JPH05280813A - Heat pump for mixed mediums - Google Patents

Heat pump for mixed mediums

Info

Publication number
JPH05280813A
JPH05280813A JP7471592A JP7471592A JPH05280813A JP H05280813 A JPH05280813 A JP H05280813A JP 7471592 A JP7471592 A JP 7471592A JP 7471592 A JP7471592 A JP 7471592A JP H05280813 A JPH05280813 A JP H05280813A
Authority
JP
Japan
Prior art keywords
liquid
condenser
outlet
heat medium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7471592A
Other languages
Japanese (ja)
Other versions
JP3244087B2 (en
Inventor
Hiroyuki Sumitomo
博之 住友
Tatsuo Yamazaki
起男 山崎
Akira Horiguchi
章 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP07471592A priority Critical patent/JP3244087B2/en
Publication of JPH05280813A publication Critical patent/JPH05280813A/en
Application granted granted Critical
Publication of JP3244087B2 publication Critical patent/JP3244087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve the heat-transfer performance of a condenser by providing an absorber on the side of the outlet for heat medium from a condenser in a setup to make the liquid residue from the evaporation on the side of the outlet for heat media from an evaporator absorb gas which has come to the vicinity of the outlet of the condenser without being condensed. CONSTITUTION:The part holding the liquid phase heat media of a mist separator 18 provided on the side of the outlet for the heat medium from an evaporator 2 is connected to a passageway 14a for the heat medium into an absorber 14. The passageway 14a for the heat medium at its outlet positioned on the lower side is connected to a closed loop 10. A drain pot 16 is provided on the side of the outlet for the heat medium from a condenser 6. The lower liquid-holding part of the drain pot 16 is connected to an expansion valve 8 and the upper liquid-holding part is connected to the passageway 14a for the heat media on the side of the inlet. The vapor of the heat medium produced at the evaporator 2 is separated from the liquid, fed to a compressor 4 and works, and then flows to the condenser 6 to be condensed. The liquid residua from the evaporation is sent into the passageway 14a to the absorber 14. The concentration of the low boiling point type component of the liquid residua from the evaporation is lowest in the system. On the other hand, the concentration of the low boiling point type component in the gaseous phase at the outlet of the condenser 6 is very high. Therefore, the low boiling point type gaseous component is absorbed by the liquid residuum from the evaporation which is sent into the absorber 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱媒体の相変化を利
用し、低温側から汲み上げた熱を高温側で利用する目的
で使用されるヒートポンプに関し、熱媒体として二成分
系の混合媒体を使用する場合の性能向上を図るものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump used for the purpose of utilizing the phase change of a heat medium and utilizing the heat pumped from the low temperature side on the high temperature side. It is intended to improve performance when used.

【0002】[0002]

【従来の技術】ヒートポンプは、図3に示すように、蒸
発器(2)、圧縮機(4)、凝縮器(6)、膨張弁
(8)を直列に接続して閉ループ(10)を構成させ、こ
の閉ループ(10)内で熱媒体を循環させると、熱媒体は
まず蒸発器(2)で外部から熱を吸収して蒸発し、発生
した蒸気は圧縮機(4)で圧縮されて昇温・昇圧し、凝
縮器(6)でその熱を外部に放出し、凝縮して液相とな
った熱媒体は、膨張弁(8)で絞り膨張したうえで蒸発
器(2)に戻され、これによりサイクルを終える。
2. Description of the Related Art As shown in FIG. 3, a heat pump comprises a closed loop (10) in which an evaporator (2), a compressor (4), a condenser (6) and an expansion valve (8) are connected in series. When the heat medium is circulated in the closed loop (10), the heat medium first absorbs heat from the outside in the evaporator (2) and evaporates, and the generated vapor is compressed in the compressor (4) and rises. The heat medium, which has been heated / pressurized and whose heat is released to the outside by the condenser (6) and condensed into a liquid phase, is expanded by the expansion valve (8) and then returned to the evaporator (2). , This ends the cycle.

