JP2513935B2 - Low boiling medium system - Google Patents

Low boiling medium system

Info

Publication number
JP2513935B2
JP2513935B2 JP3087839A JP8783991A JP2513935B2 JP 2513935 B2 JP2513935 B2 JP 2513935B2 JP 3087839 A JP3087839 A JP 3087839A JP 8783991 A JP8783991 A JP 8783991A JP 2513935 B2 JP2513935 B2 JP 2513935B2
Authority
JP
Japan
Prior art keywords
condenser
liquid
evaporator
low
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3087839A
Other languages
Japanese (ja)
Other versions
JPH04350305A (en
Inventor
博之 住友
起男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HISAKA SEISAKUSHO KK
KYUSHU DENRYOKU KK
Original Assignee
HISAKA SEISAKUSHO KK
KYUSHU DENRYOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HISAKA SEISAKUSHO KK, KYUSHU DENRYOKU KK filed Critical HISAKA SEISAKUSHO KK
Priority to JP3087839A priority Critical patent/JP2513935B2/en
Publication of JPH04350305A publication Critical patent/JPH04350305A/en
Application granted granted Critical
Publication of JP2513935B2 publication Critical patent/JP2513935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ヒートポンプやバイ
ナリーサイクルのような低沸点媒体システムに関し、作
動流体として二成分系の混合媒体を使用する場合の性能
向上を図るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low boiling point medium system such as a heat pump or a binary cycle, and is intended to improve the performance when a binary mixture medium is used as a working fluid.

【0002】[0002]

【従来の技術】低沸点媒体システムの一例として図3に
示されるバイナリー発電システムについて述べると、蒸
発器2、タービン4、凝縮器6および媒体ポンプ8が直
列に接続されて閉ループ10を構成している。そして、そ
の閉ループ10内を循環する作動流体は、まず蒸発器2で
熱源流体から熱を奪って蒸発し、発生した蒸気はタービ
ン4に供給される。この蒸気はタービン4内で膨張して
発電機12を駆動する仕事をする。タービン4から排出さ
れた蒸気は凝縮器6で冷却水に熱を奪われて凝縮する。
凝縮液は循環ポンプ8で再び蒸発器2に送られる。
2. Description of the Related Art A binary power generation system shown in FIG. 3 will be described as an example of a low boiling point medium system. An evaporator 2, a turbine 4, a condenser 6 and a medium pump 8 are connected in series to form a closed loop 10. There is. The working fluid circulating in the closed loop 10 first evaporates by removing heat from the heat source fluid in the evaporator 2, and the generated steam is supplied to the turbine 4. This steam expands in the turbine 4 and serves to drive the generator 12. The steam discharged from the turbine 4 is deprived of heat by the cooling water in the condenser 6 and condensed.
The condensate is sent to the evaporator 2 again by the circulation pump 8.

【0003】ところで、このようなバイナリーサイクル
やヒートポンプ等の熱サイクルでは、効率の向上のため
作動流体に非共沸の混合媒体を用いてローレンツサイク
ルを構成させることがある。たとえばバイナリーサイク
ルは基本的にランキンサイクルであって、作動流体が単
一媒体のときは図4に示すようにTS線図の’−、
−がそれぞれ等温変化を示す。ところが、フロンR
123 とR22の混合のような混合媒体を作動流体として使
用すると、図5に示すように、同一圧力でも飽和温度が
変化し、蒸発器2では蒸発温度が上がり、凝縮器6では
凝縮温度が下がる。これによりローレンツサイクルが形
成され、システム効率が向上する。
By the way, in such a heat cycle such as a binary cycle or a heat pump, a Lorentz cycle may be constituted by using a non-azeotropic mixed medium as a working fluid in order to improve efficiency. For example, the binary cycle is basically a Rankine cycle, and when the working fluid is a single medium, as shown in FIG.
-Indicates isothermal changes. However, Freon R
When a mixed medium such as a mixture of 123 and R22 is used as the working fluid, the saturation temperature changes, the evaporation temperature rises in the evaporator 2 and the condensation temperature decreases in the condenser 6, as shown in FIG. . This forms a Lorentz cycle and improves system efficiency.

