JP2513985B2 - Method for improving efficiency of heat cycle with absorber using condensate - Google Patents

Method for improving efficiency of heat cycle with absorber using condensate

Info

Publication number
JP2513985B2
JP2513985B2 JP5240902A JP24090293A JP2513985B2 JP 2513985 B2 JP2513985 B2 JP 2513985B2 JP 5240902 A JP5240902 A JP 5240902A JP 24090293 A JP24090293 A JP 24090293A JP 2513985 B2 JP2513985 B2 JP 2513985B2
Authority
JP
Japan
Prior art keywords
absorber
liquid
working medium
condenser
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5240902A
Other languages
Japanese (ja)
Other versions
JPH0791212A (en
Inventor
博之 住友
起男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP5240902A priority Critical patent/JP2513985B2/en
Publication of JPH0791212A publication Critical patent/JPH0791212A/en
Application granted granted Critical
Publication of JP2513985B2 publication Critical patent/JP2513985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 この発明は、非共沸混合物
を作動媒体として用いる熱サイクルの効率改善方法に関
する。
TECHNICAL FIELD The present invention relates to a method for improving the efficiency of thermal cycle using a non-azeotropic mixture as a working medium.

【0002】[0002]

【従来の技術】非共沸混合物を作動媒体として用いる熱
サイクルの一例として図3に示されるバイナリー発電シ
ステムについて述べると、蒸発器(2)、タービン
(4)、凝縮器(6)および作動媒体循環ポンプ(8)
が直列に接続されて閉ループ(10)を構成している。そ
して、その閉ループ(10)内を循環する作動媒体は、ま
ず蒸発器(2)で熱源流体から熱を奪って蒸発し、発生
した蒸気はタービン(4)に供給される。この蒸気はタ
ービン(4)内で膨張して発電機(12)を駆動する仕事
をする。タービン(4)から排出された蒸気は凝縮器
(6)で冷却水に熱を奪われて凝縮する。凝縮液は作動
媒体循環ポンプ(8)で再び蒸発器(2)に送られる。
2. Description of the Related Art A binary power generation system shown in FIG. 3 will be described as an example of a heat cycle using a non-azeotropic mixture as a working medium. An evaporator (2), a turbine (4), a condenser (6) and a working medium will be described. Circulation pump (8)
Are connected in series to form a closed loop (10). The working medium circulating in the closed loop (10) first takes heat from the heat source fluid in the evaporator (2) to be evaporated, and the generated steam is supplied to the turbine (4). This steam expands in the turbine (4) and works to drive the generator (12). The steam discharged from the turbine (4) is deprived of heat by the cooling water in the condenser (6) and condensed. The condensate is sent to the evaporator (2) again by the working medium circulation pump (8).

【0003】非共沸混合物を作動媒体として熱サイクル
を構成させる場合、凝縮器(6)の作動媒体出口の作動
媒体の気相では低沸点成分の濃度が系内で最も高いこと
から、凝縮器(6)の伝熱面近傍で低沸点成分蒸気の濃
度が高くなり、熱移動と物質移動の妨げとなる。
When a heat cycle is constituted by using a non-azeotropic mixture as a working medium, the concentration of low-boiling components is highest in the vapor phase of the working medium at the outlet of the working medium of the condenser (6). The concentration of the low boiling point component vapor becomes high in the vicinity of the heat transfer surface of (6), which hinders heat transfer and mass transfer.

【0004】この高濃度蒸気を排除するために、本出願
人は、凝縮器(6)の作動媒体出口側に吸収器(16)を
設置することを先に提案している(特願平4−1993
17号)。すなわち、図4に示すように、冷却水通路を
吸収器(16)と凝縮器(6)とに直列に接続し、冷却水
をまず吸収器(16)に供給し、次に、吸収器(16)を経
ることで熱交換により昇温した冷却水が凝縮器(6)に
入るようにしたもので、これにより、凝縮器(6)の作
動媒体通路に比べて吸収器(16)の作動媒体通路の出口
温度の方が低くなるので、凝縮器(6)から吸収器(1
6)へ向かう蒸気の流れが発生し、凝縮器(6)の作動
媒体通路の出口付近に溜まった低沸点成分蒸気が排除さ
れ、凝縮器(6)における低沸点成分蒸気濃度が下が
る、というものである。凝縮液と未凝縮の蒸気は凝縮器
(6)の作動媒体出口からドレンポット(14)に進み、
蒸気は気相部分から吸収器(16)の作動媒体入口に導か
れ、液は吸収器(16)の作動媒体出口からの液と合流し
て作動媒体循環ポンプ(8)により蒸発器(2:図3)
に戻される。
In order to eliminate this high-concentration vapor, the applicant of the present invention has previously proposed to install an absorber (16) on the working medium outlet side of the condenser (6) (Japanese Patent Application No. 4). -1993
No. 17). That is, as shown in FIG. 4, the cooling water passage is connected in series to the absorber (16) and the condenser (6), the cooling water is first supplied to the absorber (16), and then the absorber (16 The cooling water, which has been heated by heat exchange through 16), is allowed to enter the condenser (6), which allows the absorber (16) to operate more than the working medium passage of the condenser (6). Since the outlet temperature of the medium passage is lower, the condenser (6) is connected to the absorber (1
A low-boiling-point component vapor concentration in the condenser (6) is reduced by generating a flow of vapor toward the 6) and removing the low-boiling-point component vapor accumulated near the outlet of the working medium passage of the condenser (6). Is. The condensate and uncondensed vapor proceed from the working medium outlet of the condenser (6) to the drain pot (14),
The vapor is introduced from the gas phase portion to the working medium inlet of the absorber (16), the liquid merges with the liquid from the working medium outlet of the absorber (16), and the working medium circulation pump (8) causes the evaporator (2: (Fig. 3)
Is returned to.

【0005】[0005]

【発明が解決しようとする課題】図2の気液平衡線図で
説明すると、作動媒体の流れの前段に位置する凝縮器
(6)では、比較的凝縮しやすい高沸点成分が優先的に
凝縮し(点)、凝縮液は低沸点成分濃度が比較的低く
なっている(濃度y1 )。一方、吸収器(16)では入口
から系内で最も低沸点成分濃度の低い液(点、濃度y
2 )が流入するが、吸収器(16)内で低沸点成分濃度の
高い蒸気を吸収し、吸収器(16)の作動媒体出口の低沸
点成分濃度は上昇している(点、濃度y3 )。吸収器
(16)の作動媒体出口付近ではこの液と相平衡を保つよ
うに蒸気が存在しているから、蒸気の低沸点成分濃度も
高くなっている(点、濃度y4 )。凝縮器(6)と吸
収器(16)の圧力を決定する要因は、吸収器(16)の作
動媒体出口の濃度と温度であると考えられるから、高い
ままの濃度では圧力を低下させることはできない。
To explain with the vapor-liquid equilibrium diagram of FIG. 2, in the condenser (6) located in the preceding stage of the flow of the working medium, the high-boiling components which are relatively easily condensed are preferentially condensed. However, the condensate has a relatively low low boiling point component concentration (concentration y 1 ). On the other hand, in the absorber (16), the liquid with the lowest concentration of the lowest boiling point component in the system (point, concentration y
2 ) flows in, but absorbs vapor with a high concentration of low boiling point components in the absorber (16), and the concentration of low boiling point components at the working medium outlet of the absorber (16) rises (point, concentration y 3 ). Since vapor exists so as to maintain phase equilibrium with this liquid near the outlet of the working medium of the absorber (16), the low boiling point component concentration of the vapor is also high (point, concentration y 4 ). Since the factors that determine the pressures of the condenser (6) and the absorber (16) are considered to be the concentration and temperature of the working medium outlet of the absorber (16), it is not possible to reduce the pressure at a concentration that remains high. Can not.

【0006】そこで、この発明の目的は、非共沸混合物
を作動媒体として用いる熱サイクルにおいて、吸収器出
側の圧力を低くして熱効率を向上させることにある。
Therefore, an object of the present invention is to improve the thermal efficiency by lowering the pressure on the outlet side of the absorber in a heat cycle using a non-azeotropic mixture as a working medium.

