JPH0429842B2 - - Google Patents

Info

Publication number
JPH0429842B2
JPH0429842B2 JP21463284A JP21463284A JPH0429842B2 JP H0429842 B2 JPH0429842 B2 JP H0429842B2 JP 21463284 A JP21463284 A JP 21463284A JP 21463284 A JP21463284 A JP 21463284A JP H0429842 B2 JPH0429842 B2 JP H0429842B2
Authority
JP
Japan
Prior art keywords
condenser
gas
working medium
liquid separator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21463284A
Other languages
Japanese (ja)
Other versions
JPS6193212A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21463284A priority Critical patent/JPS6193212A/en
Publication of JPS6193212A publication Critical patent/JPS6193212A/en
Publication of JPH0429842B2 publication Critical patent/JPH0429842B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は非共沸混合物を凝縮させるための装
置に関するもので、例えば非共沸混合物を作動媒
体とする廃熱回収装置において使用することがで
きる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an apparatus for condensing a non-azeotropic mixture, and can be used, for example, in a waste heat recovery apparatus using a non-azeotropic mixture as a working medium.

従来の技術 第3図は工場で排出される温排水等を熱源とし
てランキンサイクルにより動力として回収するよ
うにした廃熱回収装置の一例を示す。この装置に
おいて作動媒体(例えばフロン)は蒸発器21、
タービン22、凝縮器23、およびポンプ24か
ら構成される系内で循環する。すなわち、蒸発器
21にて加熱されて発生した作動媒体の蒸気はタ
ービン22で膨張して仕事をなし、タービン22
から出た排気は凝縮器23で冷却されて凝縮した
後、再びポンプ24で蒸発器21へ送られて同じ
作用を繰り返す。タービン22の出力軸は負荷2
5(例えば発電機)に連結している。
BACKGROUND ART FIG. 3 shows an example of a waste heat recovery device that uses heated waste water discharged from a factory as a heat source and recovers it as power using a Rankine cycle. In this device, the working medium (e.g. fluorocarbon) is transferred to the evaporator 21,
It circulates within a system consisting of a turbine 22, a condenser 23, and a pump 24. That is, the steam of the working medium heated and generated in the evaporator 21 expands in the turbine 22 to perform work, and
The exhaust gas discharged from the evaporator 21 is cooled and condensed in the condenser 23, and then sent to the evaporator 21 again by the pump 24 to repeat the same operation. The output shaft of the turbine 22 is the load 2
5 (for example, a generator).

発明が解決しようとする問題点 このような廃熱回収装置においては温度差が大
きいほど効率が高くなるため、蒸発器21の出口
に加熱器を設けるなど、タービン22に供給する
作動媒体蒸気の温度を高くする工夫が行われてい
る。しかしながら、いずれも装置を別途付加する
必要があるからコストが高くなる。
Problems to be Solved by the Invention In such a waste heat recovery device, the larger the temperature difference, the higher the efficiency. Efforts are being made to increase the However, in either case, it is necessary to add a separate device, which increases the cost.

この発明はかかる問題点の認識から出発したも
ので、従来の単一成分よりなる媒体に代えて非共
沸混合媒体を使用することによつて、凝縮器にお
ける凝縮温度自体を低くすることを実現させんと
するものである。したがつてこの発明の目的は、
非共沸混合媒体に最も適した構造の凝縮装置を提
供することである。
This invention was developed based on the recognition of this problem, and by using a non-azeotropic mixed medium instead of the conventional single-component medium, the condensation temperature itself in the condenser can be lowered. This is what I am trying to do. Therefore, the purpose of this invention is to
It is an object of the present invention to provide a condensing device with a structure most suitable for non-azeotropic mixed media.

問題点を解決するための手段 この発明の非共沸混合物の凝縮装置は、 凝縮すべき非共沸混合物と冷却水とが完全対向
流にて流通する循環式凝縮器11と、 凝縮器の非共沸混合物出口15に接続した気液
分離器16と、 気液分離器の気相出口から凝縮器の非共沸混合
物入口14に通ずる還流管18と、 還流管の途中に設けた可変絞り17とを包含し
ており、可変絞りで還流液量を調節することによ
つて凝縮器内における非共沸混合物の熱力学的最
適濃度を維持するようにしたことを特徴とする。
Means for Solving the Problems The non-azeotropic mixture condensing device of the present invention includes a circulating condenser 11 in which the non-azeotropic mixture to be condensed and cooling water flow in completely opposite flows; A gas-liquid separator 16 connected to the azeotrope outlet 15, a reflux pipe 18 communicating from the gas phase outlet of the gas-liquid separator to the non-azeotrope inlet 14 of the condenser, and a variable throttle 17 provided in the middle of the reflux pipe. The thermodynamically optimum concentration of the non-azeotropic mixture in the condenser is maintained by adjusting the amount of reflux liquid with a variable throttle.

実施例 第1図にこの発明の実施例を示すが、以下、こ
の凝縮装置を第3図に示した既述の廃熱回収装置
において従来の凝縮器23に代えて使用する場合
を例にとつて説明する。なお、この場合の廃熱回
収装置の作動媒体は非共沸混合物である。ここに
非共沸混合物とは、いわゆる共沸混合物以外の、
2成分系もしくは多成分系の混合物をいうものと
する。
Embodiment An embodiment of the present invention is shown in FIG. 1. Hereinafter, a case where this condensation device is used in place of the conventional condenser 23 in the already mentioned waste heat recovery device shown in FIG. 3 will be described as an example. I will explain. Note that the working medium of the waste heat recovery device in this case is a non-azeotropic mixture. Here, non-azeotropic mixtures refer to other than so-called azeotropic mixtures.
It refers to a two-component system or a multi-component system mixture.

第2図は、一定圧力のもとにおける成分Aおよ
び成分Bの単独の飽和温度をそれぞれTAおよび
TBとするとき、AとBとからなる非共沸混合物
の濃度と温度との関係を示す。なお、ここに濃度
は、AとBの重量をそれぞれGAおよびGBとする
とき、この非共沸混合物の単位重量当たりに含ま
れるBの重量ξをいうものとする。すなわち、ξ
=GB/GA+GB もし温度Tのもとで液相と気相とが平衡状態に
あるときは液相線および気相線上の温度Tに相当
する点の位置から、液相の濃度はξlであり、気相
の濃度はξgである。さらに、液相と気相との合
成の濃度をξとすれば、この混合物の状態は点M
で表され、そのときの溶液の重量と蒸気の重量と
の割合は、点Mから液相線および気相線に至る水
平距離aおよびbに逆比例する。
Figure 2 shows the individual saturation temperatures of component A and component B under constant pressure, T A and
When T B indicates the relationship between the concentration and temperature of a non-azeotropic mixture consisting of A and B. Note that the concentration herein refers to the weight ξ of B contained per unit weight of the non-azeotropic mixture, where the weights of A and B are G A and G B , respectively. That is, ξ
=G B /G A + G BIf the liquid phase and gas phase are in equilibrium at temperature T, the concentration of the liquid phase is calculated from the position of the point corresponding to temperature T on the liquidus line and the gas phase line. is ξl and the concentration of the gas phase is ξg. Furthermore, if the concentration of the combined liquid and gas phases is ξ, the state of this mixture is at point M
The ratio of the weight of the solution to the weight of vapor at that time is inversely proportional to the horizontal distances a and b from point M to the liquidus line and the vapor line.

つぎに、点Mが液相線と気相線とで囲まれる領
域内に存在するときは、混合物は気液両相に分か
れるが、点Mがそれらの両線と一致するときまた
はその領域外に出るときは、気、液のどちらか1
つの相のみとなる。例えば、点M1は不飽和な液
体を示すし、また点M2は過熱蒸気を表す。しか
し、温度が変わると混合物の状態も変化する。例
えば、点M1で示される不飽和の液体の温度をT2
まで上げると飽和溶液となり、それ以上に温度を
上げると蒸発を始める。逆に、濃度ξlの気体を定
圧のもとで冷却していくと、点dで凝縮が始ま
り、そのとき平衡にある気相(蒸気)の組成と状
態は点d′で示される。さらに冷却して温度T1
なると、点hで示される状態の気相と点jで示さ
れる状態の溶液がji:ihの割合で共存する。冷却
をさらに続けて温度Tになると点cの状態の液相
のみになり、それから後も冷却を行えば単に溶液
を過冷することになる。
Next, when point M exists within the region surrounded by the liquidus line and the vapor phase line, the mixture separates into both gas and liquid phases, but when point M coincides with both of those lines or outside that region. When it comes out, either air or liquid 1
There are only two phases. For example, point M 1 represents an unsaturated liquid, and point M 2 represents superheated steam. However, when the temperature changes, the state of the mixture also changes. For example, if the temperature of the unsaturated liquid indicated by point M 1 is T 2
If the temperature is raised above this point, it becomes a saturated solution, and if the temperature is raised above that point, it begins to evaporate. Conversely, when a gas with a concentration ξl is cooled under constant pressure, condensation begins at point d, and the composition and state of the gas phase (vapor) in equilibrium at that time is shown at point d'. When the temperature is further cooled to T 1 , the gas phase at point h and the solution at point j coexist at a ratio of ji:ih. When cooling is continued and the temperature reaches T, only the liquid phase at point c remains, and if cooling is continued thereafter, the solution will simply be supercooled.

そこで第1図を参照すると、凝縮器11は作動
媒体の通路12と、冷却水の通路13とを有し、
作動媒体と冷却水とは完全対向流の関係にある。
凝縮器11の作動媒体入口14へはタービン22
からの作動媒体蒸気が供給される。凝縮器11の
作動媒体出口15には気液分離器16を設けてあ
る。気液分離器16の液相出口は作動媒体循環ポ
ンプ24に接続している。気液分離器16の気相
出口は、可変絞り17および昇圧器19を取り付
けた還流管18を通じて凝縮器11の作動媒体入
口14と連絡している。
Referring now to FIG. 1, the condenser 11 has a working medium passage 12 and a cooling water passage 13.
The working medium and the cooling water are in a completely opposite flow relationship.
A turbine 22 is connected to the working medium inlet 14 of the condenser 11.
Working medium vapor is supplied from. A gas-liquid separator 16 is provided at the working medium outlet 15 of the condenser 11 . A liquid phase outlet of the gas-liquid separator 16 is connected to a working medium circulation pump 24 . The gas phase outlet of the gas-liquid separator 16 communicates with the working medium inlet 14 of the condenser 11 through a reflux pipe 18 equipped with a variable throttle 17 and a booster 19 .

しかして凝縮器11内で凝縮した作動媒体は、
気液分離器16を経てポンプ24へ進む。気液分
離器16で作動媒体液から分離した作動媒体蒸気
は還流管18を通つて、タービン22から排出さ
れる作動媒体蒸気と共に、凝縮器11へ還流す
る。その際作動媒体蒸気は、昇圧機19により凝
縮器11における圧力降下分だけ昇圧される。な
お、同じ廃熱回収装置でもヒートポンプの場合
は、還流管18の圧縮器の吸入側に接続し、昇圧
機を省略することもできる。
The working medium condensed in the condenser 11 is
It passes through the gas-liquid separator 16 and then to the pump 24. The working medium vapor separated from the working medium liquid by the gas-liquid separator 16 passes through the reflux pipe 18 and returns to the condenser 11 together with the working medium vapor discharged from the turbine 22 . In this case, the pressure of the working medium vapor is increased by the pressure drop in the condenser 11 by the pressure booster 19 . Note that in the case of a heat pump in the same waste heat recovery device, it is also possible to connect the reflux pipe 18 to the suction side of the compressor and omit the booster.

凝縮器11の作動媒体入口14および出口15
でそれぞれ温度T2およびTを確保するのに最適
な作動媒体の濃度をξlとすると、濃度ξlの作動媒
体蒸気が凝縮器11に入ると、まず温度T2にて
d′で示される状態の初凝縮液が発生する。作動媒
体蒸気が凝縮器11内で冷却されて温度Tに至る
までに点d′から点Cまでの液相線上の各点で示さ
れる状態の作動媒体液が発生する。結局、凝縮器
11の作動媒体出口15から気液分離器16へ向
かうのは、点d′で示される初凝縮液から点Cで示
される最終凝縮液までの種々状態(温度、濃度)
の液と、点C′で示される蒸気とである。しかして
これらは気液分離器16で分離され、作動媒体液
はポンプ24を経て蒸発器21へ、作動媒体蒸気
は還流管18へ進む。
Working medium inlet 14 and outlet 15 of condenser 11
Let ξl be the optimal concentration of the working medium to ensure the temperatures T 2 and T, respectively. When working medium vapor with a concentration ξl enters the condenser 11, it first reaches the temperature T 2 .
An initial condensate with a state indicated by d′ is generated. When the working medium vapor is cooled in the condenser 11 and reaches the temperature T, a working medium liquid is generated at each point on the liquidus line from point d' to point C. In the end, the liquid flowing from the working medium outlet 15 of the condenser 11 to the gas-liquid separator 16 changes in various states (temperature, concentration) from the initial condensed liquid shown at point d' to the final condensed liquid shown at point C.
and the vapor shown at point C'. These are separated by the gas-liquid separator 16, the working medium liquid passes through the pump 24 to the evaporator 21, and the working medium vapor passes to the reflux pipe 18.

還流管18は凝縮器11の作動媒体入口14へ
通じており、タービン22から排出された作動媒
体蒸気と共に凝縮器11へ、気液分離器16から
の作動媒体蒸気を還流せしめる。しかしながら、
上に述べたとおり、気液分離器16からポンプ2
4で蒸発器21およびタービン22へと循環せし
められる作動媒体液は初凝縮液ほか最適濃度ξlよ
り低濃度の溶液を含むため全体的に濃度が最適濃
度ξlよりも低くなつている。したがつて、当然な
がら、タービン22から凝縮器11へと循環する
作動媒体蒸気の濃度も最適濃度よりも低い。一
方、気液分離器16へ入る作動媒体蒸気の濃度は
最適濃度ξlよりも高い。そこで可変絞り17は、
気液分離器16から還流管18を通つて還流する
作動媒体蒸気の量を調節し、タービン22からの
分と合流してちようど最適濃度となつて凝縮器1
1へ入るようにするためのものである。かかる濃
度調整は、通常のプロセス制御技術を応用して可
変絞り17を制御することにより容易に達成する
ことができる。
The reflux pipe 18 communicates with the working medium inlet 14 of the condenser 11, and allows the working medium vapor from the gas-liquid separator 16 to be returned to the condenser 11 together with the working medium vapor discharged from the turbine 22. however,
As mentioned above, from the gas-liquid separator 16 to the pump 2
The working medium liquid circulated to the evaporator 21 and the turbine 22 in step 4 contains the initial condensate and a solution having a concentration lower than the optimum concentration ξl, so that the overall concentration is lower than the optimum concentration ξl. Naturally, therefore, the concentration of the working medium vapor circulating from the turbine 22 to the condenser 11 is also lower than the optimum concentration. On the other hand, the concentration of the working medium vapor entering the gas-liquid separator 16 is higher than the optimum concentration ξl. Therefore, the variable aperture 17 is
The amount of working medium vapor that flows back from the gas-liquid separator 16 through the reflux pipe 18 is adjusted, and when it joins with the portion from the turbine 22, it reaches the optimum concentration and is sent to the condenser 1.
This is to make it possible to enter 1. Such concentration adjustment can be easily achieved by controlling the variable aperture 17 by applying ordinary process control techniques.

発明の効果 この発明は、気液分離器からの還流蒸気の量を
調節することにより凝縮器内の非共沸混合物を最
適濃度に保持するようにしたから、所期の凝縮温
度変化を確保することのできる、非共沸混合物用
として有効な凝縮装置を提供することができる。
しかも、非共沸混合物ゆえに凝縮液と蒸気の混在
は避け難いが、この発明によれば、蒸気が凝縮器
内に累積滞留することを防止できるから凝縮性能
の向上も期待できる。
Effects of the Invention This invention maintains the non-azeotropic mixture in the condenser at an optimum concentration by adjusting the amount of refluxed vapor from the gas-liquid separator, thereby ensuring the desired condensing temperature change. It is possible to provide a condensing device that is effective for non-azeotropic mixtures.
Moreover, since it is a non-azeotropic mixture, it is difficult to avoid the condensate and vapor being mixed together, but according to the present invention, it is possible to prevent the vapor from accumulating in the condenser, so it is expected that the condensing performance will be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示すブロツク図、
第2図は非共沸混合物の気液平衡線図、第3図は
この発明の凝縮装置を利用しうる廃熱回収装置の
ブロツク図である。 11……凝縮器、14……作動媒体入口、15
……作動媒体出口、16……気液分離器、17…
…可変絞り、18……還流管、19……昇圧機。
FIG. 1 is a block diagram showing an embodiment of this invention.
FIG. 2 is a vapor-liquid equilibrium diagram of a non-azeotropic mixture, and FIG. 3 is a block diagram of a waste heat recovery device that can utilize the condensing device of the present invention. 11... Condenser, 14... Working medium inlet, 15
...Working medium outlet, 16... Gas-liquid separator, 17...
...Variable throttle, 18... Reflux tube, 19... Booster.

Claims (1)

【特許請求の範囲】[Claims] 1 凝縮すべき非共沸混合物と冷却水とが完全対
向流にて流通する凝縮器と、凝縮器の非共沸混合
物出口に接続した気液分離器と、気液分離器の気
相出口から凝縮器の非共沸混合物入口に通ずる還
流管と、還流管の途中に設けた可変絞りとからな
り、前記可変絞りで還流蒸気量を調節することに
よつて凝縮器内における非共沸混合物の熱力学的
最適濃度を維持するようにしたことを特徴とする
非共沸混合物の凝縮装置。
1. A condenser in which the non-azeotropic mixture to be condensed and cooling water flow in completely opposite flows, a gas-liquid separator connected to the non-azeotropic mixture outlet of the condenser, and a gas-liquid separator connected to the gas phase outlet of the gas-liquid separator. It consists of a reflux pipe leading to the non-azeotropic mixture inlet of the condenser and a variable throttle installed in the middle of the reflux pipe. A condensing device for a non-azeotropic mixture, characterized in that the thermodynamically optimum concentration is maintained.
JP21463284A 1984-10-12 1984-10-12 Condenser for non-azeotropic mixture Granted JPS6193212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21463284A JPS6193212A (en) 1984-10-12 1984-10-12 Condenser for non-azeotropic mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21463284A JPS6193212A (en) 1984-10-12 1984-10-12 Condenser for non-azeotropic mixture

Publications (2)

Publication Number Publication Date
JPS6193212A JPS6193212A (en) 1986-05-12
JPH0429842B2 true JPH0429842B2 (en) 1992-05-20

Family

ID=16658951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21463284A Granted JPS6193212A (en) 1984-10-12 1984-10-12 Condenser for non-azeotropic mixture

Country Status (1)

Country Link
JP (1) JPS6193212A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507446B2 (en) * 1987-06-30 1996-06-12 株式会社東芝 Hot water turbine plant
JP2546183Y2 (en) * 1990-05-10 1997-08-27 中部電力株式会社 Non-azeotropic mixed fluid cycle plant
JP2513940B2 (en) * 1991-03-27 1996-07-10 株式会社日阪製作所 Low boiling medium system

Also Published As

Publication number Publication date
JPS6193212A (en) 1986-05-12

Similar Documents

Publication Publication Date Title
KR100624990B1 (en) Gas turbine inlet air cooling method for combined cycle power plants
US4756162A (en) Method of utilizing thermal energy
JPS5912207A (en) Exhaust gas steam generator with degassing instrument
US4779424A (en) Heat recovery system utilizing non-azeotropic medium
JP3011669B2 (en) Mixed media cycle power generation system
JPH0429842B2 (en)
JPH08338207A (en) Exhaust heat recovery device
US4827877A (en) Heat recovery system utilizing non-azeotropic medium
JP2513936B2 (en) Low boiling medium system
JPS63179105A (en) Condenser for non-azeotropic mixture
CA1241845A (en) Thermodynamic process for a practical approach to the carnot cycle
US4785876A (en) Heat recovery system utilizing non-azetotropic medium
JP2954022B2 (en) Non-azeotropic mixed medium cycle power generation system
JP2513939B2 (en) Low boiling medium system
JP2979104B2 (en) Non-azeotropic evaporator
JP2513940B2 (en) Low boiling medium system
JP2520987B2 (en) Evaporator for non-azeotropic mixture
JP2650660B2 (en) Control method of thermal cycle using non-azeotropic mixed medium as working fluid
JP3244087B2 (en) Heat pump for mixed media
JPS6179810A (en) Vaporizer for non-azeotrope
JP2551703B2 (en) Circulating method of working fluid in low boiling medium system
JP2513937B2 (en) Non-azeotrope condenser
JP2650664B2 (en) Mixed media evaporator
JP2513941B2 (en) Low boiling medium system
JP2503150Y2 (en) Vapor condenser of non-azeotropic mixed fluid cycle plant