【0004】図6は最も簡単な二成分の液体−蒸気系の
温度−組成の関係を横軸に低沸成分のモル分率をとって
示したものである。GとLは単一相で、それぞれ気相と
液相、L+Gの領域は液体と蒸気が共存する二相領域で
ある。もし低沸成分の60モル%(モル分率=0.60)の液
体混合物の温度を、定圧下で上昇させたとすると、この
系の変化は直線ab'cd"e に沿って考えることができる。
低温では液相のみが存在するが、b'点で蒸気相が現われ
る。この蒸気相の組成はb"点で与えられ、2つの共役相
は図上の平衡連結線b"b'で結ばれている。さらに温度を
上げると、もっと多くの蒸気が生成するが、その場合、
蒸気中の低沸成分の濃度が高いので、液相ではこの成分
が相対的に減少し、液体の組成はb'c'd'に沿って変化
し、一方、蒸気の組成はb"c"d"に沿って変化する。温度
t℃では、二相領域にある系の全組成はc点で表される
が、蒸気組成、液体組成はそれぞれc点を通る平衡連結
線の両端、c"点とc'点で与えられる。二相の相対的な量
は、物理学のてこの原理から求められる。すなわち、蒸
気と液体のモル数の比はcc'と c"c の長さの比で表され
る。さらに温度を上げるとますます蒸気が生成し、d”
点になると液相はほとんどなくなり、これ以上温度が高
くなると、液相が消えて蒸気相(d"点)のみが残る。こ
れ以上は温度を(d"e に沿って)上げてもなにも起らな
い。
FIG. 6 shows the simplest temperature-composition relationship of a two-component liquid-vapor system with the horizontal axis representing the mole fraction of the low-boiling component. G and L are single phases, respectively, a gas phase and a liquid phase, and a region of L + G is a two-phase region where a liquid and a vapor coexist. If the temperature of a liquid mixture of 60 mol% (mol fraction = 0.60) of the low boilers is increased under constant pressure, the change in this system can be considered along a straight line ab'cd "e.
At low temperatures, only a liquid phase exists, but a vapor phase appears at point b '. The composition of this vapor phase is given by the point b ", and the two conjugate phases are connected by an equilibrium connection line b" b 'in the figure. Increasing the temperature will produce more steam, in which case
Due to the high concentration of low boiling components in the vapor, this component is relatively reduced in the liquid phase, the composition of the liquid changes along b'c'd ', while the composition of the vapor is b "c" It changes along the d ". At the temperature t ° C, the total composition of the system in the two-phase region is represented by the point c, but the vapor composition and the liquid composition are both ends of the equilibrium connecting line passing through the point c," Given by points and c'points. The relative amounts of the two phases are determined from the principle of leverage in physics. That is, the ratio of the number of moles of vapor to liquid is represented by the ratio of the length of cc 'to c "c. As the temperature is further increased, more and more vapor is generated, and d"
At the point, the liquid phase almost disappears, and when the temperature becomes higher than this, the liquid phase disappears and only the vapor phase (d "point) remains. Even if the temperature is further raised (along d" e) Does not happen.

【0005】[0005]

【発明が解決しようとする課題】凝縮器出口の作動流体
の気相では低沸成分の濃度が系内で最も高く、凝縮伝熱
面付近にも低沸成分のガスが滞留する。このため、図7
に示すように、低沸成分は凝縮器に対し物質移動および
熱移動を妨げる不凝縮ガスと同じような存在となり、伝
熱性能を低下させる。
In the vapor phase of the working fluid at the outlet of the condenser, the low boiling point component has the highest concentration in the system, and the gas having the low boiling point component stays near the condensation heat transfer surface. Therefore, in FIG.
As shown in (3), the low-boiling component exists in the condenser in the same manner as the non-condensable gas that impedes mass transfer and heat transfer, and reduces the heat transfer performance.