【0007】[0007]

【課題を解決するための手段】 この発明は、非共沸混
合物を作動媒体として用いる熱サイクルであって、作動
媒体の蒸気を凝縮させるための凝縮器と、凝縮器の作動
媒体出口にある未凝縮蒸気を吸収液に吸収させる吸収器
とを具備するものにおいて、凝縮器からの凝縮液を気液
分離器で気相と液相に分離し、気相を吸収器の吸収液入
口に導き、液相を吸収器の作動媒体出口の液と共にアフ
タークーラーに導くことにより、前記吸収器出口液の低
沸点成分濃度を下げて吸収器の作動媒体出口付近の高濃
度低沸点成分蒸気を吸収させるようにしたことを特徴と
する。
The present invention relates to a thermal cycle using a non-azeotropic mixture as a working medium, wherein a condenser for condensing the vapor of the working medium and a working medium outlet of the condenser are provided. In one comprising an absorber for absorbing condensed vapor into an absorbing liquid, the condensate from the condenser is separated into a gas phase and a liquid phase by a gas-liquid separator, and the gas phase is guided to an absorbing liquid inlet of the absorber, By guiding the liquid phase to the aftercooler together with the liquid at the outlet of the working medium of the absorber, the concentration of the low boiling point component in the liquid at the outlet of the absorber is lowered so that the high concentration low boiling point component vapor near the outlet of the working medium of the absorber is absorbed. It is characterized by having done.

【0008】[0008]

【作用】図2に従って既述したように、凝縮器(6)で
は比較的凝縮しやすい高沸点成分が優先的に凝縮するた
め凝縮液は低沸点成分濃度が比較的低くなっている。こ
の凝縮液は吸収器(16)の出口付近の低沸点成分濃度の
高い蒸気に対しては非平衡つまり未飽和であるから、こ
れらの低沸点成分濃度の高い蒸気を吸収することができ
る(濃度y3−y1分に対応する蒸気の吸収が可能であ
る)。表現を変えれば、凝縮液を吸収器(16)の出口の
液と混合することで吸収器(16)の出口液濃度が下が
り、それと平衡関係にある蒸気の濃度も下がることにな
る。その結果、凝縮器出口液および蒸気は、凝縮液を利
用しないときよりも低濃度になり(点、濃度y5 )、
圧力が低下する。
As described above with reference to FIG. 2, in the condenser (6), the high-boiling point component, which is relatively easy to condense, is preferentially condensed, so that the condensate has a relatively low low-boiling point concentration. This condensate is non-equilibrium, that is, unsaturated with respect to the vapor with a low boiling point component concentration near the outlet of the absorber (16), so that the vapor with a high concentration of low boiling point component can be absorbed (concentration y 3 are possible absorption of vapor corresponding to -y 1 minute). In other words, by mixing the condensate with the liquid at the outlet of the absorber (16), the concentration of the liquid at the outlet of the absorber (16) decreases, and the concentration of vapor in equilibrium with it also decreases. As a result, the condenser outlet liquid and vapor are at a lower concentration (point, concentration y 5 ) than when the condensate is not used,
The pressure drops.

【0009】[0009]

【実施例】以下、この発明の実施例を示す図1に従って
説明する。なお、説明の便宜上、図3および図4に示さ
れている要素と実質上同じ機能の要素については同じ参
照数字を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. For convenience of explanation, elements having substantially the same functions as those shown in FIGS. 3 and 4 are designated by the same reference numerals.

【0010】凝縮器(6)の作動媒体出口は気液分離タ
ンク(14)に接続される。吸収器(16)の吸収液出口側
と作動媒体循環ポンプ(8)との間にアフタークーラー
(18)が設けられ、気液分離タンク(14)の液相部分は
アフタークーラー(18)に接続され、気相部分は吸収器
(16)の吸収液入口側に接続されている。アフタークー
ラー(18)は内部に冷却コイル(19)を有している。図
面には、この冷却コイル(19)と吸収器(16)と凝縮器
(6)がすべて共通の冷却水を利用する場合を例示して
あるが、それぞれ別々の冷却水を利用するようにしても
よい。
The working medium outlet of the condenser (6) is connected to the gas-liquid separation tank (14). An aftercooler (18) is provided between the absorbent outlet side of the absorber (16) and the working medium circulation pump (8), and the liquid phase portion of the gas-liquid separation tank (14) is connected to the aftercooler (18). The gas phase portion is connected to the absorption liquid inlet side of the absorber (16). The aftercooler (18) has a cooling coil (19) inside. Although the drawing shows a case where the cooling coil (19), the absorber (16) and the condenser (6) all use common cooling water, but separate cooling water should be used. Good.