【0003】ところで、このようなヒートポンプ等の熱
サイクルでは、効率の向上のため熱媒体に非共沸の混合
媒体を用いてローレンツサイクルを構成させることがあ
る。図4は最も簡単な二成分の液体−蒸気系の温度−組
成の関係を横軸に低沸成分のモル分率をとって示したも
のである。GとLは単一相で、それぞれ気相と液相、L
+Gの領域は液体と蒸気が共存する二相領域である。も
し低沸成分の60モル%(モル分率=0.60)の液体混合物
の温度を、定圧下で上昇させたとすると、この系の変化
は直線ab'cd"e に沿って考えることができる。低温では
液相のみが存在するが、b'点で蒸気相が現われる。この
蒸気相の組成はb"点で与えられ、2つの共役相は図上の
平衡連結線b"b'で結ばれている。さらに温度を上げる
と、もっと多くの蒸気が生成するが、その場合、蒸気中
の低沸成分の濃度が高いので、液相ではこの成分が相対
的に減少し、液体の組成はb'c'd'に沿って変化し、一
方、蒸気の組成はb"c"d"に沿って変化する。温度t℃で
は、二相領域にある系の全組成はc点で表されるが、蒸
気組成、液体組成はそれぞれc点を通る平衡連結線の両
端、c"点とc'点で与えられる。二相の相対的な量は、物
理学のてこの原理から求められる。すなわち、蒸気と液
体のモル数の比はcc'と c"c の長さの比で表される。さ
らに温度を上げるとますます蒸気が生成し、d”点にな
ると液相はほとんどなくなり、これ以上温度が高くなる
と、液相が消えて蒸気相(d"点)のみが残る。
By the way, in such a heat cycle of a heat pump or the like, a Lorentz cycle may be constituted by using a non-azeotropic mixed medium as a heat medium in order to improve efficiency. FIG. 4 shows the simplest temperature-composition relationship of the two-component liquid-vapor system, with the horizontal axis representing the mole fraction of the low-boiling component. G and L are single phase, gas phase and liquid phase, L
The + G region is a two-phase region where liquid and vapor coexist. If the temperature of a liquid mixture containing 60 mol% of low-boiling components (molar fraction = 0.60) is increased under constant pressure, the change of this system can be considered along the straight line ab'cd "e. There is only a liquid phase in, but the vapor phase appears at the point b '. The composition of this vapor phase is given at the point b ", and the two conjugated phases are connected by the equilibrium connecting line b"b' in the figure. When the temperature is further increased, more vapor is produced, but in this case, the concentration of low boiling point components in the vapor is high, so this component is relatively reduced in the liquid phase, and the composition of the liquid is b '. It varies along c'd ', while the vapor composition varies along b "c" d ". At the temperature of t ° C, the total composition of the system in the two-phase region is represented by the point c, but the vapor composition and the liquid composition are given at both ends of the equilibrium connection line passing through the point c, the points c "and c '. The relative amounts of the two phases are derived from the principle of leverage in physics: the vapor to liquid mole ratio is the ratio of the lengths cc 'and c "c. When the temperature is further raised, more and more steam is generated, and when the temperature reaches the d "point, the liquid phase almost disappears, and when the temperature becomes higher than this, the liquid phase disappears and only the vapor phase (d" point) remains.

【0004】[0004]

【発明が解決しようとする課題】凝縮器出口の熱媒体の
気相では低沸成分の濃度が系内で最も高く、凝縮伝熱面
付近にも低沸成分のガスが滞留する。このため、低沸成
分は凝縮器に対し物質移動および熱移動を妨げる不凝縮
ガスと同じような存在となり、伝熱性能を低下させる。
In the vapor phase of the heat medium at the outlet of the condenser, the concentration of the low boiling point component is the highest in the system, and the gas of the low boiling point component stays near the condensation heat transfer surface. For this reason, the low-boiling component exists in the condenser in the same manner as the non-condensable gas that impedes the mass transfer and the heat transfer, and reduces the heat transfer performance.

【0005】そこで、この発明の課題は、二成分系の混
合媒体を熱媒体として使用するヒートポンプにおいて、
凝縮器における未凝縮の低沸成分ガスの濃度を下げ、不
凝縮ガスを排除することと同じ効果を上げることにあ
る。
Therefore, an object of the present invention is to provide a heat pump using a two-component mixed medium as a heat medium,
This is to reduce the concentration of uncondensed low-boiling component gas in the condenser and to achieve the same effect as eliminating non-condensed gas.

【0006】[0006]

【課題を解決するための手段】この発明は、凝縮器の熱
媒体出口側に吸収器を設け、蒸発器の熱媒体出口側の蒸
発残液に凝縮器出口付近の未凝縮ガスを吸収させること
により、課題を解決した。
SUMMARY OF THE INVENTION According to the present invention, an absorber is provided on the heat medium outlet side of a condenser so that uncondensed gas in the vicinity of the condenser outlet is absorbed by an evaporation residual liquid on the heat medium outlet side of an evaporator. Has solved the problem.

【0007】[0007]

【作用】蒸発器の熱媒体出口の蒸発残液は系内で最も低
沸成分濃度が低いので、未凝縮低沸成分ガスはこの蒸発
残液に容易に吸収される。また、吸収器における冷却作
用により吸収効果がさらに高まる。
Since the evaporation residual liquid at the heat medium outlet of the evaporator has the lowest concentration of the low boiling component in the system, the uncondensed low boiling component gas is easily absorbed in the evaporation residual liquid. Further, the absorption effect is further enhanced by the cooling action in the absorber.

【0008】このようにして低濃度低沸点媒体液に未凝
縮低沸成分ガスが吸収される結果、凝縮器出口付近にお
ける未凝縮低沸成分濃度が下がるので、物質移動および
熱移動が容易になり凝縮器伝熱性能が向上する。
In this way, the uncondensed low-boiling component gas is absorbed in the low-concentration low-boiling-point medium liquid, and as a result, the concentration of the uncondensed low-boiling component near the outlet of the condenser is lowered, which facilitates mass transfer and heat transfer. The heat transfer performance of the condenser is improved.

【0009】また、吸収器における冷却作用は上述のよ
うに吸収効果を高めることのみならず、液温(飽和温
度)を下げ、それに伴って圧力を低下させるはたらきを
する。したがって、凝縮圧力を下げることによる圧縮機
動力の軽減が可能となる。
Further, the cooling action in the absorber not only enhances the absorption effect as described above, but also lowers the liquid temperature (saturation temperature) and accordingly lowers the pressure. Therefore, the power of the compressor can be reduced by lowering the condensing pressure.

【0010】[0010]

【実施例】図1に示すように、熱媒体通路(14a)と冷
却水通路(14b)を具備した一種の熱交換器である吸収
器(14)を設け、蒸発器(2)の熱媒体出口側に設けた
ミストセパレータ(18)の液相を、液戻り配管(20)で
吸収器(14)の熱媒体通路(14a)に接続する。液戻り
配管(20)は途中にポンプ(22)を有し、かつ、吸収器
(14)に至る前に予熱器(24)を経る。吸収器(14)の
熱媒体通路(14a)の下部出口は、予熱器(24)の上流
側の閉ループ(10)に接続する。凝縮器(6)の熱媒体
出口側に未凝縮ガスを分離するためのドレンポット(1
6)を設け、ドレンポット(16)の下部の液相は予熱器
(24)を経て膨張弁(8)に至り、上部の気相は吸収器
(14)の熱媒体通路(14a)の入口側に接続する。吸収
器(14)の冷却水通路(14b)に供給する冷却水として
は、たとえば、凝縮器(6)のものと共用することがで
きるが、別系統とすることもできる。
EXAMPLE As shown in FIG. 1, an absorber (14) which is a kind of heat exchanger equipped with a heat medium passage (14a) and a cooling water passage (14b) is provided, and a heat medium of an evaporator (2) is provided. The liquid phase of the mist separator (18) provided on the outlet side is connected to the heat medium passage (14a) of the absorber (14) through the liquid return pipe (20). The liquid return pipe (20) has a pump (22) on the way and goes through a preheater (24) before reaching the absorber (14). The lower outlet of the heat medium passage (14a) of the absorber (14) is connected to the closed loop (10) on the upstream side of the preheater (24). A drain pot (1) for separating uncondensed gas is provided at the heat medium outlet side of the condenser (6).
6) is provided, the liquid phase below the drain pot (16) reaches the expansion valve (8) via the preheater (24), and the gas phase above is the inlet of the heat medium passage (14a) of the absorber (14). Connect to the side. The cooling water supplied to the cooling water passage (14b) of the absorber (14) can be shared with that of the condenser (6), for example, but it can be a separate system.

【0011】蒸発器(2)で発生した熱媒体の蒸気は、
ミストセパレータ(18)で液と分離された上で、圧縮機
(4)に供給されて仕事をし、その後凝縮器(6)に進
み冷却水に熱を奪われて凝縮する。ミストセパレータ
(18)で蒸気から分離された蒸発残液つまり蒸発しきれ
なかった液相の熱媒体は、ポンプ(22)により液戻り配
管(20)を通じて吸収器(14)の熱媒体通路(14a)に
送り込まれる。
The vapor of the heat medium generated in the evaporator (2) is
After being separated from the liquid by the mist separator (18), it is supplied to the compressor (4) to perform work, and then proceeds to the condenser (6) where heat is taken by the cooling water to be condensed. The evaporation residual liquid separated from the vapor by the mist separator (18), that is, the liquid-phase heat medium that cannot be completely evaporated, is passed through the liquid return pipe (20) by the pump (22) to the heat medium passage (14a) of the absorber (14). ) Is sent to.

【0012】この場合の蒸発器(2)、凝縮器(6)の
低沸成分濃度は図2のようになる。図中の○付き数字は
それぞれ次の事項を示している。凝縮器出口液、蒸
発器入口液、蒸発器出口液、蒸発器出口ガス、凝
縮器入口(または全体平均)ガス、凝縮器出口ガス。
図2から理解されるとおり、蒸発器出口液すなわち蒸
発残液は系内で最も低い低沸成分濃度を示す。一方、凝
縮器6の出口ではで示される状態の低沸成分ガスの濃
度が非常に高い。したがって、吸収器(14)に送り込ま
れた蒸発残液に低沸成分ガスが吸収される。なお、凝縮
器(6)内には〜の種々状態のガスが存在するが、
凝縮器(6)の熱媒体出口の低沸成分濃度が最も高い
の状態のガスが選択的に吸収されることとなる。このよ
うに、低沸成分濃度が系内で最も低い蒸発器出口の蒸発
残液を凝縮器出口側に送り込むことによって、この蒸発
残液に低沸成分ガスが吸収され、その結果、未凝縮低沸
成分ガス濃度が下がり、凝縮器伝熱性能が向上する。
In this case, the low boiling component concentrations of the evaporator (2) and the condenser (6) are as shown in FIG. The circled numbers in the figure indicate the following items. Condenser outlet liquid, evaporator inlet liquid, evaporator outlet liquid, evaporator outlet gas, condenser inlet (or overall average) gas, condenser outlet gas.
As can be understood from FIG. 2, the evaporator outlet liquid, that is, the evaporation residual liquid exhibits the lowest low boiling component concentration in the system. On the other hand, at the outlet of the condenser 6, the concentration of the low boiling point component gas in the state indicated by is very high. Therefore, the low boiling point component gas is absorbed in the evaporation residual liquid sent to the absorber (14). In addition, in the condenser (6), gases in various states of ~ exist,
The gas in the state where the low boiling point component concentration is the highest at the heat medium outlet of the condenser (6) is selectively absorbed. In this way, by sending the evaporation residual liquid at the evaporator outlet having the lowest low boiling component concentration to the condenser outlet side, the low boiling component gas is absorbed in this evaporation residual liquid, and as a result, the uncondensed low The boiling component gas concentration is reduced, and the heat transfer performance of the condenser is improved.

【0013】[0013]

【発明の効果】以上のように、この発明は、二成分系の
混合媒体を熱媒体として使用するヒートポンプにおい
て、凝縮器の熱媒体出口側に吸収器を設け、蒸発器の熱
媒体出口側の蒸発残液に凝縮器出口付近の未凝縮ガスを
吸収させるようにしたものであるから、系内で最も低い
低沸成分濃度を示す蒸発器出口の蒸発残液が低沸成分ガ
スを容易に吸収して凝縮器出口付近の未凝縮低沸成分ガ
ス濃度を下げ、凝縮器伝熱性能を向上させる。吸収器に
おける冷却作用により、吸収効果がさらに高まり、加え
て、液温(飽和温度)を下げてそれに伴って圧力を低下
させるはたらきをする。したがって、この発明によれ
ば、凝縮圧力を下げることによる圧縮機動力の軽減が可
能となるという効果も得られ、総じて当該ヒートポンプ
の性能が向上する。
As described above, according to the present invention, in a heat pump using a binary mixture medium as a heat medium, an absorber is provided on the heat medium outlet side of a condenser and a heat medium outlet side of an evaporator is provided. The evaporation residual liquid absorbs the uncondensed gas near the outlet of the condenser, so the evaporation residual liquid at the evaporator outlet that shows the lowest concentration of low boiling components in the system easily absorbs the low boiling components gas. Then, the concentration of the uncondensed low-boiling component gas near the outlet of the condenser is reduced to improve the heat transfer performance of the condenser. The cooling effect in the absorber further enhances the absorption effect, and in addition, it serves to lower the liquid temperature (saturation temperature) and accordingly reduce the pressure. Therefore, according to the present invention, it is possible to reduce the compressor power by reducing the condensing pressure, and the performance of the heat pump is generally improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】熱媒体の気液平衡線図である。FIG. 2 is a vapor-liquid equilibrium diagram of a heating medium.

【図3】従来例を示すブロック図である。FIG. 3 is a block diagram showing a conventional example.

【図4】二成分系混合媒体の温度−組成の関係を示す気
液平衡線図である。
FIG. 4 is a vapor-liquid equilibrium diagram showing a temperature-composition relationship of a binary mixed medium.

【符号の説明】[Explanation of symbols]

2 蒸発器 4 圧縮機 6 凝縮器 8 膨張弁 10 閉ループ 12 電動機 14 吸収器 16 ドレンポット 18 ミストセパレータ 20 液戻り配管 22 ポンプ 24 予熱器 2 Evaporator 4 Compressor 6 Condenser 8 Expansion valve 10 Closed loop 12 Electric motor 14 Absorber 16 Drain pot 18 Mist separator 20 Liquid return pipe 22 Pump 24 Preheater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二成分系の混合媒体を熱媒体として使用
するヒートポンプにおいて、凝縮器の熱媒体出口側に吸
収器を設け、蒸発器の熱媒体出口側の蒸発残液に凝縮器
出口付近の未凝縮ガスを吸収させることを特徴とする混
合媒体用ヒートポンプ。
1. A heat pump that uses a binary mixed medium as a heat medium, wherein an absorber is provided on the heat medium outlet side of the condenser, and the evaporation residual liquid on the heat medium outlet side of the evaporator is near the condenser outlet. A heat pump for mixed media, characterized by absorbing uncondensed gas.
JP07471592A 1992-03-30 1992-03-30 Heat pump for mixed media Expired - Fee Related JP3244087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07471592A JP3244087B2 (en) 1992-03-30 1992-03-30 Heat pump for mixed media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07471592A JP3244087B2 (en) 1992-03-30 1992-03-30 Heat pump for mixed media

Publications (2)

Publication Number Publication Date
JPH05280813A true JPH05280813A (en) 1993-10-29
JP3244087B2 JP3244087B2 (en) 2002-01-07

Family

ID=13555201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07471592A Expired - Fee Related JP3244087B2 (en) 1992-03-30 1992-03-30 Heat pump for mixed media

Country Status (1)

Country Link
JP (1) JP3244087B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6865904B2 (en) * 2002-11-25 2005-03-15 Tempia Co., Ltd. Combined regeneration heating and cooling system
CN110822755A (en) * 2019-11-27 2020-02-21 江苏天舒电器有限公司 Heat pump system using non-azeotropic refrigerant mixture
CN114893923A (en) * 2022-04-16 2022-08-12 郑州大学 Working medium component concentration active regulation-based self-overlapping system and control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6865904B2 (en) * 2002-11-25 2005-03-15 Tempia Co., Ltd. Combined regeneration heating and cooling system
CN110822755A (en) * 2019-11-27 2020-02-21 江苏天舒电器有限公司 Heat pump system using non-azeotropic refrigerant mixture
CN114893923A (en) * 2022-04-16 2022-08-12 郑州大学 Working medium component concentration active regulation-based self-overlapping system and control method
CN114893923B (en) * 2022-04-16 2023-05-26 郑州大学 Automatic overlapping system based on active regulation and control of concentration of working medium components and control method

Also Published As

Publication number Publication date
JP3244087B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
JPH0336129B2 (en)
JPH0427367B2 (en)
JPH11324711A (en) Method for cooling ambient air entering gas turbine
JPH02181002A (en) Double flow turbine plant
JPH05280813A (en) Heat pump for mixed mediums
JP2513936B2 (en) Low boiling medium system
JP2513939B2 (en) Low boiling medium system
JP3169441B2 (en) Oil absorption type heat cycle
JP2513935B2 (en) Low boiling medium system
JP2513941B2 (en) Low boiling medium system
JP2513938B2 (en) Low boiling medium system
JP2513937B2 (en) Non-azeotrope condenser
JP2513949B2 (en) Low boiling medium gas absorber
JP2551703B2 (en) Circulating method of working fluid in low boiling medium system
JP2954022B2 (en) Non-azeotropic mixed medium cycle power generation system
JPH07198222A (en) Heat pump including reverse rectifying part
JPH0559907A (en) Absorbed liquid cooler
JP2513940B2 (en) Low boiling medium system
JPH08100608A (en) Mixed medium binary generating system
JP3700330B2 (en) Absorption refrigeration system
JP2520987B2 (en) Evaporator for non-azeotropic mixture
JP2650664B2 (en) Mixed media evaporator
JP2513950B2 (en) Absorber integrated condenser
JPH0894196A (en) Mixture medium heat pump
JP2513985B2 (en) Method for improving efficiency of heat cycle with absorber using condensate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees