動媒体(液
体)」との間で熱交換をさせるため、タービンから流出
して「凝縮器に流入する作動媒体(蒸気)」の温度が低
くなり、一方、ポンプで昇圧されて「排熱回収用ボイラ
に流入する作動媒体(液体)」の温度が高くなる。
According to the present invention, while using perfluorocarbons that are not subject to regulation as the working medium, as described above, the "working medium (steam) flowing out of the turbine for power generation",
Since heat is exchanged with the "working medium (liquid) that has left the condenser and has been pressurized by the pump", the temperature of the "working medium (steam) that flows out of the turbine and flows into the condenser becomes low," On the other hand, the temperature of the "working medium (liquid) that is boosted by the pump and flows into the exhaust heat recovery boiler" becomes high.

【0009】これにより、本発明による排熱回収装置に
おいては、凝縮器での除去熱量が小さくなるため冷却水
負荷が低くなるとともに、排熱回収用ボイラでの加熱量
が小さくて済むことになり、排熱を有効に利用すること
ができる。
As a result, in the exhaust heat recovery apparatus according to the present invention, the amount of heat removed by the condenser is reduced, so that the cooling water load is reduced and the amount of heating in the exhaust heat recovery boiler is reduced. The waste heat can be effectively used.

【0010】[0010]

【実施例】以下、本発明による排熱回収装置について図
1〜6に示した実施例に基づいて具体的に説明する。な
お、以下の実施例において、図7に示した従来の装置と
同じ構成の部分には説明を簡単にするため同じ符号を付
してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Exhaust heat recovery apparatus according to the present invention will be specifically described below based on the embodiments shown in FIGS. In the following embodiments, the same components as those of the conventional device shown in FIG. 7 are designated by the same reference numerals for simplification of description.

【0011】(第1実施例)まず、図1及び図2により
本発明の第1実施例について説明する。この実施例では
作動媒体としてC6 14を用いており、図2のモーリエ
線図における符号1−1〜7−4は図1における同じ符
号を付した場所での作動媒体の状態を示している。
(First Embodiment) First, a first embodiment of the present invention will be described with reference to FIGS. In this embodiment, C 6 F 14 is used as the working medium, and reference numerals 1-1 to 7-4 in the Maurier diagram of FIG. 2 indicate the states of the working medium at the places designated by the same reference numerals in FIG. There is.

【0012】図1の構成図に示すように、この第1実施
例では発電用タービン2を出た作動媒体の蒸気の顕熱
と、凝縮器4を出てポンプ5で昇圧された作動媒体液の
顕熱との間で熱交換を行わせる熱交換器7を設けてい
る。
As shown in the configuration diagram of FIG. 1, in this first embodiment, the sensible heat of the vapor of the working medium that has exited from the turbine for power generation 2 and the working medium liquid that has been boosted by the pump 5 from the condenser 4 A heat exchanger 7 for exchanging heat with the sensible heat is provided.

【0013】このように構成された図1の排熱回収装置
において、排熱回収用ボイラ1を出た作動媒体は過熱蒸
気(図2のA)となり発電用タービン2に流入し、その
出口では圧力及びエンタルピーが低下(図2のB)す
る。
In the thus constructed exhaust heat recovery apparatus of FIG. 1, the working medium exiting the exhaust heat recovery boiler 1 becomes superheated steam (A in FIG. 2) and flows into the power generation turbine 2, and at its outlet. The pressure and enthalpy decrease (B in FIG. 2).

【0014】発電用タービンから出た作動媒体は、ポン
プ5から出てきた作動媒体と熱交換器7で熱交換し、さ
らにエンタルピーが低下(図2のC)する。
The working medium discharged from the turbine for power generation exchanges heat with the working medium discharged from the pump 5 in the heat exchanger 7, and the enthalpy further decreases (C in FIG. 2).

【0015】熱交換器7でエンタルピーが低下した作動
媒体は、凝縮器4で凝縮(図2のCからDに変化)す
る。凝縮器4で凝縮した作動媒体は、ポンプ5で昇圧
(図2のDからEに変化)する。
The working medium whose enthalpy is lowered in the heat exchanger 7 is condensed in the condenser 4 (changed from C to D in FIG. 2). The working medium condensed in the condenser 4 is boosted in pressure by the pump 5 (changes from D to E in FIG. 2).

【0016】ポンプ5から出てきた作動媒体は、熱交換
器7で熱交換しエンタルピーが上昇(図2のF)する。
熱交換器7を出た作動媒体は、排熱回収用ボイラ1で加
熱(図2のFからAに変化)され、蒸気になる。
The working medium discharged from the pump 5 exchanges heat with the heat exchanger 7, and the enthalpy increases (F in FIG. 2).
The working medium exiting the heat exchanger 7 is heated (changed from F to A in FIG. 2) in the exhaust heat recovery boiler 1 to become steam.

【0017】以上より次の結果を得る。 排熱回収用
ボイラ1の加熱量は、10.6kcal/mol (図2のAと
Fとのエンタルピー差)となる。 凝縮器4での除去
熱量は、8.6kcal/mol (図2のCとDとのエンタル
ピー差)となる。 一方、発電に有効な熱量は、2kc
al/mol (図2のAとBとのエンタルピー差)となる。
以上の、よりボイラで投入した熱量に対する電力へ
の変換効率は数式1に示すように19%である。
From the above, the following results are obtained. The heating amount of the exhaust heat recovery boiler 1 is 10.6 kcal / mol (the enthalpy difference between A and F in FIG. 2). The amount of heat removed by the condenser 4 is 8.6 kcal / mol (the enthalpy difference between C and D in FIG. 2). On the other hand, the amount of heat effective for power generation is 2 kc
al / mol (the enthalpy difference between A and B in FIG. 2).
As described above, the efficiency of conversion into electric power with respect to the amount of heat input by the boiler is 19% as shown in Formula 1.

【0018】[0018]

【数1】 [Equation 1]

【0019】なお、熱交換器7を用いない場合は、排熱
回収用ボイラ1の加熱量は15kcal/mol (図2のAと
Eとのエンタルピー差)となり、このときのボイラで投
入した熱量に対する電力への変換効率は、数式2に示す
ように13%である。
When the heat exchanger 7 is not used, the heating amount of the exhaust heat recovery boiler 1 is 15 kcal / mol (the enthalpy difference between A and E in FIG. 2), and the amount of heat input by the boiler at this time is The conversion efficiency into electric power for is 13% as shown in Equation 2.

【0020】[0020]

【数2】 [Equation 2]

【0021】(第2実施例)次に図3に示した本発明の
第2実施例について説明する。
(Second Embodiment) Next, the second embodiment of the present invention shown in FIG. 3 will be described.

【0022】本実施例では、排熱回収用ボイラ1内の熱
交換チューブ1−4に発電用タービン2からの作動媒体
を直接導き、これによって排熱回収用ボイラ1内でポン
プ5からの作動媒体を加熱する。1−3は排熱回収用熱
交換チューブである。これにより、第1実施例の場合の
ように熱交換器7の配置が不要となり、装置がコンパク
トになる。その他の構成は第1実施例の場合と同じであ
る。
In this embodiment, the working medium from the power generation turbine 2 is directly guided to the heat exchange tube 1-4 in the exhaust heat recovery boiler 1, and thereby the operation from the pump 5 is performed in the exhaust heat recovery boiler 1. Heat the medium. 1-3 are heat exchange tubes for exhaust heat recovery. As a result, the arrangement of the heat exchanger 7 becomes unnecessary unlike the case of the first embodiment, and the device becomes compact. The other structure is the same as that of the first embodiment.

【0023】(第3実施例)次に図4に示した本発明の
第3実施例について説明する。
(Third Embodiment) Next, a third embodiment of the present invention shown in FIG. 4 will be described.

【0024】本実施例では、凝縮器4内の熱交換チュー
ブ4−3にポンプ5からの作動媒体を直接導き、凝縮器
4内で発電用タービン2からの作動媒体を冷却する。こ
れにより、第1実施例の場合のように熱交換器7の配置
が不要となり、装置がコンパクトになる。4−4は作動
媒体と冷却水の熱交換チューブである。その他の構成は
先の実施例の場合と同じである。
In this embodiment, the working medium from the pump 5 is directly introduced into the heat exchange tube 4-3 in the condenser 4 to cool the working medium from the power generation turbine 2 in the condenser 4. As a result, the arrangement of the heat exchanger 7 becomes unnecessary unlike the case of the first embodiment, and the device becomes compact. 4-4 is a heat exchange tube for the working medium and the cooling water. The other structure is the same as that of the previous embodiment.

【0025】(第4実施例)次に図5に示した本発明の
第4実施例について説明する。
(Fourth Embodiment) Next, a fourth embodiment of the present invention shown in FIG. 5 will be described.

【0026】本実施例は、第1実施例の装置において排
熱回収用ボイラ1での回収熱量が不安定で、作動媒体の
蒸気圧力の変動が大きくなり、安定した発電用タービン
2の運転ができない場合に対処できる構成を示す。図5
では、タービン2に入る作動媒体圧力を圧力センサ8で
検知し、制御器9により流量調節弁10を自動制御し、
排熱回収用ボイラ1出口の配管圧力が一定となるように
凝縮器4に作動媒体をバイパスする構成としている。
In this embodiment, in the apparatus of the first embodiment, the amount of recovered heat in the exhaust heat recovery boiler 1 is unstable, the steam pressure of the working medium fluctuates greatly, and the stable operation of the power generation turbine 2 is ensured. The following shows the configuration that can be dealt with when it is not possible. Figure 5
Then, the pressure sensor 8 detects the pressure of the working medium entering the turbine 2, and the controller 9 automatically controls the flow rate control valve 10.
The working medium is bypassed to the condenser 4 so that the pipe pressure at the outlet of the exhaust heat recovery boiler 1 becomes constant.

【0027】(第5実施例)次に第5実施例として、装
置の構成は第1実施例と同じとし、作動媒体としてパー
フロロカーボンのC5 12を用いた場合について説明す
る。この場合の作動媒体の状態を図6に示す。作動媒体
の流れは、第1実施例と同じである。
(Fifth Embodiment) Next, a fifth embodiment will be described in which the apparatus has the same construction as that of the first embodiment and C 5 F 12 of perfluorocarbon is used as the working medium. The state of the working medium in this case is shown in FIG. The flow of the working medium is the same as in the first embodiment.

【0028】図6に示すように、 排熱回収用ボイラ
(図1の1)の加熱量は、9.9kcal/mol (図6のA
とFとのエンタルピー差)となる。 凝縮器(図1の
4)での除去熱量は、7.9kcal/mol (図6のCとD
とのエンタルピー差)となる。 一方、発電に有効な
熱量は、2kcal/mol (図6のAとBとのエンタルピー
差)となる。以上の、よりボイラで投入した熱量に
対する電力への変換効率は数式3に示すように20%で
ある。
As shown in FIG. 6, the heating amount of the exhaust heat recovery boiler (1 in FIG. 1) is 9.9 kcal / mol (A in FIG. 6).
And the enthalpy difference between F). The amount of heat removed by the condenser (4 in FIG. 1) is 7.9 kcal / mol (C and D in FIG. 6).
And the enthalpy difference). On the other hand, the amount of heat effective for power generation is 2 kcal / mol (the enthalpy difference between A and B in FIG. 6). As described above, the efficiency of conversion into electric power with respect to the amount of heat input by the boiler is 20% as shown in Formula 3.

【0029】[0029]

【数3】 (Equation 3)

【0030】なお、熱交換器(図1の7)を用いない場
合は、排熱回収用ボイラ(図1の1)の加熱量は12.
5kcal/mol (図6のAとEとのエンタルピー差)とな
り、このときボイラで投入した熱量に対する電力への変
換効率は数式4に示すように16%である。
When the heat exchanger (7 in FIG. 1) is not used, the heating amount of the exhaust heat recovery boiler (1 in FIG. 1) is 12.
It becomes 5 kcal / mol (the enthalpy difference between A and E in FIG. 6), and the conversion efficiency into electric power with respect to the amount of heat input by the boiler at this time is 16% as shown in Equation 4.

【0031】[0031]

【数4】 [Equation 4]

【0032】[0032]

【発明の効果】以上説明したように本発明の排熱回収装
置においては、作動媒体としてパーフロロカーボン(C
6 14など)を用いることにより、作動媒体をフロン規
制対象外とすることができる。
As described above, in the exhaust heat recovery system of the present invention, perfluorocarbon (C
6 F 14 etc., the working medium can be excluded from the CFC regulation.

【0033】また、本発明の排熱回収装置では、「発電
用タービンから流出する作動媒体(蒸気)」と「ポンプ
により昇圧された作動媒体(液体)」との間で熱交換す
るための熱交換手段を設けることにより、排熱回収用ボ
イラでの加熱量が低減でき、ボイラに投入した熱量に対
する電力への変換効率を上昇させることができる。
In the exhaust heat recovery system of the present invention, the heat for exchanging heat between the "working medium (steam) flowing out of the turbine for power generation" and the "working medium (liquid) pressurized by the pump". By providing the exchange means, the heating amount in the exhaust heat recovery boiler can be reduced, and the conversion efficiency of the heat amount input to the boiler into electric power can be increased.

【0034】また、本発明の排熱回収装置では前記した
熱交換手段を設けることにより、凝縮器での冷却水量を
低減することができる。
Further, in the exhaust heat recovery system of the present invention, the amount of cooling water in the condenser can be reduced by providing the heat exchange means described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る排熱回収装置の構成
図。
FIG. 1 is a configuration diagram of an exhaust heat recovery apparatus according to a first embodiment of the present invention.

【図2】第1実施例に係る排熱回収装置におけるモーリ
エ線図。
FIG. 2 is a Maurier diagram in the exhaust heat recovery system according to the first embodiment.

【図3】本発明の第2実施例に係る排熱回収装置の構成
図。
FIG. 3 is a configuration diagram of an exhaust heat recovery apparatus according to a second embodiment of the present invention.

【図4】本発明の第3実施例に係る排熱回収装置の構成
図。
FIG. 4 is a configuration diagram of an exhaust heat recovery apparatus according to a third embodiment of the present invention.

【図5】本発明の第4実施例に係る排熱回収装置の構成
図。
FIG. 5 is a configuration diagram of an exhaust heat recovery apparatus according to a fourth embodiment of the present invention.

【図6】第5実施例に係る排熱回収装置におけるモーリ
エ線図。
FIG. 6 is a Maurier diagram of the exhaust heat recovery system according to the fifth embodiment.

【図7】従来の排熱回収装置を示す構成図。FIG. 7 is a configuration diagram showing a conventional exhaust heat recovery device.

【符号の説明】 1 排熱回収用ボイラ 1−3 排熱回収用熱交換チューブ 1−4 作動媒体どおしの熱交換チューブ 2 発電用タービン 3 発電機 4 凝縮器 4−3 作動媒体どおしの熱交換チューブ 4−4 作動媒体と冷却水との熱交換チューブ 5 作動媒体用循環ポンプ 6 作動媒体を流す導管 7 熱交換器 8 圧力センサ 9 制御器 10 流量調節弁[Explanation of Codes] 1 Boiler for recovery of exhaust heat 1-3 Heat exchange tube for recovery of exhaust heat 1-4 Heat exchange tube for working medium 2 Turbine for power generation 3 Generator 4 Condenser 4-3 Working medium Shino heat exchange tube 4-4 Heat exchange tube between working medium and cooling water 5 Circulation pump for working medium 6 Conduit for flowing working medium 7 Heat exchanger 8 Pressure sensor 9 Controller 10 Flow control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排熱回収ボイラと、蒸気タービンと、こ
れらを結ぶ作動媒体の導路とを備えた排熱回収装置にお
いて、前記作動媒体としてパーフロロカーボンを用い、
前記蒸気タービンを出て凝縮器に流入する前のパーフロ
ロカーボンの蒸気の顕熱と、前記凝縮器を出てポンプに
より昇圧されたパーフロロカーボンの液の顕熱とを熱交
換するための熱交換手段を設けたことを特徴とする排熱
回収装置。
1. An exhaust heat recovery apparatus comprising an exhaust heat recovery boiler, a steam turbine, and a working medium conduit connecting these, wherein perfluorocarbon is used as the working medium,
Heat exchange means for exchanging heat between the sensible heat of the vapor of the perfluorocarbon before it leaves the steam turbine and flows into the condenser, and the sensible heat of the liquid of the perfluorocarbon that has exited the condenser and has been pressurized by a pump. An exhaust heat recovery device characterized by being provided with.
JP14867695A 1995-06-15 1995-06-15 Exhaust heat recovery device Withdrawn JPH08338207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14867695A JPH08338207A (en) 1995-06-15 1995-06-15 Exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14867695A JPH08338207A (en) 1995-06-15 1995-06-15 Exhaust heat recovery device

Publications (1)

Publication Number Publication Date
JPH08338207A true JPH08338207A (en) 1996-12-24

Family

ID=15458128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14867695A Withdrawn JPH08338207A (en) 1995-06-15 1995-06-15 Exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JPH08338207A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051975A1 (en) * 1997-05-12 1998-11-19 Toshiyasu Indo Energy converter and energy conversion method
GB2405450A (en) * 2003-08-27 2005-03-02 Freepower Ltd Multi stage series connected radial inflow turbine
GB2405448A (en) * 2003-08-27 2005-03-02 Freepower Ltd A closed cycle energy recovery system
DE102010037946A1 (en) 2009-10-05 2011-04-07 Denso Corporation, Kariya-City heat engine
CN102146814A (en) * 2011-04-28 2011-08-10 罗良宜 Supercritical low-temperature air energy power generator
DE102011053570A1 (en) 2010-09-17 2012-03-22 Denso Corporation Heat machine for heating hydraulic fluid in waste heat recovery device, has steam generator part that is provided with liquid collection portion and evaporation part
JP2012062862A (en) * 2010-09-17 2012-03-29 Denso Corp Heat engine
CN102606238A (en) * 2012-03-23 2012-07-25 上海齐耀膨胀机有限公司 Two-stage power system for recovering waste heat by screw expander
DE102012203567A1 (en) 2011-03-08 2012-09-13 Denso Corporation Heat engine for waste heat recovery plant, has working fluid introduction element and pump that are provided to introduce working fluid in condenser section into boiler section
JP2013181457A (en) * 2012-03-01 2013-09-12 Kobe Steel Ltd Binary power generator and method for controlling the same
US9061364B2 (en) 2011-02-09 2015-06-23 Denso Corporation TIG welding method and apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051975A1 (en) * 1997-05-12 1998-11-19 Toshiyasu Indo Energy converter and energy conversion method
GB2405450A (en) * 2003-08-27 2005-03-02 Freepower Ltd Multi stage series connected radial inflow turbine
GB2405448A (en) * 2003-08-27 2005-03-02 Freepower Ltd A closed cycle energy recovery system
GB2405450B (en) * 2003-08-27 2006-09-06 Freepower Ltd Working energy recovery system including a turbine
GB2405448B (en) * 2003-08-27 2006-11-08 Freepower Ltd Energy recovery system
CN102032004A (en) * 2009-10-05 2011-04-27 株式会社电装 Heat engine
DE102010037946A1 (en) 2009-10-05 2011-04-07 Denso Corporation, Kariya-City heat engine
US9371744B2 (en) 2009-10-05 2016-06-21 Denso Corporation Heat engine
DE102011053570A1 (en) 2010-09-17 2012-03-22 Denso Corporation Heat machine for heating hydraulic fluid in waste heat recovery device, has steam generator part that is provided with liquid collection portion and evaporation part
JP2012062862A (en) * 2010-09-17 2012-03-29 Denso Corp Heat engine
US9061364B2 (en) 2011-02-09 2015-06-23 Denso Corporation TIG welding method and apparatus
DE102012203567A1 (en) 2011-03-08 2012-09-13 Denso Corporation Heat engine for waste heat recovery plant, has working fluid introduction element and pump that are provided to introduce working fluid in condenser section into boiler section
CN102146814A (en) * 2011-04-28 2011-08-10 罗良宜 Supercritical low-temperature air energy power generator
JP2013181457A (en) * 2012-03-01 2013-09-12 Kobe Steel Ltd Binary power generator and method for controlling the same
CN102606238A (en) * 2012-03-23 2012-07-25 上海齐耀膨胀机有限公司 Two-stage power system for recovering waste heat by screw expander

Similar Documents

Publication Publication Date Title
JP5457880B2 (en) Waste heat power generation method and waste heat power generation system
JPH08338207A (en) Exhaust heat recovery device
JP2008267341A (en) Exhaust heat recovering device
JP2593197B2 (en) Thermal energy recovery method and thermal energy recovery device
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JPS5963310A (en) Compound plant
JPS6296704A (en) Hot water turbine plant
JP3291075B2 (en) Boiler water supply system
JPS5968505A (en) Low boiling point medium cycle plant
Demuth et al. Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources using regeneration techniques
RU2144994C1 (en) Combined-cycle plant
JPS61152916A (en) Binary cycle power generation plant
US4830093A (en) Method and apparatus for utilizing waste heat in a combustion system
JP2726463B2 (en) Fuel cell power generation system
JPH05159792A (en) Fuel cell generating system
JP2002156493A (en) Site heat supply equipment of nuclear power station
JPH0429842B2 (en)
JPS6137923Y2 (en)
JPS6234148Y2 (en)
JP3202292B2 (en) Fuel cell power generation system
JPH11344231A (en) Waste heat energy converting system
JP3095575B2 (en) Cycle plant
JP2006177586A (en) Exhaust gas charging type absorption water heater-cooler
JPS6029501A (en) Steam generator for recovering waste heat
JPH03107507A (en) Absorption type rankine cycle heat recovery system in power generation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903