JPH0559907A - Absorbed liquid cooler - Google Patents

Absorbed liquid cooler

Info

Publication number
JPH0559907A
JPH0559907A JP21822391A JP21822391A JPH0559907A JP H0559907 A JPH0559907 A JP H0559907A JP 21822391 A JP21822391 A JP 21822391A JP 21822391 A JP21822391 A JP 21822391A JP H0559907 A JPH0559907 A JP H0559907A
Authority
JP
Japan
Prior art keywords
low boiling
boiling point
condenser
liquid
point component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21822391A
Other languages
Japanese (ja)
Inventor
Kazuo Hirowatari
和緒 広渡
Ichiro Maeda
一郎 前田
Hiroyuki Sumitomo
博之 住友
Tatsuo Yamazaki
起男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Hisaka Works Ltd
Original Assignee
Kyushu Electric Power Co Inc
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Hisaka Works Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP21822391A priority Critical patent/JPH0559907A/en
Publication of JPH0559907A publication Critical patent/JPH0559907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To reduce a concentration of non-condensed low boiling point component gas staying in a condenser so as to enhance heat conducting performance of the condenser in a low boiling point medium system by cooling liquid having a low boiling point component concentration in a cooler, introducing it toward an operating fluid outlet of the condenser, and absorbing non-vaporized low boiling point component gas. CONSTITUTION:Steam of operating fluid generated in an evaporator 2 is supplied to a turbine 4 for work, and then, its heat is absorbed by cooling water in a condenser 6, to be condensed. Steam residual liquid separated from the steam, i.e., the operating fluid which cannot be vaporized completely is supplied to a drain pot 14 through a liquid return pipeline 18 via a cooler 16. Liquid staying in an outlet of the evaporator has the lowest concentration of a low boiling point component inside a system. Meanwhile, a concentration of low boiling point component gas is remarkably high in the outlet of the condenser 6. Consequently, the low boiling point component gas is absorbed by the vaporized residual liquid supplied to the absorber 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ヒートポンプやバイ
ナリーサイクルのような低沸点媒体システムに関し、作
動流体として二成分系の混合媒体を使用する場合の性能
向上を図るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low boiling point medium system such as a heat pump or a binary cycle and is intended to improve the performance when a binary mixed medium is used as a working fluid.

【0002】[0002]

【従来の技術】低沸点媒体システムの一例として図3に
示されるバイナリー発電システムについて述べると、蒸
発器2、タービン4、凝縮器6および媒体ポンプ8が直
列に接続されて閉ループ10を構成している。そして、そ
の閉ループ10内を循環する作動流体は、まず蒸発器2で
熱源流体から熱を奪って蒸発し、発生した蒸気はタービ
ン4に供給される。この蒸気はタービン4内で膨張して
発電機12を駆動する仕事をする。タービン4から排出さ
れた蒸気は凝縮器6で冷却水に熱を奪われて凝縮する。
凝縮液は循環ポンプ8で再び蒸発器2に送られる。
2. Description of the Related Art A binary power generation system shown in FIG. 3 will be described as an example of a low boiling point medium system. An evaporator 2, a turbine 4, a condenser 6 and a medium pump 8 are connected in series to form a closed loop 10. There is. Then, the working fluid circulating in the closed loop 10 first removes heat from the heat source fluid in the evaporator 2 to be evaporated, and the generated steam is supplied to the turbine 4. This steam expands in the turbine 4 and works to drive the generator 12. The steam discharged from the turbine 4 is deprived of heat by the cooling water in the condenser 6 and condensed.
The condensate is sent to the evaporator 2 again by the circulation pump 8.

【0003】ところで、このようなバイナリーサイクル
やヒートポンプ等の熱サイクルでは、効率の向上のため
作動流体に非共沸の混合媒体を用いてローレンツサイク
ルを構成させることがある。たとえばバイナリーサイク
ルは基本的にランキンサイクルであって、作動流体が単
一媒体のときは図4に示すようにTS線図の’−、
−がそれぞれ等温変化を示す。ところが、フロンR
123 とR22の混合のような混合媒体を作動流体として使
用すると、図5に示すように、同一圧力でも飽和温度が
変化し、蒸発器2では蒸発温度が上がり、凝縮器6では
凝縮温度が下がる。これによりローレンツサイクルが形
成され、システム効率が向上する。
By the way, in such a heat cycle such as a binary cycle or a heat pump, a Lorentz cycle may be constituted by using a non-azeotropic mixed medium as a working fluid in order to improve efficiency. For example, the binary cycle is basically a Rankine cycle, and when the working fluid is a single medium, as shown in FIG.
-Indicates isothermal changes. However, Freon R
When a mixed medium such as a mixture of 123 and R22 is used as a working fluid, the saturation temperature changes, the evaporation temperature rises in the evaporator 2 and the condensation temperature decreases in the condenser 6, as shown in FIG. .. This creates a Lorentz cycle and improves system efficiency.

【0004】図6は最も簡単な二成分の液体−蒸気系の
温度−組成の関係を横軸に低沸成分のモル分率をとって
示したものである。GとLは単一相で、それぞれ気相と
液相、L+Gの領域は液体と蒸気が共存する二相領域で
ある。もし低沸成分の60モル%(モル分率=0.60)の液
体混合物の温度を、定圧下で上昇させたとすると、この
系の変化は直線ab'cd"e に沿って考えることができる。
低温では液相のみが存在するが、b'点で蒸気相が現われ
る。この蒸気相の組成はb"点で与えられ、2つの共役相
は図上の平衡連結線b"b'で結ばれている。さらに温度を
上げると、もっと多くの蒸気が生成するが、その場合、
蒸気中の低沸成分の濃度が高いので、液相ではこの成分
が相対的に減少し、液体の組成はb'c'd'に沿って変化
し、一方、蒸気の組成はb"c"d"に沿って変化する。温度
t℃では、二相領域にある系の全組成はc点で表される
が、蒸気組成、液体組成はそれぞれc点を通る平衡連結
線の両端、c"点とc'点で与えられる。二相の相対的な量
は、物理学のてこの原理から求められる。すなわち、蒸
気と液体のモル数の比はcc'と c"c の長さの比で表され
る。さらに温度を上げるとますます蒸気が生成し、d”
点になると液相はほとんどなくなり、これ以上温度が高
くなると、液相が消えて蒸気相(d"点)のみが残る。こ
れ以上は温度を(d"e に沿って)上げてもなにも起らな
い。
FIG. 6 shows the simplest temperature-composition relationship of a two-component liquid-vapor system with the horizontal axis representing the mole fraction of the low-boiling component. G and L have a single phase, a gas phase and a liquid phase, respectively, and a region L + G is a two-phase region where liquid and vapor coexist. If the temperature of a liquid mixture of 60 mol% of low boiling components (molar fraction = 0.60) is raised under constant pressure, the change of this system can be considered along the straight line ab'cd "e.
Only liquid phase exists at low temperature, but vapor phase appears at point b '. The composition of this vapor phase is given by point b ", and the two conjugated phases are connected by the equilibrium connecting line b" b 'in the figure. Increasing the temperature will produce more steam, but in that case,
Due to the high concentration of low boiling components in the vapor, this component is relatively reduced in the liquid phase, the composition of the liquid changes along b'c'd ', while the composition of the vapor is b "c" At temperature t ° C, the total composition of the system in the two-phase region is represented by point c, but the vapor composition and liquid composition are both ends of the equilibrium connection line passing through point c, c " Given by points and c'points. The relative quantities of the two phases are derived from the lever principle of physics. In other words, the ratio of the number of moles of vapor and liquid is expressed by the ratio of the length of cc 'and the length of c "c.
At the point, the liquid phase almost disappears, and when the temperature becomes higher than this, the liquid phase disappears and only the vapor phase (d "point) remains. Even if the temperature is further raised (along d" e) Does not happen.

【0005】[0005]

【発明が解決しようとする課題】凝縮器出口の作動流体
の気相では低沸成分の濃度が系内で最も高く、凝縮伝熱
面付近にも低沸成分のガスが滞留する。このため、図7
に示すように、低沸成分は凝縮器に対し物質移動および
熱移動を妨げる不凝縮ガスと同じような存在となり、伝
熱性能を低下させる。
In the vapor phase of the working fluid at the outlet of the condenser, the concentration of the low boiling point component is the highest in the system, and the gas with the low boiling point component stays near the condensation heat transfer surface. Therefore, in FIG.
As shown in (3), the low-boiling component exists in the condenser in the same manner as the non-condensable gas that impedes the mass transfer and the heat transfer, and reduces the heat transfer performance.

【0006】そこで、この発明の目的とするところは、
二成分系の混合媒体を作動流体として使用する低沸点媒
体システムにおいて、凝縮器における未凝縮の低沸成分
ガスの濃度を下げ、不凝縮ガスを排除することと同じ効
果を上げることにある。
Therefore, the object of the present invention is to
In a low boiling point medium system using a binary mixed medium as a working fluid, it is to reduce the concentration of uncondensed low boiling point component gas in a condenser and to achieve the same effect as eliminating noncondensable gas.

【0007】[0007]

【課題を解決するための手段】この発明は、低沸成分濃
度の低い液を冷却器で冷却した上で凝縮器の作動流体出
口側に導き、未蒸発低沸成分ガスを吸収させることによ
り課題を解決した。冷却器の冷却熱源としては、冷水、
大気、低温媒体液などが考えられる。
SUMMARY OF THE INVENTION The present invention is directed to a liquid having a low low boiling point component concentration cooled by a cooler and then led to a working fluid outlet side of a condenser to absorb unvaporized low boiling point component gas. Solved. As the cooling heat source of the cooler, cold water,
Atmosphere, low-temperature liquid medium, etc. are considered.

【0008】[0008]

【作用】未凝縮低沸成分ガスを低沸点成分濃度の低い液
に吸収させることにより、凝縮器出口付近における未凝
縮低沸成分濃度が下がるので、物質移動および熱移動が
容易になり凝縮器伝熱性能が向上する。
[Function] By absorbing the uncondensed low-boiling component gas in the liquid having a low low-boiling component concentration, the uncondensed low-boiling component concentration near the outlet of the condenser is lowered, so that mass transfer and heat transfer are facilitated and the condenser transfer Thermal performance is improved.

【0009】吸収の場合、ガスが液化する際に凝縮潜熱
を発生し、発生した熱によって液温が上昇し、飽和温度
に対する圧力は高くなるものであるが、この温度上昇に
よる圧力の上昇を防ぐために、冷却器が吸収液(希濃度
液)の温度を下げる働きをする。これにより吸収作用が
促進される。
In the case of absorption, latent heat of condensation is generated when the gas is liquefied, and the generated heat raises the liquid temperature and raises the pressure relative to the saturation temperature. However, the rise in pressure due to this temperature rise is prevented. For cooling, the cooler serves to lower the temperature of the absorbing liquid (dilute liquid). This promotes the absorption effect.

【0010】[0010]

【実施例】図3に示した上述のバイナリー発電システム
に適用した場合を例にとって説明すると、図1に示す実
施例は、低沸成分濃度の低い液として蒸発残液を利用し
ている。すなわち、蒸発器2の作動流体出口側を、液戻
り配管18で、凝縮器6の作動流体出口側に設けた未凝縮
ガスを分離するためのドレンポット14の気相に接続す
る。ドレンポット14の下部の液相は循環ポンプ8に接続
する。液戻り配管18の途中には冷却器16を設置する。ま
た、この実施例の場合、冷却器16の冷却熱源として、循
環ポンプ8から蒸発器2へ送られる作動流体液を利用し
ている。
EXAMPLE The case of application to the above-mentioned binary power generation system shown in FIG. 3 will be described as an example. In the example shown in FIG. 1, the evaporation residual liquid is used as the liquid having a low low boiling point component concentration. That is, the working fluid outlet side of the evaporator 2 is connected to the vapor phase of the drain pot 14 for separating uncondensed gas provided on the working fluid outlet side of the condenser 6 by the liquid return pipe 18. The liquid phase below the drain pot 14 is connected to the circulation pump 8. A cooler 16 is installed in the middle of the liquid return pipe 18. In the case of this embodiment, the working fluid liquid sent from the circulation pump 8 to the evaporator 2 is used as the cooling heat source of the cooler 16.

【0011】蒸発器2で発生した作動流体の蒸気は、タ
ービン4に供給されて仕事をした後、凝縮器6で冷却水
に熱を奪われて凝縮する()。蒸気から分離された蒸
発残液つまり蒸発しきれなかった作動流体は、液戻り配
管18により、冷却器16を経てドレンポット14に送り込ま
れる。この場合の蒸発器2、凝縮器6の低沸成分濃度は
図2のようになる。図中の○付き数字はそれぞれ次の事
項を示している。凝縮器出口液、蒸発器入口液、
蒸発器出口液、蒸発器出口ガス、凝縮器入口(また
は全体平均)ガス、凝縮器出口ガス。図2から理解さ
れるとおり、蒸発器出口液は系内で最も低い低沸成分
濃度を示す。一方、凝縮器6の出口ではで示される状
態の低沸成分ガスの濃度が非常に高い。したがって、吸
収器16に送り込まれた蒸発残液に低沸成分ガスが吸収さ
れる。なお、凝縮器内には〜の種々状態のガスが存
在するが、低沸成分濃度が最も高いの状態のガスが選
択的に吸収されることとなる。このように、低沸成分濃
度が系内で最も低い蒸発器出口の蒸発残液を凝縮器出口
側に送り込むことによって、この蒸発残液に低沸成分ガ
スが吸収され、その結果、未凝縮低沸成分ガス濃度が下
がり、凝縮器伝熱性能が向上する。
The steam of the working fluid generated in the evaporator 2 is supplied to the turbine 4 to perform work, and then the condenser 6 removes heat from the cooling water to condense it (). The evaporation residual liquid separated from the vapor, that is, the working fluid that has not been completely evaporated is sent to the drain pot 14 via the liquid return pipe 18 via the cooler 16. In this case, the low boiling point component concentrations of the evaporator 2 and the condenser 6 are as shown in FIG. The circled numbers in the figure indicate the following items. Condenser outlet liquid, evaporator inlet liquid,
Evaporator outlet liquid, evaporator outlet gas, condenser inlet (or overall average) gas, condenser outlet gas. As can be seen from FIG. 2, the evaporator outlet liquid exhibits the lowest low boiling component concentration in the system. On the other hand, at the outlet of the condenser 6, the concentration of the low boiling point component gas in the state indicated by is very high. Therefore, the low boiling point component gas is absorbed by the evaporation residual liquid sent to the absorber 16. Although there are gases in various states of ~ in the condenser, the gas in the state with the highest low boiling point component concentration is selectively absorbed. In this way, by sending the evaporation residual liquid at the evaporator outlet having the lowest low boiling component concentration to the condenser outlet side, the low boiling component gas is absorbed in this evaporation residual liquid, and as a result, the uncondensed low The boiling component gas concentration is reduced, and the heat transfer performance of the condenser is improved.

【0012】[0012]

【発明の効果】以上のように、この発明は、二成分系の
混合媒体を作動流体として使用する低沸点媒体システム
において、低沸成分濃度の低い液を冷却器で冷却した上
で凝縮器の作動流体出口側に導き、未蒸発低沸成分ガス
を吸収させるようにしたものであるから、低沸成分濃度
の低い液に低沸成分ガスが吸収されて凝縮器出口付近の
未凝縮低沸成分ガス濃度が下がり、凝縮器伝熱性能が向
上する。また、冷却器により吸収液を冷却するので液温
を上昇させず、したがって、圧力の上昇という弊害を伴
うことなく、効率よく所期の目的を達成することができ
る。
As described above, according to the present invention, in a low boiling point medium system using a binary mixture medium as a working fluid, a liquid having a low low boiling point component concentration is cooled by a cooler and then the condenser is cooled. Since it is introduced to the working fluid outlet side to absorb the unvaporized low boiling point component gas, the low boiling point component gas is absorbed in the liquid with a low concentration of the low boiling point component and the uncondensed low boiling point component near the condenser outlet is absorbed. The gas concentration is reduced and the heat transfer performance of the condenser is improved. Further, since the absorption liquid is cooled by the cooler, the liquid temperature is not raised, and therefore, the intended purpose can be efficiently achieved without the adverse effect of the pressure rise.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すバイナリー発電システ
ムのフローシートである。
FIG. 1 is a flow sheet of a binary power generation system showing an embodiment of the present invention.

【図2】図1のバイナリー発電システムにおける作動流
体の気液平衡線図である。
FIG. 2 is a vapor-liquid equilibrium diagram of a working fluid in the binary power generation system of FIG.

【図3】従来例を示すバイナリー発電システムのフロー
シートである。
FIG. 3 is a flow sheet of a binary power generation system showing a conventional example.

【図4】ランキンサイクルのTS線図である。FIG. 4 is a TS diagram of a Rankine cycle.

【図5】ローレンツサイクルのTS線図である。FIG. 5 is a TS diagram of a Lorentz cycle.

【図6】二成分系混合媒体の温度−組成の関係を示す気
液平衡線図である。
FIG. 6 is a vapor-liquid equilibrium diagram showing a temperature-composition relationship of a binary mixed medium.

【図7】凝縮伝熱面の断面図である。FIG. 7 is a cross-sectional view of a condensation heat transfer surface.

【符号の説明】[Explanation of symbols]

2 蒸発器 4 タービン 6 凝縮器 8 循環ポンプ 10 閉ループ 12 発電機 14 ドレンポット 16 冷却器 18 液戻り配管 2 Evaporator 4 Turbine 6 Condenser 8 Circulating pump 10 Closed loop 12 Generator 14 Drain pot 16 Cooler 18 Liquid return pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 住友 博之 大阪府大阪市中央区平野町3丁目4番6号 株式会社日阪製作所内 (72)発明者 山崎 起男 大阪府大阪市中央区平野町3丁目4番6号 株式会社日阪製作所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroyuki Sumitomo 3-4-6 Hiranocho, Chuo-ku, Osaka City, Osaka Prefecture HISAKA MFG. Co., Ltd. (72) Inventor Tsukio Yamazaki Hirano-cho, Chuo-ku, Osaka City, Osaka 3-4 No. 6 in Hisaka Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二成分系の混合媒体を作動流体として使
用する低沸点媒体システムにおいて、低沸成分濃度の低
い液を冷却器で冷却した上で凝縮器の作動流体出口側に
導き、未蒸発低沸成分ガスを吸収させることを特徴とす
る吸収液冷却器。
1. A low boiling point medium system using a binary mixed medium as a working fluid, wherein a liquid having a low low boiling point component concentration is cooled by a cooler and then introduced to the working fluid outlet side of a condenser, and is not evaporated. An absorption liquid cooler characterized by absorbing a low boiling point component gas.
JP21822391A 1991-08-29 1991-08-29 Absorbed liquid cooler Pending JPH0559907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21822391A JPH0559907A (en) 1991-08-29 1991-08-29 Absorbed liquid cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21822391A JPH0559907A (en) 1991-08-29 1991-08-29 Absorbed liquid cooler

Publications (1)

Publication Number Publication Date
JPH0559907A true JPH0559907A (en) 1993-03-09

Family

ID=16716544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21822391A Pending JPH0559907A (en) 1991-08-29 1991-08-29 Absorbed liquid cooler

Country Status (1)

Country Link
JP (1) JPH0559907A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867975A (en) * 1981-10-16 1983-04-22 Mitsui Eng & Shipbuild Co Ltd Energy recovery method of low temperature and low temperature difference

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867975A (en) * 1981-10-16 1983-04-22 Mitsui Eng & Shipbuild Co Ltd Energy recovery method of low temperature and low temperature difference

Similar Documents

Publication Publication Date Title
JP2007262909A (en) Power system
JP2513936B2 (en) Low boiling medium system
KR100355978B1 (en) Absorption refrigeration system with condensate solution coupling
JPH0559907A (en) Absorbed liquid cooler
JP2513941B2 (en) Low boiling medium system
JP2513935B2 (en) Low boiling medium system
JP2513949B2 (en) Low boiling medium gas absorber
JP2513939B2 (en) Low boiling medium system
JP3169441B2 (en) Oil absorption type heat cycle
JP2513938B2 (en) Low boiling medium system
JP2513937B2 (en) Non-azeotrope condenser
JP2551703B2 (en) Circulating method of working fluid in low boiling medium system
JP3244087B2 (en) Heat pump for mixed media
JP2513940B2 (en) Low boiling medium system
JP2520987B2 (en) Evaporator for non-azeotropic mixture
JP2650660B2 (en) Control method of thermal cycle using non-azeotropic mixed medium as working fluid
JP2513950B2 (en) Absorber integrated condenser
JP2000105024A (en) Plate type condenser
JP2650664B2 (en) Mixed media evaporator
JP2954022B2 (en) Non-azeotropic mixed medium cycle power generation system
JPH08100608A (en) Mixed medium binary generating system
JP3134903B2 (en) Absorber, condenser cooling water series condenser
KR100208181B1 (en) Refrigerant vapor of absorption type cycle
JPH0894196A (en) Mixture medium heat pump
JP4557468B2 (en) Absorption refrigerator