【0006】そこで、この発明の目的とするところは、
凝縮器における未凝縮の低沸成分ガスの濃度を下げ、不
凝縮ガスを排除することと同じ効果を上げることにあ
る。
Therefore, the object of the present invention is to:
The purpose is to reduce the concentration of uncondensed low-boiling component gas in the condenser and to achieve the same effect as eliminating non-condensed gas.

【0007】[0007]

【課題を解決するための手段】 この発明は、蒸発器、
膨張機関、凝縮器および循環ポンプを直列に接続して形
成した閉ループ内を沸点の異なる二成分系の非共沸混合
媒体を作動流体として循環させて熱サイクルを構成した
低沸点媒体システムにおいて、蒸発器出口の蒸発残液を
ガスまたは液状にて凝縮器出口側に送り込ようにしたも
のである。
Means for Solving the Problems The present invention provides an evaporator,
Evaporation in a low-boiling-point medium system in which a thermal cycle is configured by circulating a non-azeotropic mixed medium of a binary system with different boiling points as a working fluid in a closed loop formed by connecting an expansion engine, a condenser and a circulation pump in series. The evaporation residual liquid at the outlet of the condenser is sent to the outlet side of the condenser in the form of gas or liquid.

【0008】[0008]

【作用】蒸発器出口の蒸発残液は系内で最も低沸成分濃
度が低いので、これを凝縮器出口側に送り込むことによ
って、この蒸発残液が未凝縮の低沸成分ガスを吸収す
る。その結果、気相の未凝縮低沸成分濃度が下がるので
物質移動および熱移動が容易になり凝縮器伝熱性能が向
上する。
The evaporative residual liquid at the outlet of the evaporator has the lowest concentration of the low boiling component in the system. Therefore, by feeding it to the outlet side of the condenser, the evaporative residual liquid absorbs the uncondensed low boiling component gas. As a result, the concentration of uncondensed low-boiling components in the gas phase is lowered, mass transfer and heat transfer are facilitated, and the heat transfer performance of the condenser is improved.

【0009】[0009]

【実施例】図3に示した上述のバイナリー発電システム
に適用した場合を例にとって説明すると、図1に示すよ
うに、蒸発器2の出口側にミストセパレータ14を接続
し、そのダウンカマー16を蒸発器2の入口側に接続す
る。凝縮器6の出口側には低沸成分ガスを分離するため
のアフタークーラー18を設置し、ミストセパレータ14の
下部出口とアフタークーラー18とを液戻り配管20で接続
する。なお、液戻り配管20は凝縮器6の出口側に蒸発残
液を送り込むためのものであるから、図示した実施例の
ようにアフタークーラー18に接続するほか、凝縮器6の
出口に設置されるドレンポット(図示せず)等に接続す
るようにしてもよい。
EXAMPLE A case of application to the above-mentioned binary power generation system shown in FIG. 3 will be described as an example. As shown in FIG. 1, a mist separator 14 is connected to the outlet side of the evaporator 2 and its downcomer 16 is connected to the mist separator 14. It is connected to the inlet side of the evaporator 2. An aftercooler 18 for separating low boiling point component gas is installed on the outlet side of the condenser 6, and a lower outlet of the mist separator 14 and the aftercooler 18 are connected by a liquid return pipe 20. Since the liquid return pipe 20 is for sending the evaporation residual liquid to the outlet side of the condenser 6, it is installed at the outlet of the condenser 6 in addition to being connected to the after cooler 18 as in the illustrated embodiment. It may be connected to a drain pot (not shown) or the like.

【0010】蒸発器2を出た作動流体はミストセパレー
タ14で蒸気と蒸発残液に分離される。蒸気はタービン4
に供給されて仕事をした後、凝縮器6で冷却水に熱を奪
われて凝縮する()。ミストセパレータ14で蒸気から
分離された蒸発残液は、ダウンカマー16から液戻り配管
20を通ってアフタークーラー18に送り込まれる。
The working fluid exiting the evaporator 2 is separated by a mist separator 14 into steam and evaporation residual liquid. Steam turbine 4
After being supplied to the above and working, the condenser 6 takes away heat from the cooling water to condense (). The evaporation residual liquid separated from the steam by the mist separator 14 is returned from the downcomer 16 to the liquid return pipe.
It is sent to the aftercooler 18 through 20.

【0011】この場合の蒸発器2、凝縮器6の低沸成分
濃度は図2のようになる。図中の○付き数字は図1中の
ものと対応しており、それぞれ次の事項を示している。
凝縮器出口液、蒸発器入口液、蒸発器出口液、
蒸発器出口ガス、凝縮器入口(または全体平均)ガ
ス、凝縮器出口ガス。図2から理解されるとおり、蒸
発器出口液は系内で最も低い低沸成分濃度を示す。一
方、凝縮器6の出口ではで示される状態の低沸成分ガ
スの濃度が非常に高い。したがって、アフタークーラー
18内に送り込まれた蒸発残液に低沸成分ガスが吸収され
る。なお、凝縮器内には〜の種々状態のガスが存在
するが、低沸成分濃度が最も高いの状態のガスが選択
的に吸収されることとなる。このように、低沸成分濃度
が系内で最も低い蒸発器出口の蒸発残液を凝縮器出口側
に送り込むことによって、この蒸発残液に低沸成分ガス
が吸収され、その結果、未凝縮低沸成分ガス濃度が下が
り、凝縮器伝熱性能が向上する。
The low-boiling component concentrations of the evaporator 2 and the condenser 6 in this case are as shown in FIG. The circled numbers in the figure correspond to those in FIG. 1, and indicate the following items, respectively.
Condenser outlet liquid, evaporator inlet liquid, evaporator outlet liquid,
Evaporator outlet gas, condenser inlet (or overall average) gas, condenser outlet gas. As can be understood from FIG. 2, the evaporator outlet liquid has the lowest low-boiling component concentration in the system. On the other hand, at the outlet of the condenser 6, the concentration of the low-boiling component gas in the state indicated by is very high. Therefore, aftercooler
The low-boiling component gas is absorbed by the evaporation residual liquid sent into the inside of 18. Although there are gases in various states of ~ in the condenser, the gas in the state where the low boiling point component concentration is the highest is selectively absorbed. In this way, by sending the evaporation residual liquid at the evaporator outlet having the lowest low boiling component concentration to the condenser outlet side, the low boiling component gas is absorbed in this evaporation residual liquid, and as a result, uncondensed low The boiling component gas concentration is reduced, and the heat transfer performance of the condenser is improved.

【0012】[0012]

【発明の効果】以上のように、この発明は、二成分系の
混合媒体を作動流体として使用する低沸点媒体システム
において、凝縮器出口側に蒸発器出口の蒸発残液をガス
または液状にて送り込むようにしたものであるから、系
内で最も低い低沸成分濃度を示す蒸発器出口液が凝縮器
出口に送り込まれることにより低沸成分ガスを吸収して
低沸成分ガス濃度を下げ、凝縮器伝熱性能を向上させる
ことができるものである。
As described above, according to the present invention, in a low-boiling-point medium system that uses a binary mixed medium as a working fluid, the evaporation residual liquid at the evaporator outlet is gas or liquid at the condenser outlet side. Since it is designed to be fed in, the evaporator outlet liquid showing the lowest low boiling point component concentration in the system is sent to the condenser outlet to absorb the low boiling point component gas and reduce the low boiling point component gas concentration The heat transfer performance of the vessel can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すバイナリー発電システ
ムのフローシートである。
FIG. 1 is a flow sheet of a binary power generation system showing an embodiment of the present invention.

【図2】図1のバイナリー発電システムにおける作動流
体の気液平衡線図である。
FIG. 2 is a vapor-liquid equilibrium diagram of a working fluid in the binary power generation system of FIG.

【図3】従来例を示すバイナリー発電システムのフロー
シートである。
FIG. 3 is a flow sheet of a binary power generation system showing a conventional example.

【図4】ランキンサイクルのTS線図である。FIG. 4 is a TS diagram of Rankine cycle.

【図5】ローレンツサイクルのTS線図である。FIG. 5 is a TS diagram of the Lorentz cycle.

【図6】二成分系混合媒体の温度−組成の関係を示す気
液平衡線図である。
FIG. 6 is a vapor-liquid equilibrium diagram showing a temperature-composition relationship of a binary mixed medium.

【図7】凝縮伝熱面の断面図である。FIG. 7 is a cross-sectional view of a condensation heat transfer surface.

【符号の説明】[Explanation of symbols]

2 蒸発器 4 タービン 6 凝縮器 8 循環ポンプ 10 閉ループ 12 発電機 14 ミストセパレータ 16 ダウンカマー 18 アフタークーラー 20 液戻り配管 2 Evaporator 4 Turbine 6 Condenser 8 Circulation pump 10 Closed loop 12 Generator 14 Mist separator 16 Downcomer 18 Aftercooler 20 Liquid return pipe

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−67975(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-67975 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蒸発器、膨張機関、凝縮器および循環ポ
ンプを直列に接続して形成した閉ループ内を沸点の異な
る二成分系の非共沸混合媒体を作動流体として循環させ
て熱サイクルを構成した低沸点媒体システムにおいて、
蒸発器出口の蒸発残液をガスまたは液状にて凝縮器出口
側に送り込むことを特徴とする低沸点媒体システム。
1. A thermal cycle is constituted by circulating a binary non-azeotropic mixed medium having different boiling points as a working fluid in a closed loop formed by connecting an evaporator, an expansion engine, a condenser and a circulation pump in series. In the low boiling point medium system,
A low-boiling-point medium system characterized in that the evaporation residual liquid at the outlet of the evaporator is sent in a gas or liquid form to the outlet side of the condenser.
JP3087839A 1991-03-26 1991-03-26 Low boiling medium system Expired - Fee Related JP2513935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087839A JP2513935B2 (en) 1991-03-26 1991-03-26 Low boiling medium system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087839A JP2513935B2 (en) 1991-03-26 1991-03-26 Low boiling medium system

Publications (2)

Publication Number Publication Date
JPH04350305A JPH04350305A (en) 1992-12-04
JP2513935B2 true JP2513935B2 (en) 1996-07-10

Family

ID=13926088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087839A Expired - Fee Related JP2513935B2 (en) 1991-03-26 1991-03-26 Low boiling medium system

Country Status (1)

Country Link
JP (1) JP2513935B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6306821B2 (en) * 2013-01-08 2018-04-04 日野自動車株式会社 Rankine cycle engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867975A (en) * 1981-10-16 1983-04-22 Mitsui Eng & Shipbuild Co Ltd Energy recovery method of low temperature and low temperature difference

Also Published As

Publication number Publication date
JPH04350305A (en) 1992-12-04

Similar Documents

Publication Publication Date Title
KR100624990B1 (en) Gas turbine inlet air cooling method for combined cycle power plants
JP2007262909A (en) Power system
JP2513936B2 (en) Low boiling medium system
JP2513935B2 (en) Low boiling medium system
JP2513939B2 (en) Low boiling medium system
JP2513938B2 (en) Low boiling medium system
JP3169441B2 (en) Oil absorption type heat cycle
JP2513941B2 (en) Low boiling medium system
JP2513937B2 (en) Non-azeotrope condenser
JP3244087B2 (en) Heat pump for mixed media
JP2551703B2 (en) Circulating method of working fluid in low boiling medium system
JP2513949B2 (en) Low boiling medium gas absorber
JP2513940B2 (en) Low boiling medium system
JP2520987B2 (en) Evaporator for non-azeotropic mixture
JP2650660B2 (en) Control method of thermal cycle using non-azeotropic mixed medium as working fluid
JPH0559907A (en) Absorbed liquid cooler
JP2513950B2 (en) Absorber integrated condenser
JP2650664B2 (en) Mixed media evaporator
JP2954022B2 (en) Non-azeotropic mixed medium cycle power generation system
JP2000105024A (en) Plate type condenser
JPH08100608A (en) Mixed medium binary generating system
JPH0791213A (en) Binary power generation system
JP2513985B2 (en) Method for improving efficiency of heat cycle with absorber using condensate
JPH0681611A (en) Heat pipe generating set
JPH0429842B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees