JP2513937B2 - Non-azeotrope condenser - Google Patents
Non-azeotrope condenserInfo
- Publication number
- JP2513937B2 JP2513937B2 JP3089918A JP8991891A JP2513937B2 JP 2513937 B2 JP2513937 B2 JP 2513937B2 JP 3089918 A JP3089918 A JP 3089918A JP 8991891 A JP8991891 A JP 8991891A JP 2513937 B2 JP2513937 B2 JP 2513937B2
- Authority
- JP
- Japan
- Prior art keywords
- low
- condenser
- liquid
- heat transfer
- low boiling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、ヒートポンプやバイ
ナリーサイクルのような低沸点媒体システムで作動流体
として使用される非共沸混合物用の凝縮器に関する。FIELD OF THE INVENTION This invention relates to condensers for non-azeotropes used as working fluids in low boiling medium systems such as heat pumps and binary cycles.
【0002】[0002]
【従来の技術】低沸点媒体システムの一例として図4に
示されるバイナリー発電システムについて述べると、蒸
発器2、タービン4、凝縮器6および媒体ポンプ8が直
列に接続されて閉ループ10を構成している。そして、そ
の閉ループ10内を循環する作動流体は、まず蒸発器2で
熱源流体から熱を奪って蒸発し、発生した蒸気はタービ
ン4に供給される。この蒸気はタービン4内で膨張して
発電機12を駆動する仕事をする。タービン4から排出さ
れた蒸気は凝縮器6で冷却水に熱を奪われて凝縮する。
凝縮液は循環ポンプ8で再び蒸発器2に送られる。2. Description of the Related Art A binary power generation system shown in FIG. 4 will be described as an example of a low boiling point medium system. An evaporator 2, a turbine 4, a condenser 6 and a medium pump 8 are connected in series to form a closed loop 10. There is. The working fluid circulating in the closed loop 10 first evaporates by removing heat from the heat source fluid in the evaporator 2, and the generated steam is supplied to the turbine 4. This steam expands in the turbine 4 and serves to drive the generator 12. The steam discharged from the turbine 4 is deprived of heat by the cooling water in the condenser 6 and condensed.
The condensate is sent to the evaporator 2 again by the circulation pump 8.
【0003】ところで、このようなバイナリーサイクル
やヒートポンプ等の熱サイクルでは、効率の向上のため
作動流体に非共沸の混合媒体を用いてローレンツサイク
ルを構成させることがある。たとえばバイナリーサイク
ルは基本的にランキンサイクルであって、作動流体が単
一媒体のときは図5に示すようにTS線図の’−、
−がそれぞれ等温変化を示す。ところが、フロンR
123 とR22の混合のような混合媒体を作動流体として使
用すると、図6に示すように、同一圧力でも飽和温度が
変化し、蒸発器2では蒸発温度が上がり、凝縮器6では
凝縮温度が下がる。これによりローレンツサイクルが形
成され、システム効率が向上する。By the way, in such a heat cycle such as a binary cycle or a heat pump, a Lorentz cycle may be constituted by using a non-azeotropic mixed medium as a working fluid in order to improve efficiency. For example, a binary cycle is basically a Rankine cycle. When the working fluid is a single medium, as shown in FIG.
-Indicates isothermal changes. However, Freon R
When a mixed medium such as a mixture of 123 and R22 is used as the working fluid, as shown in FIG. 6, the saturation temperature changes even at the same pressure, and the evaporation temperature increases in the evaporator 2 and the condensation temperature decreases in the condenser 6. . This forms a Lorentz cycle and improves system efficiency.
【0004】図7は最も簡単な二成分の液体−蒸気系の
温度−組成の関係を横軸に低沸成分のモル分率をとって
示したものである。GとLは単一相で、それぞれ気相と
液相、L+Gの領域は液体と蒸気が共存する二相領域で
ある。もし低沸成分の60モル%(モル分率=0.60)の液
体混合物の温度を、定圧下で上昇させたとすると、この
系の変化は直線ab'cd"e に沿って考えることができる。
低温では液相のみが存在するが、b'点で蒸気相が現われ
る。この蒸気相の組成はb"点で与えられ、2つの共役相
は図上の平衡連結線b"b'で結ばれている。さらに温度を
上げると、もっと多くの蒸気が生成するが、その場合、
蒸気中の低沸成分の濃度が高いので、液相ではこの成分
が相対的に減少し、液体の組成はb'c'd'に沿って変化
し、一方、蒸気の組成はb"c"d"に沿って変化する。温度
t℃では、二相領域にある系の全組成はc点で表される
が、蒸気組成、液体組成はそれぞれc点を通る平衡連結
線の両端、c"点とc'点で与えられる。二相の相対的な量
は、物理学のてこの原理から求められる。すなわち、蒸
気と液体のモル数の比はcc'と c"c の長さの比で表され
る。さらに温度を上げるとますます蒸気が生成し、d”
点になると液相はほとんどなくなり、これ以上温度が高
くなると、液相が消えて蒸気相(d"点)のみが残る。こ
れ以上は温度を(d"e に沿って)上げてもなにも起らな
い。FIG. 7 shows the relationship between the temperature and the composition of the simplest two-component liquid-vapor system in terms of the mole fraction of low-boiling components on the horizontal axis. G and L are single phases, respectively, a gas phase and a liquid phase, and a region of L + G is a two-phase region where a liquid and a vapor coexist. If the temperature of a liquid mixture of 60 mol% (mol fraction = 0.60) of the low boilers is increased under constant pressure, the change in this system can be considered along a straight line ab'cd "e.
At low temperatures, only a liquid phase exists, but a vapor phase appears at point b '. The composition of this vapor phase is given by the point b ", and the two conjugate phases are connected by an equilibrium connection line b" b 'in the figure. Increasing the temperature will produce more steam, in which case
Due to the high concentration of low boiling components in the vapor, this component is relatively reduced in the liquid phase, the composition of the liquid changes along b'c'd ', while the composition of the vapor is b "c" It changes along the d ". At the temperature t ° C, the total composition of the system in the two-phase region is represented by the point c, but the vapor composition and the liquid composition are both ends of the equilibrium connecting line passing through the point c," Given by points and c'points. The relative amounts of the two phases are determined from the principle of leverage in physics. That is, the ratio of the number of moles of vapor to liquid is represented by the ratio of the length of cc 'to c "c. As the temperature is further increased, more and more vapor is generated, and d"
At the point, the liquid phase almost disappears, and when the temperature becomes higher than this, the liquid phase disappears and only the vapor phase (d "point) remains. Even if the temperature is further raised (along d" e) Does not happen.
【0005】[0005]
【発明が解決しようとする課題】従来の非共沸混合物用
凝縮器では、入口部で高沸成分が凝縮し、それに低沸成
分が相平衡バランスをとるようにして凝縮して行く。In the conventional condenser for non-azeotropic mixture, the high-boiling component is condensed at the inlet portion, and the low-boiling component is condensed in a phase equilibrium balance.
【0006】この発明の目的とするところは、凝縮器の
伝熱面全面で低沸成分の凝縮を促進して非共沸混合物用
凝縮器の凝縮伝熱性能を向上させることにある。An object of the present invention is to promote the condensation of low boiling components over the entire heat transfer surface of the condenser to improve the condensation heat transfer performance of the condenser for non-azeotropic mixture.
【0007】[0007]
【課題を解決するための手段】 この発明は、沸点の異
なる2以上の流体からなる非共沸混合物のための凝縮器
であって、低沸成分濃度の低い液を上部の入口部より噴
射して垂直な伝熱面全面に低沸点成分濃度の低い液膜を
形成させるようにした。The present invention relates to a condenser for a non-azeotropic mixture composed of two or more fluids having different boiling points, in which a liquid having a low low boiling point component concentration is injected from an upper inlet portion. Thus, a liquid film having a low low boiling point component concentration is formed on the entire vertical heat transfer surface.
【0008】[0008]
【作用】図1に示すように、低沸成分濃度の低い、言い
換えれば高沸成分濃度の高い液22を、凝縮器入口部より
噴射して凝縮器の凝縮伝熱面20全面に低沸成分濃度の低
い液22の膜を形成させることによって、低沸成分濃度の
低い液22に対する低沸成分ガス24の接触の機会が十分確
保されるので、低沸成分ガス24の凝縮が促進される。ま
た、そのようにして全伝熱面20にて低沸成分濃度がXc
からX’に低下するため、低沸成分の凝縮が一層進む。As shown in FIG. 1, a liquid 22 having a low low boiling point component concentration, in other words, a high boiling point component concentration is injected from the inlet of the condenser to spread the low boiling point component on the entire condensation heat transfer surface 20 of the condenser. By forming the film of the liquid 22 having a low concentration, the opportunity for the low boiling component gas 24 to come into contact with the liquid 22 having a low low boiling component concentration is sufficiently secured, so that the condensation of the low boiling component gas 24 is promoted. Further, in this way, the low boiling component concentration is Xc on all the heat transfer surfaces 20.
To X ', the low-boiling components are further condensed.
【0009】なお、ローレンツサイクルでは低沸成分の
少ない液22としては蒸発器出口の蒸発残液を用いること
ができる。In the Lorentz cycle, the evaporation residual liquid at the outlet of the evaporator can be used as the liquid 22 having less low boiling point components.
【0010】[0010]
【実施例】図4に示した上述のバイナリー発電システム
に適用した場合を例にとって説明すると、図2に示すよ
うに、蒸発器2の出口側にミストセパレータ14を設置
し、その下部出口を蒸発器2の入口側に接続する。凝縮
器6の出口側には低沸成分ガスを分離するためのアフタ
ークーラー16を設置する。なお、凝縮器6出口の未凝縮
ガスをさらに冷却して凝縮させる機能を有する点でこの
アフタークーラー16も一種の凝縮器である。ミストセパ
レータ14の下部出口とアフタークーラー16の入口部とを
配管18で接続する。EXAMPLE A case of application to the above-mentioned binary power generation system shown in FIG. 4 will be described as an example. As shown in FIG. 2, a mist separator 14 is installed on the outlet side of the evaporator 2 and the lower outlet thereof is evaporated. Connect to the inlet side of the vessel 2. An aftercooler 16 for separating the low boiling point component gas is installed on the outlet side of the condenser 6. The after cooler 16 is also a kind of condenser in that it has a function of further cooling and condensing the uncondensed gas at the outlet of the condenser 6. A pipe 18 connects the lower outlet of the mist separator 14 and the inlet of the aftercooler 16.
【0011】蒸発器2を出た作動流体はミストセパレー
タ14で蒸気と蒸発残液とに分離される。蒸気はタービン
4に供給されて仕事をした後、凝縮器6で冷却水に熱を
奪われて凝縮する。ミストセパレータ14で蒸気から分離
された蒸発残液は、下部出口から配管18を通ってアフタ
ークーラー16に送られ、その入口部より伝熱面に噴射さ
れる。The working fluid discharged from the evaporator 2 is separated by a mist separator 14 into vapor and evaporation residual liquid. The steam is supplied to the turbine 4 for work, and then the condenser 6 removes heat from the cooling water to condense it. The evaporation residual liquid separated from the steam by the mist separator 14 is sent from the lower outlet through the pipe 18 to the aftercooler 16, and is injected from the inlet to the heat transfer surface.
【0012】この場合の蒸発器2、凝縮器6の低沸成分
濃度は図3のようになる。図3から理解されるとおり、
蒸発器出口の蒸発残液は系内で最も低い低沸成分濃度X
eを示す。一方、凝縮器6の出口ではXcで示される状
態の低沸成分ガスの濃度が非常に高い。したがって、ア
フタークーラー18の入口部より噴射されて凝縮伝熱面20
に液膜を形成した低沸成分濃度の低い蒸発残液22に、低
沸成分ガス24が吸収される(図1参照)。The low-boiling component concentrations of the evaporator 2 and the condenser 6 in this case are as shown in FIG. As you can see from Figure 3,
Evaporation residual liquid at the outlet of the evaporator has the lowest low boiling point concentration X in the system.
e. On the other hand, at the outlet of the condenser 6, the concentration of the low boiling point component gas in the state indicated by Xc is very high. Therefore, it is injected from the inlet of the aftercooler 18 and condensed on the heat transfer surface 20.
The low-boiling component gas 24 is absorbed by the evaporation residual liquid 22 having a low low-boiling component concentration, which has formed a liquid film on the inside (see FIG. 1).
【0013】上述の実施例は、凝縮器6を第一段とした
場合にその出口に設置されるアフタークーラー16を第二
段の凝縮器と見立てたものであるが、凝縮器6の凝縮伝
熱面に低沸成分濃度の低い液の膜を形成させるようにす
ることもできる。しかしながら、その場合、低沸成分の
凝縮を促進するという観点からは同様の作用効果が望め
るものの、凝縮伝熱面に液膜を形成させることによって
凝縮すべきガスと伝熱面との接触を断つことにもなると
いうことに留意すべきである。In the above-mentioned embodiment, the aftercooler 16 installed at the outlet of the condenser 6 is regarded as a second-stage condenser when the condenser 6 is the first stage. It is also possible to form a film of a liquid having a low low boiling point component concentration. However, in that case, although the same action and effect can be expected from the viewpoint of promoting the condensation of the low boiling point component, the contact between the gas to be condensed and the heat transfer surface is cut off by forming a liquid film on the condensation heat transfer surface. It should be noted that this is also the case.
【0014】[0014]
【発明の効果】以上のように、この発明は、低沸成分濃
度の低い液を入口部より噴射して伝熱面全面に低沸成分
濃度の低い液膜を形成させるようにしたようにしたもの
であるから、凝縮器の凝縮伝熱面全面に低沸成分濃度の
低い液の膜が形成される。したがって、低沸成分濃度の
低い液に対する低沸成分ガスの接触の機会が十分確保さ
れ、低沸成分の凝縮を促進する。また、そのようにして
全伝熱面にて低沸成分濃度が低下するため、低沸成分の
凝縮が一層進む。この発明によれば、このようにして非
共沸混合物用凝縮器の伝熱性能を向上させることができ
る。As described above, according to the present invention, a liquid having a low low boiling point component concentration is jetted from the inlet to form a liquid film having a low low boiling point component concentration over the entire heat transfer surface. Therefore, a liquid film having a low low boiling point component concentration is formed on the entire condensation heat transfer surface of the condenser. Therefore, the opportunity of contacting the low-boiling component gas with the liquid having a low low-boiling component concentration is sufficiently ensured, and the condensation of the low-boiling component is promoted. Further, in this way, the concentration of the low-boiling component is lowered on all the heat transfer surfaces, so that the condensation of the low-boiling component further proceeds. According to the present invention, the heat transfer performance of the condenser for non-azeotropic mixture can be improved in this manner.
【図1】この発明の作用を模式的に示す凝縮器の主要部
の断面図(A)および対応する濃度線図である。FIG. 1 is a sectional view (A) of a main part of a condenser schematically showing the operation of the present invention and a corresponding concentration diagram.
【図2】この発明の実施例を示すバイナリー発電システ
ムのフローシートである。FIG. 2 is a flow sheet of a binary power generation system showing an embodiment of the present invention.
【図3】図2のバイナリー発電システムにおける作動流
体の気液平衡線図である。3 is a vapor-liquid equilibrium diagram of a working fluid in the binary power generation system of FIG.
【図4】バイナリー発電システムのフローシートであ
る。FIG. 4 is a flow sheet of a binary power generation system.
【図5】ランキンサイクルのTS線図である。FIG. 5 is a TS diagram of a Rankine cycle.
【図6】ローレンツサイクルのTS線図である。FIG. 6 is a TS diagram of a Lorentz cycle.
【図7】非共沸混合物の温度−組成の関係を示す気液平
衡線図である。FIG. 7 is a vapor-liquid equilibrium diagram showing a temperature-composition relationship of a non-azeotropic mixture.
2 蒸発器 4 タービン 6 凝縮器 8 循環ポンプ 12 発電機 14 ミストセパレータ 16 アフタークーラー 18 配管 20 凝縮伝熱面 22 低沸成分濃度の低い液 24 低沸成分ガス 2 Evaporator 4 Turbine 6 Condenser 8 Circulation pump 12 Generator 14 Mist separator 16 After cooler 18 Piping 20 Condensation heat transfer surface 22 Liquid with low boiling point component concentration 24 Low boiling point component gas
フロントページの続き (56)参考文献 特開 昭58−67975(JP,A) 特公 昭61−9482(JP,B2)Continuation of the front page (56) References JP-A-58-67975 (JP, A) JP-B-61-9482 (JP, B2)
Claims (1)
沸混合物のための凝縮器であって、低沸成分濃度の低い
液を上部の入口部より噴射して垂直な伝熱面全面に低沸
点成分濃度の低い液膜を形成させるようにした非共沸混
合物用凝縮器。1. A condenser for a non-azeotropic mixture composed of two or more fluids having different boiling points, wherein a liquid having a low concentration of low boiling components is injected from an upper inlet portion to cover the entire vertical heat transfer surface. A condenser for a non-azeotropic mixture, which is adapted to form a liquid film having a low concentration of low-boiling components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3089918A JP2513937B2 (en) | 1991-03-27 | 1991-03-27 | Non-azeotrope condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3089918A JP2513937B2 (en) | 1991-03-27 | 1991-03-27 | Non-azeotrope condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04298606A JPH04298606A (en) | 1992-10-22 |
JP2513937B2 true JP2513937B2 (en) | 1996-07-10 |
Family
ID=13984090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3089918A Expired - Fee Related JP2513937B2 (en) | 1991-03-27 | 1991-03-27 | Non-azeotrope condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2513937B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867975A (en) * | 1981-10-16 | 1983-04-22 | Mitsui Eng & Shipbuild Co Ltd | Energy recovery method of low temperature and low temperature difference |
DE3421085C1 (en) * | 1984-06-06 | 1985-10-31 | F. Willich GmbH & Co, 4600 Dortmund | Process for solidifying and sealing coal and / or rock and earth formations |
-
1991
- 1991-03-27 JP JP3089918A patent/JP2513937B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04298606A (en) | 1992-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100624990B1 (en) | Gas turbine inlet air cooling method for combined cycle power plants | |
JP2007262909A (en) | Power system | |
JP2513936B2 (en) | Low boiling medium system | |
JP2513937B2 (en) | Non-azeotrope condenser | |
JP3169441B2 (en) | Oil absorption type heat cycle | |
JP2513941B2 (en) | Low boiling medium system | |
JP2513939B2 (en) | Low boiling medium system | |
JP2513935B2 (en) | Low boiling medium system | |
JP2513938B2 (en) | Low boiling medium system | |
JP2551703B2 (en) | Circulating method of working fluid in low boiling medium system | |
JP3244087B2 (en) | Heat pump for mixed media | |
JP2520987B2 (en) | Evaporator for non-azeotropic mixture | |
JP2513940B2 (en) | Low boiling medium system | |
JP2513949B2 (en) | Low boiling medium gas absorber | |
JPH05279659A (en) | Working fluid for rankine cycle | |
JPH0559907A (en) | Absorbed liquid cooler | |
JP2650660B2 (en) | Control method of thermal cycle using non-azeotropic mixed medium as working fluid | |
JPH07198222A (en) | Heat pump including reverse rectifying part | |
JPH04116346A (en) | Condenser | |
JP2000105024A (en) | Plate type condenser | |
JP2513950B2 (en) | Absorber integrated condenser | |
JPH0586812A (en) | Mixture medium multiple stage evaporator | |
JP2650664B2 (en) | Mixed media evaporator | |
JPH08100608A (en) | Mixed medium binary generating system | |
JPS6193212A (en) | Condenser for non-azeotropic mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080430 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090430 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100430 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |