JPS6172961A - Heat collecting device - Google Patents

Heat collecting device

Info

Publication number
JPS6172961A
JPS6172961A JP59195601A JP19560184A JPS6172961A JP S6172961 A JPS6172961 A JP S6172961A JP 59195601 A JP59195601 A JP 59195601A JP 19560184 A JP19560184 A JP 19560184A JP S6172961 A JPS6172961 A JP S6172961A
Authority
JP
Japan
Prior art keywords
temperature
heat
compressor
fluid
heating capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59195601A
Other languages
Japanese (ja)
Other versions
JPH034820B2 (en
Inventor
Masafumi Satomura
雅史 里村
Zenji Shinobu
信夫 善治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59195601A priority Critical patent/JPS6172961A/en
Priority to EP85104355A priority patent/EP0175836B1/en
Priority to EP88102744A priority patent/EP0330701A3/en
Priority to DE8585104355T priority patent/DE3568860D1/en
Publication of JPS6172961A publication Critical patent/JPS6172961A/en
Priority to US07/161,951 priority patent/US4901537A/en
Publication of JPH034820B2 publication Critical patent/JPH034820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To permit to obtain the hot-water of objective heat-up temperature at an objective heat-up time every day by a method wherein a present fluid temperature in a hot-water reserving tank is detected to operate an objective heating capacity from the temperature difference between the detected temperature and the objective heat-up temperature and a remaining heat collecting time from present time to the heat-up time. CONSTITUTION:The inlet and outlet temperatures of a fluid heater 8 are being inputted into a main control circuit 13A from first and second temperature detectors 11, 12 while the objective heating capacity is operated in a control circuit 13 by a present average water temperature in the hot-water reserving tank, detected by the third temperature detector 15 wherein a heating capacity is being detected at all times by employing the detected temperature difference and a preset amount of flow of water, the objective heat-up temperature, the objective heat-up time and the present time to memorize it into the main control circuit 13A. The revolving number of a compressor 1 is controlled in accordance with the change in atmospheric condition as well as the supply of hot-water during collecting heat so as to obtain the objective heating capacity memorized in the main control circuit 13A.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、太陽熱および空気熱を熱源とするヒートポン
プ式の集熱装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a heat pump type heat collecting device that uses solar heat and air heat as heat sources.

く従来技術〉 従来、ヒートポンプを用いた太陽熱・空気熱を熱源とす
る集熱装置において、圧縮侭の容量制御を行なう方法と
して、外気温を検知し外気温度が高くなるに従い圧縮機
の回転速度が低くなるように制御する方法が考えられて
いる。この方法は圧縮機の消費電力を低減して装置の成
績係数を向上する目的では有効であるが、加温能力が外
気条件に左右されるために目標沸き上げ温度に達しない
ことや、湯の使用量が多くなる夕方になっても沸き上げ
か′完了していないということが起こる場合が考えられ
、湯の利用の面からみて不都合であった。
Conventional technology> Conventionally, in a heat collecting device using solar heat or air heat as a heat source using a heat pump, a method for controlling the capacity during compression is to detect the outside temperature and increase the rotation speed of the compressor as the outside temperature increases. Methods are being considered to control this so that it becomes lower. This method is effective for reducing the power consumption of the compressor and improving the coefficient of performance of the equipment, but because the heating capacity is affected by outside air conditions, it may not reach the target boiling temperature, and the hot water may not reach the target boiling temperature. Even in the evening when the amount of hot water used is high, there are cases where the boiling process is not completed, which is inconvenient from the point of view of using the hot water.

〈  目  的  〉 本発明は、上記に鑑み、目標沸き上げ時刻には確実に目
標沸き上げ温度の湯が利用できるようにした太陽熱・空
気熱集熱装置の提供を目的としたものである。
<Purpose> In view of the above, the present invention aims to provide a solar heat/air heat collecting device that makes it possible to reliably use hot water at a target boiling temperature at a target boiling time.

〈実施例〉 以下、本発明の一実施例を第1.2図に基いて説明する
と、これは、熱媒を圧縮して吐出する圧縮(燻1と、該
圧縮機の吐出側に接続された凝縮器2と、一側が絞り装
置3を介して前記凝縮器2に接続され他側か前記圧縮機
1に接続された集熱器4とから集熱回路5が構成され、
使用流体を貯える貯湯槽6と、該貯湯槽6外で循環ポン
プ7を介して配され前記凝縮器2と熱交換関係にある使
用流体加熱器8とが互に接続されて流体加熱回路9が構
成された集熱装置において、前記圧縮機1は容量可変形
とされ、前記流体加熱器8の入口iこ第一温度検出器1
1が設けられると共に該流木加熱器8の出口に第二温度
検出器12が設けられ、前記貯湯槽6内の流体の温度を
検出する第三温度検出器ISが設けられ、該第一、第三
温度検出器11,12.15の出力信号により前記圧縮
(;文1の容量を制御する制御回路13が設けられ、該
制御回路13は、該第三温度検出器ISの出力信号から
貯湯槽内の現在の流体温度を検出し、該検出温度と目標
沸き上は温度との差温と、現在時刻から沸き上げ時刻ま
での集熱残り時間とから目標加温能力を演見し、また前
記第一、第二温度検出器11.12により検出された温
度から集熱回路5の加温能力?!:算出し該加温能力が
“前記目標加温能力となるように前記圧縮(幾1に容量
制御信号を出力するよう構成されたものである。
<Example> An example of the present invention will be described below with reference to Fig. 1.2. A heat collecting circuit 5 is constituted by a condenser 2, which is connected to the condenser 2 on one side via a throttle device 3, and a heat collector 4 whose other side is connected to the compressor 1,
A fluid heating circuit 9 is formed by connecting a hot water storage tank 6 for storing a fluid to be used and a fluid heater 8 disposed outside the hot water storage tank 6 via a circulation pump 7 and having a heat exchange relationship with the condenser 2 to form a fluid heating circuit 9. In the constructed heat collecting device, the compressor 1 is of a variable capacity type, and the first temperature sensor 1 is connected to the inlet of the fluid heater 8.
1, a second temperature sensor 12 is provided at the outlet of the driftwood heater 8, a third temperature sensor IS is provided for detecting the temperature of the fluid in the hot water tank 6, A control circuit 13 is provided which controls the capacity of the compression (1) according to the output signals of the three temperature detectors 11, 12. The current temperature of the fluid in the tank is detected, and the target heating capacity is demonstrated based on the temperature difference between the detected temperature and the target boiling temperature, and the remaining heat collection time from the current time to the boiling time. The heating capacity of the heat collecting circuit 5 is calculated from the temperatures detected by the first and second temperature detectors 11 and 12, and the compression It is configured to output a capacity control signal to the

第1図において、前記集熱器4は、黒色塗装されたフィ
ンを装着したバイブから構成され、太陽熱及び空気熱を
集熱可能とされている。また前記圧縮(尺1は、周波数
変換回路14により回転数可変とされる。また前記絞り
装置3としてステッピングモータで駆動される膨張弁が
用いられる。該膨張弁3は集熱器4の出入口に設置され
た温度センサー(図示せず)により集熱器4での集熱が
最適条件で行なわれる様に熱媒の流量を制御している。
In FIG. 1, the heat collector 4 is composed of a vibrator equipped with black-painted fins, and is capable of collecting solar heat and air heat. Further, the rotation speed of the compressor 1 is made variable by a frequency conversion circuit 14. An expansion valve driven by a stepping motor is used as the expansion device 3. An installed temperature sensor (not shown) controls the flow rate of the heat medium so that the heat collector 4 collects heat under optimal conditions.

一方、流体加熱回路9は、貯湯P16、循環ポンプ7、
流体加熱器8、貯湯槽6が順次接続されて成る。そして
前記凝縮器2と流体加熱器8は熱交換関係に保持されて
おり、例えば二重管構造熱又換器10をなしている。そ
して前記制御回路13は、目標沸き上げ温度及び目標沸
き上げ時刻を設定する設定器JOBと、前記第一、第二
温度検出器11.12からの検出温度差から加温能力を
算出しまた前記設定器13Bと第三温度検出器15とに
より算出される目標加温能力に応じて制御信号を出力す
る主制御回路13Aと、該主制御回路13Aの出力信号
に基いて前記圧縮(;文1に運転周波数信号を出力する
周波数変換回路14とから構成される。
On the other hand, the fluid heating circuit 9 includes a hot water storage P16, a circulation pump 7,
A fluid heater 8 and a hot water storage tank 6 are connected in sequence. The condenser 2 and the fluid heater 8 are held in a heat exchange relationship, forming, for example, a double tube heat exchanger 10. The control circuit 13 calculates the heating capacity from the setter JOB that sets the target boiling temperature and the target boiling time, and the temperature difference detected from the first and second temperature detectors 11.12. A main control circuit 13A outputs a control signal according to the target heating capacity calculated by the setting device 13B and the third temperature detector 15, and the compression (; and a frequency conversion circuit 14 that outputs an operating frequency signal.

前記主制御回路13Aは、例えば、一般的なワンチップ
マイクロコンビエータで、内部:こデータRAM、プロ
グラムROM、ALU等を有し、クロック発振回路によ
り駆動さ1′Lるちのである。また、前記周波数変換回
路14は、例えばインバータ回路で、圧縮(ぺ用電動磯
の三和又流電源周波数を変換する信号を出力するもので
ある。また、前記温度検出器11,12.15は、例え
ばサーミスタが使用され、該サーミスタで検出される温
度変化による電圧降下はデジタル値に変換されて主制御
回路13Aに入力される。
The main control circuit 13A is, for example, a general one-chip microcombiator, which has internal data RAM, program ROM, ALU, etc., and is driven by a clock oscillation circuit. Further, the frequency conversion circuit 14 is, for example, an inverter circuit, and outputs a signal for converting the frequency of the Sanwa Mata power source of the electric rock. For example, a thermistor is used, and a voltage drop due to a temperature change detected by the thermistor is converted into a digital value and input to the main control circuit 13A.

なお、目標加温能力は次のように決定できる。Note that the target heating capacity can be determined as follows.

すなわち、目標とする加温能力は、現在の貯?8槽容量
から計算できる加温負荷と、現在時刻と目標沸き上げ時
刻の差である集熱残り時間から計算する。
In other words, is the target heating capacity based on current storage? It is calculated from the heating load, which can be calculated from the capacity of the eight tanks, and the remaining heat collection time, which is the difference between the current time and the target boiling time.

加温負荷=(目標沸き上げ温度−現在の貯湯槽内平均流
体温度)×貯湯槽容量 目標加温能力=加温負荷/集熱残り時間次に集熱(’l
川を説明する。圧、111j(><1で圧駈iされた高
温高圧の熱媒ガ又は、凝縮器2に流入し、熱2換関係に
ある流体加熱器8を流れる流体(水)と熱交換して凝縮
液化し膨張弁3に至り、脛張弁3を通過する際に断熱膨
張して減圧され、低温(ぷ圧の未蒸発熱媒となる。熱媒
は次に集熱器4へ流入して太陽熱−空気熱を吸熱してガ
ス化し、再び圧縮機1に入り上記サイクルを繰返す。−
力計湯槽6内の水は循環ポンプ7により流体加熱器8へ
送られ加熱列温さ汽て貯湯槽6へ流入する。
Heating load = (Target boiling temperature - Current average fluid temperature in the hot water storage tank) x Hot water storage tank capacity Target heating capacity = Heating load / Remaining heat collection time Next, heat collection ('l
Describe the river. Pressure, 111j (><1) The high-temperature, high-pressure heat medium flows into the condenser 2, exchanges heat with the fluid (water) flowing through the fluid heater 8, which has a two-heat exchange relationship, and condenses. It liquefies and reaches the expansion valve 3, and as it passes through the shin tension valve 3, it undergoes adiabatic expansion and is depressurized, becoming an unevaporated heat medium at a low temperature (pressure).The heat medium then flows into the heat collector 4 and absorbs solar heat. -The air heat is absorbed and gasified, and then enters the compressor 1 again to repeat the above cycle.-
The water in the force meter hot water tank 6 is sent to the fluid heater 8 by the circulation pump 7, and flows into the hot water storage tank 6 after being heated to a higher temperature.

このとき、流体加熱器8の入口・出口の温度は第一、第
二温度検出器11.12から主制御回路13Aに入力さ
れておl)、主制御回路13Aでは、それらの差温とあ
らかじめ一定に設定された水流量を用いて加温能力が常
に検知されている。そして第三温度検出器15により検
知さrしる現在の貯湯槽内平均水温と目標沸き上げ温度
、目標沸き上げ時刻、現在時刻より制御回路13にて上
述の方法で目標加温能力を演算して主制御回路13Aに
記憶する。
At this time, the temperatures at the inlet and outlet of the fluid heater 8 are input to the main control circuit 13A from the first and second temperature detectors 11. The heating capacity is constantly detected using a constant water flow rate. Then, the control circuit 13 calculates the target heating capacity using the method described above from the current average water temperature in the hot water storage tank detected by the third temperature detector 15, the target boiling temperature, the target boiling time, and the current time. and stored in the main control circuit 13A.

そして主1i制御回路13Aに記憶された目標加温fi
ヒカになるように外気条1′[の変化および集熱中の給
湯に応じて圧fi較1の回転数を制御する。即ち、日射
・外気温等が高くなり、集熱器4での集熱量が増加すれ
ば、圧縮(1交1の回転数を落して圧昂(ぺ1の仕事量
つまり消費電力を小さくして高7・成績係数で運転する
。また日射・外気温等が低くなれば圧縮(幾1の回転数
を上げて圧縮眠コの仕事量を増し、目標加温能力が得ら
れるように運転する。
Then, the target heating fi stored in the main 1i control circuit 13A
The rotational speed of the pressure fi comparison 1 is controlled in accordance with changes in the outside air 1' and the hot water supply during heat collection so that the temperature is low. In other words, if the amount of heat collected by the heat collector 4 increases due to solar radiation, outside temperature, etc., increasing the amount of heat collected by the heat collector 4, compression (reducing the rotation speed of 1/1 and compressing (lowering the amount of work of 1, that is, the power consumption) Operate at a high 7/coefficient of performance.Also, when sunlight, outside temperature, etc. are low, the compressor speed is increased to increase the amount of work of the compressor, and the compressor is operated to achieve the target heating capacity.

さらに、集熱中に給湯した場合、低温の市水か貯湯槽内
に給水されるため、貯湯槽内水温は(氏下し℃加温負荷
は増加するので圧縮機2の回転数を上げて加温能力を上
昇させることができる。その制御のフローチャートを第
2図に示す。
Furthermore, when hot water is supplied during heat collection, low-temperature city water or water is supplied into the hot water storage tank, so the water temperature in the hot water storage tank is (℃).As the heating load increases, the rotation speed of compressor 2 is increased. Thermal capacity can be increased.A flowchart of the control is shown in FIG.

〈効果〉 以上の説明から明らかな通り、本発明は、熱媒を圧縮し
て吐出する圧縮(ぺと、該圧縮機の吐出側に接続された
凝縮器と、一側が絞り装置を介して前記凝縮器に接続さ
A辿側が前記圧縮機に接続された集熱器とから集熱回路
が構成され、使用流体を貯える貯ン易槓と、該貯湯槽外
で前記凝縮器と熱交換関係にある使用流体加熱器とが互
に接続されて流体加熱回路が構成された集熱装置におい
て、前記圧縮機は容量可変形とされ、前記流体加熱器の
入口に第一温度検出器が設けられると共に該流体加熱器
の出口に第二温度検出器が設けられ、前記貯湯槽内の流
体の温度を検出する第三温度検出器が設けられ、該第一
、第三温度検出器の出力信号により前記圧縮機の容量を
制御する制御回路か設けられ、該制御回路は、該第三温
度検出器の出力信号から貯湯槽内の現在の流体温度を検
出し、該検出温度と目標沸き上げ温度との差温と、現在
時刻から沸き上げ時刻までの集熱残り時間とから目標加
温能力を演算し、また前記第一、第二温度検出器により
検出さ几た温度から集熱回路の加温能力を算出し該加温
能力が前記目線加温能力となるように前記圧線椴に容量
制御信号を出力するよう構成されたものである。
<Effects> As is clear from the above description, the present invention has a compressor for compressing and discharging a heat medium, a condenser connected to the discharge side of the compressor, and a condenser connected to the discharge side of the compressor, and a A heat collection circuit is constituted by a heat collector connected to the condenser and whose A trace side is connected to the compressor, and a storage tank for storing the fluid to be used, and a heat exchanger with the condenser outside the hot water storage tank. In a heat collecting device in which a fluid heating circuit is configured by connecting a fluid heater to be used, the compressor is of a variable capacity type, and a first temperature detector is provided at the inlet of the fluid heater. A second temperature sensor is provided at the outlet of the fluid heater, and a third temperature sensor is provided for detecting the temperature of the fluid in the hot water tank, and the output signals of the first and third temperature sensors determine the temperature of the fluid. A control circuit is provided to control the capacity of the compressor, and the control circuit detects the current fluid temperature in the hot water storage tank from the output signal of the third temperature sensor, and calculates the difference between the detected temperature and the target boiling temperature. The target heating capacity is calculated from the temperature difference and the remaining heat collection time from the current time to the boiling time, and the heating capacity of the heat collection circuit is calculated from the temperature detected by the first and second temperature detectors. The heating capacity is calculated and a capacity control signal is output to the pressure line so that the heating capacity becomes the line-of-sight heating capacity.

従って本発明によると、第三温度検出器により貯湯槽内
の現在の流体温度が検知でき、現在の時刻から目ねi沸
き上げ温度及び11票沸き上げ時刻から、目標加温能力
を常に算呂して圧縮機を運転制御でき、は)r毎日目標
線き上げ温度の湯が目標沸き上げ時刻に得られ、また日
射・外気温等が高いときは、目標加温能力を小さくして
圧縮機への負担を小さくでき、経済的な運転が可能とな
る。
Therefore, according to the present invention, the current temperature of the fluid in the hot water storage tank can be detected by the third temperature detector, and the target heating capacity can be constantly adjusted from the current time to the target boiling temperature and the 11-vote boiling time. The compressor can be controlled by reducing the target heating capacity when water at the target boiling temperature is obtained every day at the target boiling time, and when the sunlight and outside temperature are high. This reduces the burden on the vehicle and enables economical operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す太陽熱・空気熱田二熱
装置の構成図、第2図は同制御フローチャートである。 1:圧縮(鵬2:凝縮器、3:絞り装置、4:集熱器、
°S:集熱回路、6:貯湯槽、7:循環ポンプ、8:加
熱器、9:加熱回路、1():熱交換器、11.12:
温度検出器、13:制御回路、15:第三温度検出器。
FIG. 1 is a configuration diagram of a solar/air heating field dual heating device showing an embodiment of the present invention, and FIG. 2 is a control flowchart of the same. 1: Compression (Peng 2: Condenser, 3: Throttle device, 4: Heat collector,
°S: heat collection circuit, 6: hot water storage tank, 7: circulation pump, 8: heater, 9: heating circuit, 1(): heat exchanger, 11.12:
Temperature detector, 13: control circuit, 15: third temperature detector.

Claims (1)

【特許請求の範囲】[Claims] 熱媒を圧縮して吐出する圧縮機と、該圧縮機の吐出側に
接続された凝縮器と、一側が絞り装置を介して前記凝縮
器に接続され他側が前記圧縮機に接続された集熱器とか
ら集熱回路が構成され、使用流体を貯える貯湯槽と、該
貯湯槽外で前記凝縮器と熱交換関係にある使用流体加熱
器とが互に接続されて流体加熱回路が構成された集熱装
置において、前記圧縮機は容量可変形とされ、前記流体
加熱器の入口に第一温度検出器が設けられると共に該流
体加熱器の出口に第二温度検出器が設けられ、前記貯湯
槽内の流体の温度を検出する第三温度検出器が設けられ
、該第一、第二、第三温度検出器の出力信号により前記
圧縮機の容量を制御する制御回路が設けられ、該制御回
路は、該第三温度検出器の出力信号から貯湯槽内の現在
の流体温度を検出し、該検出温度と目標沸き上げ温度と
の差温と、現在時刻から沸き上げ時刻までの集熱残り時
間とから目標加温能力を演算し、また前記第一、第二温
度検出器により検出された温度から集熱回路の加温能力
を算出し該加温能力が前記目標加温能力となるように前
記圧縮機に容量制御信号を出力するよう構成されたこと
を特徴とする集熱装置。
A compressor that compresses and discharges a heat medium, a condenser connected to the discharge side of the compressor, and a heat collector connected on one side to the condenser via a throttling device and on the other side connected to the compressor. A fluid heating circuit was constructed by connecting a hot water storage tank for storing a working fluid and a working fluid heater having a heat exchange relationship with the condenser outside the hot water storage tank. In the heat collection device, the compressor is of variable capacity type, a first temperature sensor is provided at the inlet of the fluid heater, a second temperature sensor is provided at the outlet of the fluid heater, and the compressor is of a variable capacity type, and a second temperature sensor is provided at the outlet of the fluid heater. A third temperature detector is provided to detect the temperature of the fluid in the compressor, and a control circuit is provided to control the capacity of the compressor based on the output signals of the first, second, and third temperature detectors, and the control circuit detects the current fluid temperature in the hot water storage tank from the output signal of the third temperature detector, and calculates the difference between the detected temperature and the target boiling temperature and the remaining heat collection time from the current time to the boiling time. A target heating capacity is calculated from the above, and a heating capacity of the heat collecting circuit is calculated from the temperatures detected by the first and second temperature detectors, so that the heating capacity becomes the target heating capacity. A heat collecting device configured to output a capacity control signal to the compressor.
JP59195601A 1984-09-18 1984-09-18 Heat collecting device Granted JPS6172961A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59195601A JPS6172961A (en) 1984-09-18 1984-09-18 Heat collecting device
EP85104355A EP0175836B1 (en) 1984-09-18 1985-04-10 Solar heat collector system
EP88102744A EP0330701A3 (en) 1984-09-18 1985-04-10 Heat collector
DE8585104355T DE3568860D1 (en) 1984-09-18 1985-04-10 Solar heat collector system
US07/161,951 US4901537A (en) 1984-09-18 1988-02-29 Solar heat collector system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195601A JPS6172961A (en) 1984-09-18 1984-09-18 Heat collecting device

Publications (2)

Publication Number Publication Date
JPS6172961A true JPS6172961A (en) 1986-04-15
JPH034820B2 JPH034820B2 (en) 1991-01-24

Family

ID=16343864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195601A Granted JPS6172961A (en) 1984-09-18 1984-09-18 Heat collecting device

Country Status (1)

Country Link
JP (1) JPS6172961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276279A (en) * 2009-05-28 2010-12-09 Noritz Corp Hot water unit for solar system
JP2011169539A (en) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd Heat use system
CN107061287A (en) * 2017-06-29 2017-08-18 广东美的暖通设备有限公司 Compressor and heat pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276279A (en) * 2009-05-28 2010-12-09 Noritz Corp Hot water unit for solar system
JP2011169539A (en) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd Heat use system
CN107061287A (en) * 2017-06-29 2017-08-18 广东美的暖通设备有限公司 Compressor and heat pump

Also Published As

Publication number Publication date
JPH034820B2 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
US4165619A (en) Method of controlling a heat pump, and a heat pump device adapted to operate in accordance with said method
JPH10318604A (en) Heat pump type hot water supply system for bath
JPS6172961A (en) Heat collecting device
JPH11118247A (en) Heat pump type solar hot water supply system
JPH034819B2 (en)
JPH034818B2 (en)
JPS6155553A (en) Hot water supplying device utilizing solar heat
JPS61173055A (en) Solar heat collecting unit
JPS6172962A (en) Solar heat collecting device
JPS58213153A (en) Latent heat transferring device
JPS5952159A (en) Heat collecting device
JPS58205053A (en) Hot-water supplying machine utilizing solar heat
JPS58185911A (en) Motive power generator
JPH0686959B2 (en) Heat pump solar collector
CN113720041A (en) Heat pump unit and energy-saving heat pump system
JPS61235643A (en) Solar-heat utilizing water heater
JPS5883153A (en) Heat-pump type water heater
JPS5857664B2 (en) solar water heating device
JPS6071827A (en) Water heater by heat pump cycle
JPS61246553A (en) Solar-heat utilizing heat collector
JPS60233453A (en) Solar heat collector
JPS62206343A (en) Solar heat and air heat collecting device
JPS61153456A (en) Solar-heat utilizing heat pump hot-water supply device
JPS60155861A (en) Heat collector utilizing solar heat
JPS649545B2 (en)