JPS6193212A - Condenser for non-azeotropic mixture - Google Patents

Condenser for non-azeotropic mixture

Info

Publication number
JPS6193212A
JPS6193212A JP21463284A JP21463284A JPS6193212A JP S6193212 A JPS6193212 A JP S6193212A JP 21463284 A JP21463284 A JP 21463284A JP 21463284 A JP21463284 A JP 21463284A JP S6193212 A JPS6193212 A JP S6193212A
Authority
JP
Japan
Prior art keywords
condenser
azeotropic mixture
working medium
gas
reflux pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21463284A
Other languages
Japanese (ja)
Other versions
JPH0429842B2 (en
Inventor
Hiroyuki Sumitomo
住友 博之
Akira Horiguchi
章 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP21463284A priority Critical patent/JPS6193212A/en
Publication of JPS6193212A publication Critical patent/JPS6193212A/en
Publication of JPH0429842B2 publication Critical patent/JPH0429842B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To ensure a desired variation of temperature of condensate and improving the condensing performance of a waste heat recovery system by providing a variable throttle in a reflux pipe which runs from an aerator to a circulation type condenser. CONSTITUTION:In a circulation type condenser 11 the non-azeotropic mixture and cooling water flow in the opposit direction. The outlet 15 of the non- azeotropic mixture the condenser 11 is connected to a deaerator 16. A reflux pipe 18 is provided which runs from the gas phase outlet of the deaerator 16 to the non-azeotropic mixture inlet 14 of the condenser. A variable throttle 17 is disposed in the reflux pipe 18. By adjusting the quantity of circulating liquid at the variable throttle 17, the optimum thermodynamic concentration of non-azeotropic mixture the condenser 11 can be maintained. An expected variation of temperature of condensate can be ensured and the condensing performance be improved.

Description

【発明の詳細な説明】 、庄ユニ」ゾυ1±肛 この発明は非共沸混合物を凝縮させるための装置に関す
るもので、例えば非共沸混合物を作動媒体とする廃熱回
収装置において使用することができる。
[Detailed Description of the Invention] This invention relates to a device for condensing a non-azeotropic mixture, and can be used, for example, in a waste heat recovery device using a non-azeotropic mixture as a working medium. I can do it.

盗」ゴ目支七 第3図は工場で排出される温排水等を熱源としてランキ
ンサイクルにより動力として回収するようにした廃熱回
収装置の一例を示す。この装置において作動媒体(例え
ばフロン)は蒸発器(21) 、タービン(22) 、
凝縮器(23) 、およびポンプ(24)から構成され
る系内で循環する。すなわち、蒸発器(21)にて加熱
されて発生した作動媒体の蒸気はタービン(22)で膨
張して仕事をなし、タービン(22)から出た排気は凝
縮器(23)で冷却されて凝縮した後、再びポンプ(2
4)で蒸発器(21)へ送られて同じ作用を繰り返す、
タービン(22)の出力軸は負荷(25)  (例えば
発電機)に連結している。
Figure 3 shows an example of a waste heat recovery device that uses heated wastewater discharged from a factory as a heat source and recovers it as power using a Rankine cycle. In this device, the working medium (e.g. fluorocarbons) is supplied to the evaporator (21), the turbine (22),
It circulates within a system consisting of a condenser (23) and a pump (24). That is, the steam of the working medium generated by heating in the evaporator (21) expands in the turbine (22) and performs work, and the exhaust gas discharged from the turbine (22) is cooled and condensed in the condenser (23). After that, pump the pump again (2
4) is sent to the evaporator (21) and repeats the same action,
The output shaft of the turbine (22) is connected to a load (25) (for example a generator).

罵 °しよ゛と る□ 占 このような廃熱回収装置においては温度差が大きいほど
効率が高くなるため、蒸発器(21)の出口に加熱器を
設けるなど、タービン(22)に供給する作動媒体蒸気
の温度を高くする工夫が行われている。しかしながら、
いずれも装置を別途付加する必要があるからコストが高
くなる。
I'm going to curse□ In this type of waste heat recovery equipment, the efficiency increases as the temperature difference increases, so a heater is installed at the outlet of the evaporator (21), etc. to supply the waste heat to the turbine (22). Efforts have been made to increase the temperature of the working medium vapor. however,
In either case, it is necessary to add a separate device, which increases the cost.

この発明はかかる問題点の認識から出発したもので、従
来の単一成分よりなる媒体に代えて非共沸混合媒体を使
用することによって、凝縮器における凝縮温度自体を低
くすることを実現させんとするものである。したがって
この発明の目的は、非共沸混合媒体に最も適した構造の
凝縮装置を提供することである。
This invention was developed based on the recognition of this problem, and by using a non-azeotropic mixed medium in place of the conventional single-component medium, it is possible to lower the condensation temperature itself in the condenser. That is. Therefore, an object of the present invention is to provide a condensing device with a structure most suitable for non-azeotropic mixed media.

口占  ゛ るた の この発明の非共沸混合物の凝縮装置は、凝縮すべき非共
沸混合物と冷却水とが完全対向流にて流通する循環式凝
縮器(11)と、凝縮器の非共沸混合物出口(15)に
接続した気液分離器(16)と、 気液分離器の気相出口から凝縮器の非共沸混合物入口(
14)に通ずる還流管(18)と、還流管の途中に設け
た可変絞り(17)とを包含しており、可変絞りで還流
液量を調節することによって凝縮器内における非共沸混
合物の熱力学的最適濃度を維持するようにしたことを特
徴とする。
The condensing device for a non-azeotropic mixture of this invention according to the present invention comprises a circulating condenser (11) in which the non-azeotropic mixture to be condensed and cooling water flow in completely opposite flows; A gas-liquid separator (16) connected to the boiling mixture outlet (15), and a non-azeotropic mixture inlet (
14) and a variable throttle (17) provided in the middle of the reflux pipe, and by adjusting the amount of reflux liquid with the variable throttle, the non-azeotropic mixture in the condenser can be reduced. It is characterized by maintaining the thermodynamically optimum concentration.

災見皿 第1図にこの発明の実施例を示すが、以下、この凝縮装
置を第3図に示した既述の廃熱回収装置において従来の
凝縮器(23)に代えて使用する場合を例にとって説明
する。なお、この場合の廃熱回収装置の作動媒体は非共
沸混合物である。ここに非共沸混合物とは、いわゆる共
沸混合物以外の、2成分系もしくは多成分系の混合物を
いうものとする。
An embodiment of the present invention is shown in FIG. 1, and below, a case where this condensing device is used in place of the conventional condenser (23) in the already mentioned waste heat recovery device shown in FIG. 3 will be explained. Let me explain using an example. Note that the working medium of the waste heat recovery device in this case is a non-azeotropic mixture. The non-azeotropic mixture herein refers to a two-component or multi-component mixture other than a so-called azeotropic mixture.

第2図は、一定圧力のもとにおける成分Aおよび成分B
の単独の飽和温度をそれぞれTAおよびTBとするとき
、AとBとからなる非共沸混合物の濃度と温度との関係
を示す。なお、ここに濃度は、AとBの重量をそれぞれ
GAおよびGBとするとき、この非共沸混合物の単位重
量当たりに含まれるBの重量ξをいうものとすもし温度
Tのもとで液相と気相とが平衡状態にあるときは液相線
および気相線上の温度Tに相当する点の位置から、液相
の濃度はξlであり、気相の濃度はξgである。さらに
、液相と気相との合成の濃度をξとすれば、この混合物
の状態は点Mで表され、そのときの溶液の重量と蒸気の
重量との割合は、点Mから液相線および気相線に至る水
平圧F!taおよびbに逆比例する。
Figure 2 shows component A and component B under constant pressure.
The relationship between the concentration and temperature of a non-azeotropic mixture consisting of A and B is shown, where the individual saturation temperatures of A and B are respectively TA and TB. Note that the concentration here refers to the weight ξ of B contained per unit weight of this non-azeotropic mixture, where the weights of A and B are GA and GB, respectively. When the phase and the gas phase are in an equilibrium state, the concentration of the liquid phase is ξl and the concentration of the gas phase is ξg from the position of the point corresponding to the temperature T on the liquidus line and the gas phase line. Furthermore, if the concentration of the combined liquid phase and gas phase is ξ, the state of this mixture is represented by point M, and the ratio of the weight of the solution to the weight of vapor at that time is calculated from point M to the liquidus line. and the horizontal pressure F leading to the gas phase line! Inversely proportional to ta and b.

つぎに、点Mが液相線と気相線とで囲まれる領域内に存
在するときは、混合物は気液両相に分かれるが、点Mが
それらの両線と一致するときまたはその領域外に出ると
きは、気、液のどちらか1つの相のみとなる。例えば、
点M1は不飽和な液体を示すし、また点M2は過熱蒸気
を表す。しかし、温度が変わると混合物の状態も変化す
る。例えば、点M1で示される不飽和の液体の温度をT
2まで上げると飽和溶液となり、それ以上に温度を上げ
ると蒸発を始める。
Next, when point M exists within the region surrounded by the liquidus line and the vapor phase line, the mixture separates into both gas and liquid phases, but when point M coincides with both of those lines or outside that region. When it exits, only one phase, either gas or liquid, exists. for example,
Point M1 represents unsaturated liquid and point M2 represents superheated steam. However, when the temperature changes, the state of the mixture also changes. For example, if the temperature of the unsaturated liquid indicated by point M1 is T
When the temperature is raised to 2, it becomes a saturated solution, and when the temperature is raised above that point, it begins to evaporate.

逆に、濃度ξβの気体を定圧のもとで冷却していくと、
点dで凝縮が始まり、そのとき平衡にある気相(蒸気)
の組成と状態は点d′で示される。さらに冷却して温度
T1になると、点りで示される状態の気相と点jで示さ
れる状態の溶液がji:ihの割合で共存する。冷却を
さらに続けて温度Tになると点Cの状態の液相のみにな
り、それから後も冷却を行えば単に溶液を適冷すること
になる。
Conversely, when a gas with a concentration ξβ is cooled under constant pressure,
Condensation begins at point d, at which time the gas phase (vapor) is in equilibrium
The composition and state of is indicated by point d'. When it is further cooled to a temperature T1, the gas phase in the state indicated by the dot and the solution in the state indicated by the point j coexist at a ratio of ji:ih. When cooling is continued and the temperature reaches T, only the liquid phase at point C remains, and if cooling is continued thereafter, the solution is simply cooled appropriately.

そこで第1図を参照すると、凝縮器(11)は作動媒体
の通路(12)と、冷却水の通路(13)とを有し、作
動媒体と冷却水とは完全対向流の関係にある&凝縮器(
11)の作動媒体入口(14)へはタービン(22)か
らの作動媒体蒸気が供給される。凝縮器(11)の作動
媒体出口(15)には気液分離器(16)を設けである
。気液分離器(16)の液相出口は作動媒体循環ポンプ
(24)に接続している。気液分離器(16)の気相出
口は、可変絞り(17)および昇圧機(19)を取り付
けた還流管(18)を通じて凝縮器(11)の作動媒体
入口(14)と連絡している。
Therefore, referring to FIG. 1, the condenser (11) has a working medium passage (12) and a cooling water passage (13), and the working medium and cooling water are in a completely opposite flow relationship. Condenser(
Working medium steam from the turbine (22) is supplied to the working medium inlet (14) of 11). A gas-liquid separator (16) is provided at the working medium outlet (15) of the condenser (11). The liquid phase outlet of the gas-liquid separator (16) is connected to a working medium circulation pump (24). The gas phase outlet of the gas-liquid separator (16) communicates with the working medium inlet (14) of the condenser (11) through a reflux pipe (18) equipped with a variable throttle (17) and a booster (19). .

しかして凝縮器(11)内で凝縮した作動媒体は、気液
分離器(16)を経てポンプ(24)へ進む。気液分離
器(16)で作動媒体液から分離した作動媒体蒸気は還
流管(18)を通って、タービン(22)から排出され
る作動媒体蒸気と共に、凝縮器(11)へ還流する。そ
の際作動媒体蒸気は、昇圧機(19)により凝縮器(1
1)における圧力降下分だけ昇圧される。なお、同じ廃
熱回収装置でもヒートポンプの場合は、還流管(18)
を圧縮器の吸入側に接続し、昇圧機を省略することもで
きる。
The working medium thus condensed in the condenser (11) passes through the gas-liquid separator (16) and advances to the pump (24). The working medium vapor separated from the working medium liquid by the gas-liquid separator (16) passes through the reflux pipe (18) and returns to the condenser (11) together with the working medium vapor discharged from the turbine (22). At this time, the working medium vapor is transferred to the condenser (1) by the booster (19).
The pressure is increased by the amount of pressure drop in 1). In addition, if the same waste heat recovery device is a heat pump, the reflux pipe (18)
It is also possible to connect the compressor to the suction side of the compressor and omit the booster.

凝縮器(11)の作動媒体入口(14)および出口(1
5)でそれぞれ温度T2およびTを確保するのに最適な
作動媒体の濃度をξlとすると、濃度ξlの作動媒体蒸
気が凝縮器(11)に入ると、まず温度T2にて点d′
で示される状態の初凝縮液が発生する。作動媒体蒸気が
凝縮器(11)内で冷却されて温度Tに至るまでに点d
”から点Cまでの液相線上の各点で示される状態の作動
媒体液が発生する。結局、凝縮器(11)の作動媒体出
口(15)から気液分離器(16)へ向かうのは、点d
′で示される初WEffr6態(温度、濃度)の液と、
点C゛で示される蒸気とである。しかしてこれらは気液
分離器(16)で分離され、作動媒体液はポンプ(24
)を経て蒸発器(21)へ、作動媒体蒸気は還流管(1
8)へ進む。
Working medium inlet (14) and outlet (1) of the condenser (11)
Let ξl be the optimum concentration of the working medium to ensure the temperatures T2 and T, respectively, in 5). When the working medium vapor with the concentration ξl enters the condenser (11), it first reaches the point d' at the temperature T2.
An initial condensate with the state shown is generated. By the time the working medium vapor is cooled in the condenser (11) and reaches the temperature T, it reaches the point d.
A working medium liquid is generated at each point on the liquidus line from `` to point C.'' In the end, the working medium liquid flows from the working medium outlet (15) of the condenser (11) to the gas-liquid separator (16). , point d
' A liquid in the initial WEffr6 state (temperature, concentration),
and the steam indicated by point C'. These are then separated by a gas-liquid separator (16), and the working medium liquid is pumped (24).
) to the evaporator (21), the working medium vapor passes through the reflux pipe (1
Proceed to 8).

還流管(1日)は凝縮器(11)の作動媒体入口(14
)へ通じており、タービン(22)から排出された作動
媒体蒸気と共に凝縮器(11)へ、気液分離器(16)
からの作動媒体蒸気を還流せしめる。しかしながら、上
に述べたとおり、気液分離器(16)からポンプ(24
)で蒸発器(21)およびタービン(22)へと循環せ
しめられる作動媒体液は初凝縮液ほか最適濃度ξlより
低濃度の溶液を含むため全体的に濃度が1戯通濃度ξβ
よりも低くなっている。したがって、当然ながら、ター
ビン(22)から凝縮器(11)へと循環する作動媒体
蒸気の濃度も最適濃度よりも低い。一方、気液分離器(
16)へ入る作動媒体蒸気の濃度は最適濃度ξlよりも
高い。そこで可変絞り(17)は、気液分離器(16)
から還流管(18)を通って還流する作動媒体蒸気の量
を調節し、タービン(22)からの分と合流してちょう
ど最適濃度となって凝縮器(11)へ入るようにするた
めのものである。かかる濃度調整は、通常のプロセス制
御技術を応用して可変絞り(17)を制御することによ
り容易に達成することができる。
The reflux pipe (1 day) is connected to the working medium inlet (14) of the condenser (11).
) to the condenser (11) together with the working medium vapor discharged from the turbine (22), and to the gas-liquid separator (16).
reflux the working medium vapor from the However, as mentioned above, from the gas-liquid separator (16) to the pump (24)
), the working medium liquid circulated to the evaporator (21) and the turbine (22) contains the initial condensate and a solution with a lower concentration than the optimum concentration ξl, so the overall concentration is 1.
It is lower than. Naturally, therefore, the concentration of the working medium vapor circulating from the turbine (22) to the condenser (11) is also lower than the optimum concentration. On the other hand, a gas-liquid separator (
The concentration of the working medium vapor entering 16) is higher than the optimum concentration ξl. Therefore, the variable throttle (17) is connected to the gas-liquid separator (16).
This is to adjust the amount of working medium vapor that flows back through the reflux pipe (18) from the reflux pipe (18) so that it joins with the steam from the turbine (22) to reach the optimum concentration and enters the condenser (11). It is. Such concentration adjustment can be easily achieved by controlling the variable aperture (17) by applying conventional process control techniques.

j−明4す開展 この発明は、気液分離器からの還流蒸気の量を調節する
ことにより凝縮器内の非共沸混合物を最適濃度に保持す
るようにしたから、所期の凝縮温度変化を確保すること
のできる、非共沸混合物用として有効な凝縮装置を提供
することができる。しかも、非共沸混合物ゆえに凝縮液
と蒸気の混在は避は難いが、この発明によれば、蒸気が
凝縮器内に累a滞留することを防止できるから凝縮性能
の向上も期待できる。
This invention maintains the non-azeotropic mixture in the condenser at an optimum concentration by adjusting the amount of reflux vapor from the gas-liquid separator, so that the desired condensation temperature change can be achieved. It is possible to provide a condensing device that is effective for non-azeotropic mixtures and can ensure the following. In addition, since it is a non-azeotropic mixture, it is difficult to avoid the condensate and vapor being mixed together, but according to the present invention, it is possible to prevent the vapor from accumulating in the condenser, so it is expected that the condensing performance will be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すブロック図、第2図は
非共沸混合物の気液平衡線図、第3図はこの発明の凝縮
装置を利用しうる廃熱回収装置のブロック図である。 (11) −−−−一凝縮器、(14) −作動媒体入
口、(15)・−・作動媒体出口、(16) −気液分
離器、(17) −可変絞り、(1B) −−一一一還
流管、(19)・−・昇圧機。 痔2 図 第 f:3  図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a vapor-liquid equilibrium diagram of a non-azeotropic mixture, and Fig. 3 is a block diagram of a waste heat recovery device that can utilize the condensing device of the present invention. be. (11) ----One condenser, (14) - Working medium inlet, (15) - Working medium outlet, (16) - Gas-liquid separator, (17) - Variable throttle, (1B) -- 111 reflux pipe, (19) --- booster. Hemorrhoids 2 Figure f: Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)凝縮すべき非共沸混合物と冷却水とが完全対向流
にて流通する凝縮器と、凝縮器の非共沸混合物出口に接
続した気液分離器と、気液分離器の気相出口から凝縮器
の非共沸混合物入口に通ずる還流管と、還流管の途中に
設けた可変絞りとからなり、前記可変絞りで還流蒸気量
を調節することによって凝縮器内における非共沸混合物
の熱力学的最適濃度を維持するようにしたことを特徴と
する非共沸混合物の凝縮装置。
(1) A condenser in which the non-azeotropic mixture to be condensed and cooling water flow in completely opposite flows, a gas-liquid separator connected to the non-azeotropic mixture outlet of the condenser, and a gas phase in the gas-liquid separator. It consists of a reflux pipe leading from the outlet to the non-azeotropic mixture inlet of the condenser, and a variable throttle installed in the middle of the reflux pipe. A condensing device for a non-azeotropic mixture, characterized in that the thermodynamically optimum concentration is maintained.
JP21463284A 1984-10-12 1984-10-12 Condenser for non-azeotropic mixture Granted JPS6193212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21463284A JPS6193212A (en) 1984-10-12 1984-10-12 Condenser for non-azeotropic mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21463284A JPS6193212A (en) 1984-10-12 1984-10-12 Condenser for non-azeotropic mixture

Publications (2)

Publication Number Publication Date
JPS6193212A true JPS6193212A (en) 1986-05-12
JPH0429842B2 JPH0429842B2 (en) 1992-05-20

Family

ID=16658951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21463284A Granted JPS6193212A (en) 1984-10-12 1984-10-12 Condenser for non-azeotropic mixture

Country Status (1)

Country Link
JP (1) JPS6193212A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648305A (en) * 1987-06-30 1989-01-12 Toshiba Corp Turbine plant using hot water
JPH048706U (en) * 1990-05-10 1992-01-27
JPH04298610A (en) * 1991-03-27 1992-10-22 Hisaka Works Ltd Low boiling point medium system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648305A (en) * 1987-06-30 1989-01-12 Toshiba Corp Turbine plant using hot water
JPH048706U (en) * 1990-05-10 1992-01-27
JPH04298610A (en) * 1991-03-27 1992-10-22 Hisaka Works Ltd Low boiling point medium system

Also Published As

Publication number Publication date
JPH0429842B2 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
US4586340A (en) Method and apparatus for implementing a thermodynamic cycle using a fluid of changing concentration
EP0286565A2 (en) Power cycle working with a mixture of substances
US4779424A (en) Heat recovery system utilizing non-azeotropic medium
US4625522A (en) Process for producing cold and/or heat by using a non-azeotropic mixture of fluids in a cycle with ejector
JPS6193212A (en) Condenser for non-azeotropic mixture
US4827877A (en) Heat recovery system utilizing non-azeotropic medium
JPH08338207A (en) Exhaust heat recovery device
US4785876A (en) Heat recovery system utilizing non-azetotropic medium
JPS63179105A (en) Condenser for non-azeotropic mixture
CA1241845A (en) Thermodynamic process for a practical approach to the carnot cycle
JP2513936B2 (en) Low boiling medium system
JPS622128B2 (en)
JP2520987B2 (en) Evaporator for non-azeotropic mixture
JP2513939B2 (en) Low boiling medium system
JPS6179810A (en) Vaporizer for non-azeotrope
JP2650660B2 (en) Control method of thermal cycle using non-azeotropic mixed medium as working fluid
JP2513940B2 (en) Low boiling medium system
JP2954022B2 (en) Non-azeotropic mixed medium cycle power generation system
JPH07198222A (en) Heat pump including reverse rectifying part
JP2551703B2 (en) Circulating method of working fluid in low boiling medium system
JP2513937B2 (en) Non-azeotrope condenser
JPH04350305A (en) Low boiling point medium system
JP2513938B2 (en) Low boiling medium system
JP2650664B2 (en) Mixed media evaporator
JP2513941B2 (en) Low boiling medium system