【0011】タービン(4)から排出された作動媒体は
凝縮器(6)で冷却水に熱を奪われて凝縮し、凝縮液お
よび未凝縮の蒸気は気液分離タンク(14)に入る。気液
分離器(14)では作動媒体が蒸気相と液相に分離され、
蒸気相は吸収器(16)の作動媒体入口に導かれ、液相は
アフタークーラー(18)に導かれる。
The working medium discharged from the turbine (4) is deprived of heat by the cooling water in the condenser (6) and condensed, and the condensed liquid and the uncondensed vapor enter the gas-liquid separation tank (14). In the gas-liquid separator (14), the working medium is separated into a vapor phase and a liquid phase,
The vapor phase is introduced into the working medium inlet of the absorber (16), and the liquid phase is introduced into the aftercooler (18).

【0012】吸収器(16)の作動媒体入口に導かれた作
動媒体の蒸気相は、蒸発器(2)の作動媒体出口から導
かれてくる蒸発残液(吸収液)と共に吸収器(16)内を
進む間に蒸発残液に吸収され、吸収液は吸収器(16)を
出るとアフタークーラー(18)に流入する。
The vapor phase of the working medium introduced to the working medium inlet of the absorber (16) is absorbed in the absorber (16) together with the evaporation residual liquid (absorption liquid) introduced from the working medium outlet of the evaporator (2). While advancing inside, it is absorbed by the evaporation residual liquid, and the absorbing liquid flows out of the absorber (16) and flows into the after cooler (18).

【0013】気液分離タンク(14)から導かれてくる凝
縮液と、吸収器(16)からの液とはアフタークーラー
(18)内で混合し、かつ、冷却される。この凝縮液は、
凝縮器(6)では比較的凝縮しやすい高沸点成分が優先
的に凝縮する結果として低沸点成分濃度が比較的低くな
っており(図2の点、濃度y1 )、吸収器(16)の出
口付近の低沸点成分濃度の高い蒸気に対しては非平衡
(未飽和)である。したがって、低沸点成分濃度の高い
蒸気を、図2の濃度y3−y1に対応する分だけ吸収する
ことができる。
The condensed liquid introduced from the gas-liquid separation tank (14) and the liquid from the absorber (16) are mixed and cooled in the aftercooler (18). This condensate is
In the condenser (6), the high-boiling-point component, which is relatively easy to condense, is preferentially condensed, and as a result, the low-boiling-point concentration is relatively low (point in FIG. 2, concentration y 1 ). It is non-equilibrium (unsaturated) for vapors with high low-boiling point concentrations near the outlet. Therefore, the vapor having a high concentration of the low boiling point component can be absorbed by the amount corresponding to the concentration y 3 −y 1 in FIG.

【0014】このように、凝縮器(6)の出口の凝縮液
と吸収器(16)の出口の液を混合することで吸収器(1
6)の出口の液の低沸点成分濃度が下がり、それと平衡
関係にある蒸気の濃度も下げることができる。その結
果、凝縮器出口液および蒸気は、凝縮液を利用しないと
き(それぞれ点、点で示される)よりも低濃度の液
および蒸気(点、点’)になり、圧力が低下する。
図2において、点線の気相線および液相線は、実線の気
相線および液相線で表される状態よりも圧力が低い場合
の作動媒体の状態を表している。
In this way, by mixing the condensate at the outlet of the condenser (6) and the liquid at the outlet of the absorber (16), the absorber (1
The low boiling point component concentration of the liquid at the outlet of 6) can be reduced, and the concentration of vapor in equilibrium with it can also be reduced. As a result, the condenser outlet liquid and vapor become liquid and vapor of lower concentration (dot, dot ') than when the condensate is not used (indicated by dots, dot, respectively), and the pressure drops.
In FIG. 2, the dotted vapor and liquid lines represent the state of the working medium when the pressure is lower than the state represented by the solid vapor and liquid lines.

【0015】なお、凝縮器からの凝縮液が吸収器出口の
液と混合するとき温度をT1からT2へ低下させなければ
ならないので液の冷却が必要であるが、この役割を果た
すのがアフタークーラー(18)である。
When the condensate liquid from the condenser is mixed with the liquid at the outlet of the absorber, the temperature must be lowered from T 1 to T 2 , so cooling of the liquid is necessary. It is an aftercooler (18).

【0016】[0016]

【発明の効果】 以上説明したように、この発明は、非
共沸混合物を作動媒体として用いる熱サイクルであっ
て、作動媒体の蒸気を凝縮させるための凝縮器と、凝縮
器の作動媒体出口にある未凝縮蒸気を吸収液に吸収させ
る吸収器とを具備するものにおいて、凝縮器からの凝縮
液を気液分離器で気相と液相に分離し、気相を吸収器の
吸収液入口に導き、液相を吸収器の作動媒体出口の液と
共にアフタークーラーに導くことにより、前記吸収器出
口液の低沸点成分濃度を下げて吸収器の作動媒体出口付
近の高濃度低沸点成分蒸気を吸収させるようにしたもの
であるから、吸収器出口液、蒸気は凝縮液を利用しない
ときよりも低濃度になり、圧力が低下する。
As described above, the present invention is a heat cycle using a non-azeotropic mixture as a working medium, and a condenser for condensing the vapor of the working medium and a working medium outlet of the condenser. In a device provided with an absorber that absorbs an uncondensed vapor into an absorbing liquid, the condensate from the condenser is separated into a gas phase and a liquid phase by a gas-liquid separator, and the gas phase is introduced into the absorbing liquid inlet of the absorber. By guiding the liquid phase to the aftercooler together with the liquid at the working medium outlet of the absorber, the concentration of the low boiling point component of the absorber outlet liquid is lowered to absorb the high concentration low boiling point component vapor near the working medium outlet of the absorber. As a result, the absorber outlet liquid and vapor have a lower concentration than when the condensate is not used, and the pressure drops.

【0017】吸収器出口の圧力は圧力損失を無視すれば
吸収器入口の圧力と等しく、凝縮器出口の圧力は圧力損
失を無視すれば凝縮器入口の圧力と等しい。吸収器入口
の圧力は凝縮器出口の圧力である。したがって、吸収器
出口の圧力低下は凝縮器入口の圧力低下でもあり、凝縮
器の圧力低下は、発電用サイクルの場合は出力増加とな
り、ヒートポンプサイクルの場合は所要動力の低下とな
って、いずれの場合も当該熱サイクルの熱効率が向上す
る。
The pressure at the absorber outlet is equal to the pressure at the absorber inlet, ignoring pressure loss, and the pressure at the condenser outlet is equal to the pressure at the condenser inlet, ignoring pressure loss. The pressure at the absorber inlet is the pressure at the condenser outlet. Therefore, the pressure drop at the absorber outlet is also the pressure drop at the condenser inlet, and the pressure drop at the condenser increases the output in the case of the power generation cycle and decreases the required power in the case of the heat pump cycle. Also in this case, the thermal efficiency of the heat cycle is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例を示すフローシートFIG. 1 is a flow sheet showing an example.

【図2】作動媒体の気液平衡線図FIG. 2 Gas-liquid equilibrium diagram of working medium

【図3】従来例を示すフローシートFIG. 3 is a flow sheet showing a conventional example.

【図4】従来例を示すフローシートFIG. 4 is a flow sheet showing a conventional example.

【符号の説明】[Explanation of symbols]

2 蒸発器 4 タービン 6 凝縮器 8 作動媒体循環ポンプ 10 閉ループ 12 発電機 14 気液分離タンク 16 吸収器 18 アフタークーラー 19 冷却コイル 2 Evaporator 4 Turbine 6 Condenser 8 Working medium circulation pump 10 Closed loop 12 Generator 14 Gas-liquid separation tank 16 Absorber 18 After cooler 19 Cooling coil

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非共沸混合物を作動媒体として用いる熱
サイクルであって、作動媒体の蒸気を凝縮させるための
凝縮器と、凝縮器の作動媒体出口にある未凝縮蒸気を吸
収液に吸収させる吸収器とを具備するものにおいて、凝
縮器からの凝縮液を気液分離器で気相と液相に分離し、
気相を吸収器の吸収液入口に導き、液相を吸収器の作動
媒体出口の液と共にアフタークーラーに導くことによ
り、前記吸収器出口液の低沸点成分濃度を下げて吸収器
の作動媒体出口付近の高濃度低沸点成分蒸気を吸収させ
るようにしたことを特徴とする凝縮液利用吸収器付き熱
サイクルの効率改善方法
1. A heat cycle using a non-azeotropic mixture as a working medium, wherein a condenser for condensing the vapor of the working medium and an uncondensed vapor at the working medium outlet of the condenser are absorbed by the absorbing liquid. In one comprising an absorber, the condensate from the condenser is separated into a gas phase and a liquid phase by a gas-liquid separator,
By guiding the gas phase to the absorbing liquid inlet of the absorber and the liquid phase together with the liquid of the working medium outlet of the absorber to the aftercooler, the concentration of the low boiling point component of the absorber outlet liquid is lowered to reduce the working medium outlet of the absorber. A method for improving the efficiency of a heat cycle with an absorber using a condensate, characterized in that a high-concentration low-boiling point component vapor in the vicinity is absorbed.
JP5240902A 1993-09-28 1993-09-28 Method for improving efficiency of heat cycle with absorber using condensate Expired - Fee Related JP2513985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5240902A JP2513985B2 (en) 1993-09-28 1993-09-28 Method for improving efficiency of heat cycle with absorber using condensate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5240902A JP2513985B2 (en) 1993-09-28 1993-09-28 Method for improving efficiency of heat cycle with absorber using condensate

Publications (2)

Publication Number Publication Date
JPH0791212A JPH0791212A (en) 1995-04-04
JP2513985B2 true JP2513985B2 (en) 1996-07-10

Family

ID=17066382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5240902A Expired - Fee Related JP2513985B2 (en) 1993-09-28 1993-09-28 Method for improving efficiency of heat cycle with absorber using condensate

Country Status (1)

Country Link
JP (1) JP2513985B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2513939B2 (en) * 1991-03-27 1996-07-10 株式会社日阪製作所 Low boiling medium system
JP2650660B2 (en) * 1991-08-29 1997-09-03 九州電力株式会社 Control method of thermal cycle using non-azeotropic mixed medium as working fluid

Also Published As

Publication number Publication date
JPH0791212A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
KR920009139B1 (en) Method and apparatus for implementing a thermodynamic cycle using a fluid of changing concentration
EP0059748B1 (en) Reverse absorption heat pump augmented distillation process
US4195485A (en) Distillation/absorption engine
KR19980032389A (en) Distillation plant
JP3011669B2 (en) Mixed media cycle power generation system
US20230191314A1 (en) Co2 recovery unit and co2 recovery method
JP2513985B2 (en) Method for improving efficiency of heat cycle with absorber using condensate
US7306653B2 (en) Condensing deaerating vent line for steam generating systems
JP2513939B2 (en) Low boiling medium system
JP3134902B2 (en) Separate drain pot condenser
JPH0670364B2 (en) Turbine outlet Working fluid absorption / condensation system
JPS6351044B2 (en)
JP3134903B2 (en) Absorber, condenser cooling water series condenser
JP2513935B2 (en) Low boiling medium system
CN220989718U (en) Crude benzene distillation emission reduction system without water vapor
JPH09112214A (en) Power generating system
JP4740519B2 (en) Multi-column generator for improved ammonia water absorption system
JPH05280813A (en) Heat pump for mixed mediums
JPH08100608A (en) Mixed medium binary generating system
JPH05187736A (en) Absorption type heat pump device
JP2513941B2 (en) Low boiling medium system
JPH0642311A (en) Absorbed steam up blow condenser
JP2513938B2 (en) Low boiling medium system
SU1702124A1 (en) Sorption refrigerating machine and its operation
JPH1026009A (en) Non-azeotropic mixture medium recycle generating system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960220

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees