JPS6162514A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPS6162514A
JPS6162514A JP18436884A JP18436884A JPS6162514A JP S6162514 A JPS6162514 A JP S6162514A JP 18436884 A JP18436884 A JP 18436884A JP 18436884 A JP18436884 A JP 18436884A JP S6162514 A JPS6162514 A JP S6162514A
Authority
JP
Japan
Prior art keywords
epoxy resin
synthetic rubber
epoxy
parts
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18436884A
Other languages
Japanese (ja)
Inventor
Makoto Yamagata
誠 山縣
Shigeru Koshibe
茂 越部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP18436884A priority Critical patent/JPS6162514A/en
Publication of JPS6162514A publication Critical patent/JPS6162514A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled low-stress composition having excellent molda bility, moisture resistance, and crack resistance caused by thermal shock, and useful for the sealing of semiconductor, etc., by uniformly dispersing or reacting and fixing a specific synthetic rubber in an epoxy resin component. CONSTITUTION:The objective composition can be prepared by (1) melting and mixing (A) an epoxy resin (e.g. bisphenol-type epoxy resin) and (B) a synthetic rubber containing epoxy group at the terminal or in the molecular chain, preferably in the presence of (C) one or more compounds selected from tertiary amine, its derivative, organic phosphine compound, organic Al compound, titanium compound, and acid, and (2) compounding the obtained mixture e.g. to (D) an epoxy resin hardener, a cure accelerator, a filler, a mold-release agent, a surface-treating agent, and if necessary, other epoxy resin, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱衝撃を受けた場合の耐クラツク性や耐湿性
に優れる低応力エポキシ樹脂組成物に係るものであシ、
その特徴は末端又は分子内にエポキシ基を含有する合成
ゴムを樹脂中に均一分散させるか、樹脂成分と反応させ
固定させるととろくある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a low stress epoxy resin composition that has excellent crack resistance and moisture resistance when subjected to thermal shock.
Its characteristics can be improved by uniformly dispersing synthetic rubber containing epoxy groups at the ends or within the molecule into the resin, or by reacting and fixing it with the resin component.

〔従来技術〕[Prior art]

従来から、合成ゴムを使用した低応力エポキシ樹脂組成
物は色々と検討されているが、合成ゴムを添加する場合
、および合成ゴム変性エポキシ樹脂を用いる場合のいず
れも成形性(特に硬化性、パリ、離屋性)等に問題があ
った。たとえば、カルボキシル基含有ジエン系ゴム質ポ
リマーを添加した場合〔特開昭58−176958号〕
では、ゴムが溶出し成形性に問題があるだけでなく、親
水性のカルボキシル基を含有するため、著しく耐湿性が
劣った。又、カルボキシル基含有ジエン系ゴム質ポリマ
ーをエポキシ樹脂と予備反応させた場合でも、熱分解し
やすく添加と同様の欠点があった。
Various low-stress epoxy resin compositions using synthetic rubber have been studied in the past, but both when adding synthetic rubber and when using synthetic rubber-modified epoxy resin, moldability (especially curability, parity) There were problems with the construction of the building (e.g., detachability), etc. For example, when a carboxyl group-containing diene-based rubbery polymer is added [JP-A-58-176958]
In this case, not only did the rubber elute and formability was problematic, but it also contained a hydrophilic carboxyl group, resulting in significantly poor moisture resistance. Further, even when a carboxyl group-containing diene-based rubbery polymer is pre-reacted with an epoxy resin, it tends to be thermally decomposed and has the same drawback as addition.

又、合成ゴムを使用しない低応力樹脂組成物も色々と検
討されている。たとえばシリコーン変性レジンを使用し
た)、シリコーンを添加する方法〔特開昭56−129
246号、特開昭58−47014号等〕もあるが、ゴ
ム変性エポキシ樹脂と同様の欠点を持つだけでなく価格
が高い、即ち、汎用性に欠けるという問題を持っている
。。
Various low stress resin compositions that do not use synthetic rubber are also being studied. For example, using a silicone-modified resin), a method of adding silicone [JP-A-56-129
No. 246, JP-A No. 58-47014, etc.), but they not only have the same drawbacks as rubber-modified epoxy resins, but also have the problem of being expensive, that is, lacking in versatility. .

エポキシ樹脂組成物はフェノール樹脂組成物やポリエス
テル樹脂組成物に比べて耐湿性に優れた特徴をもってい
る。たとえば、回路基板や半導体封止材料等に用いられ
ている。現在これら用途で強く要求されているのは低応
力化であシ、特に封止材料関連で強い。これは最終製品
の国際化−あらゆる日時、場所での使用に対応するため
である。
Epoxy resin compositions have superior moisture resistance compared to phenolic resin compositions and polyester resin compositions. For example, it is used in circuit boards, semiconductor sealing materials, and the like. Currently, there is a strong demand for lower stress in these applications, especially in connection with sealing materials. This is to internationalize the final product, allowing it to be used at any time and place.

即ち、多種多用、且つ多人種によって使用されるため、
乱暴な取扱いや急激な温度変化に対する強さが要求され
ているのである。
In other words, because it is used in many different ways and by many people,
They are required to be resistant to rough handling and rapid temperature changes.

〔発明の目的〕[Purpose of the invention]

本発明は、従来、成形性等に問題があシ、市場レベルで
の適用ができなかった合成ゴムによる低応力エポキシ樹
脂組成物のこれらの欠点を改良し、産業工業レベルでの
適用、即ち、実用的製品の開発を目的として研究した結
果、合成ゴムとして末端又は分子内にエポキシ基を含有
する合成ゴムを樹脂成分中に均一分散させるか樹脂成分
と反応させ固定することにより、目的とする成形性、耐
湿性に優れかつ熱衝撃を受けた場合の耐クラツク性等に
優れる低応力エポキシ樹脂組成物が得られることを見い
出したものである。
The present invention improves these drawbacks of low-stress epoxy resin compositions made of synthetic rubber, which conventionally had problems with moldability and could not be applied at the market level, and can be applied at the industrial level. As a result of research aimed at developing practical products, we found that by uniformly dispersing synthetic rubber containing epoxy groups at the ends or within the molecule into a resin component, or by reacting and fixing it with the resin component, it is possible to achieve the desired molding. It has been discovered that a low stress epoxy resin composition can be obtained which has excellent properties such as hardness, moisture resistance, and crack resistance when subjected to thermal shock.

〔発明の構成〕[Structure of the invention]

本発明は (1)エポキシレジン類と末端又は分子内にエポキシ基
を含有する合成ゴムの加熱溶融混合物を含むことを特徴
とする、硬化剤、硬化促進剤、充填材、離型剤、表面処
理剤及び必要によシ他のエポキシ樹脂等より−aるエポ
キシ樹脂組成物、(2)エポキシレジン類と末端又は分
子内にエポキシ基を含有、する合成ゴムを、第3級アミ
ン若しくはこの誘導体、有機ホスフィン化合物、有機ア
ルミニウム化合物、チタン化合物、酸類の中から選ばれ
た一種又は二種以上の存在下で加熱溶融させた混合物を
含むことを特徴とする、硬化剤、硬化促進剤、充填材、
離型剤、表面処理剤及び必要によシ他のエポキシ樹脂等
よシなるエポキシ樹脂組成物である。
The present invention includes (1) a heat-melted mixture of an epoxy resin and a synthetic rubber containing an epoxy group at the end or in the molecule, a curing agent, a curing accelerator, a filler, a mold release agent, and a surface treatment. An epoxy resin composition (2) containing an epoxy resin and an epoxy group at the end or in the molecule, a tertiary amine or a derivative thereof, A curing agent, a curing accelerator, and a filler, characterized by containing a mixture heated and melted in the presence of one or more selected from organic phosphine compounds, organic aluminum compounds, titanium compounds, and acids;
It is an epoxy resin composition comprising a mold release agent, a surface treatment agent, and other epoxy resins as necessary.

ここでいう、エポキシレジン類とは、エポキシ基を有す
るもの全般をいう。たとえば、ビスフェノール製エポキ
シ樹脂・ノボラック型エポキシ樹脂・トリアジン核含有
エポキシ樹脂等のことをいう。
As used herein, epoxy resins refer to all resins having epoxy groups. For example, it refers to bisphenol epoxy resin, novolac type epoxy resin, triazine nucleus-containing epoxy resin, etc.

末端にエポキシ基を含有する合成ゴムとは片末端又は両
末端に硬化剤と反応しうるエポキシ基を有するジエン系
ゴム質ポリマーのことで、好ましくは、両末端にエポキ
シ基を有することがのぞましい。又、分子内にエポキシ
基を含有する合成ゴムとは、分子内に硬化剤と反応しう
るエポキシ基を1個以上有するジエン系ゴム質ポリマー
のことで、−分子あたシのエポキシ基の数としては、好
ましくは2〜15個、特に好ましくは3〜10個がのぞ
ましい。エポキシ基含有合成ゴムの分子量としてはSO
O〜l0QOOO好ましくは500〜IQOOO1特に
好ましくは700〜3oooがのぞましい。このような
エポキシ基含有合成ゴムの市販品の例としては、R−4
5EPI 、 EPT (出光石油化学) 、Nl5S
O−PB−BF樹脂(日本曹達)、8石ポリブタジェン
Eシリーズ(日本石油化学)等が挙げられる。
Synthetic rubber containing an epoxy group at one end is a diene rubbery polymer having an epoxy group at one or both ends that can react with a curing agent, preferably having epoxy groups at both ends. In addition, synthetic rubber containing epoxy groups in the molecule refers to diene-based rubbery polymers having one or more epoxy groups that can react with a curing agent in the molecule, and - the number of epoxy groups per molecule. The number is preferably 2 to 15, particularly preferably 3 to 10. The molecular weight of epoxy group-containing synthetic rubber is SO
O to 10QOOO, preferably 500 to IQOOO1, particularly preferably 700 to 3ooo. Examples of commercially available synthetic rubbers containing epoxy groups include R-4.
5EPI, EPT (Idemitsu Petrochemical), Nl5S
Examples include O-PB-BF resin (Nippon Soda), 8-stone polybutadiene E series (Nippon Petrochemical), and the like.

このような末端又は分子内にエポキシ基を含有する合成
ゴムは、エポキシレジン類との相溶性に非常に優れ均一
分散しやすいのみならず、触媒の非存在下もしくは存在
下加熱溶融混合することによシ、容易に反応し固定化す
る。これを使用することによシ、合成ゴムが簡単には樹
脂外部へ溶出しない、成形性に優れかつ熱衝撃を受けた
場合の耐クラツク性等にすぐれる低応力エポキシ樹脂組
成物が得られた。
Such synthetic rubbers containing epoxy groups at the ends or within the molecule not only have excellent compatibility with epoxy resins and are easy to disperse uniformly, but also can be heated and melt-mixed in the absence or presence of a catalyst. Yes, it reacts easily and immobilizes. By using this, a low-stress epoxy resin composition was obtained in which the synthetic rubber does not easily dissolve out of the resin, has excellent moldability, and has excellent crack resistance when subjected to thermal shock. .

ここでいう硬化剤とはフェノールノボラック類が好適で
あるが酸無水物、アミンを挙げることもできる。これら
は単独で用いてもよいが併用もできる。フェノールノボ
ラック類とは、ノボラック骨格中にフェノール性水酸基
、又はこの誘導体を含むもの全般をいう。フェノール類
(フェノール、アルキルフェノール、レゾルシン等)の
単一成分ノボラックだけではなく、フェノール類の任意
の組み合せによる共縮合ノボラックや、フェノール類と
他の樹脂との共縮合ノボラックも含む。
The curing agent mentioned here is preferably phenol novolacs, but may also include acid anhydrides and amines. These may be used alone or in combination. Phenol novolacs refer to all compounds containing a phenolic hydroxyl group or a derivative thereof in the novolak skeleton. It includes not only single-component novolaks of phenols (phenol, alkylphenol, resorcinol, etc.), but also co-condensed novolacs of any combination of phenols, and co-condensed novolaks of phenols and other resins.

反応触媒の例としては ■第3級アミン又この誘導体 トリメチルアミン、トリエチルアミン、2.3.4.6
.7.8.90.10−オクタハイドロ−ピラミド(1
12a)アゼピン等又は、これらの第4アンモニウム塩 ■有機ホスフィン化合物 (a)第1 、’IX 2、tJ 3ホスフィン:オク
チルホスフィン、ジフェニルホスフィン、ブチルフェニ
ルホスフィン、トリシクロヘキシルホスフィン、トリフ
ェニルホスフィン等、 (b)有機第3ホスフインとπ結合を有する化合物のベ
タイン型付加物:無水マレイン酸−トリフェニルホスフ
ィン付加物、チオイソシアネート−トリフェニルホスフ
ィン付加物、ジアゾジフェニルメタンートリフェニルホ
スフイン付加物等1’     (c) 有m * ス
ホニウA tlL : (if!’ s PGI112
$ )eCle。
Examples of reaction catalysts include tertiary amine or its derivatives trimethylamine, triethylamine, 2.3.4.6
.. 7.8.90.10-octahydro-pyramide (1
12a) Azepine, etc. or quaternary ammonium salts thereof ■Organophosphine compounds (a) First, 'IX 2, tJ 3 phosphine: octylphosphine, diphenylphosphine, butylphenylphosphine, tricyclohexylphosphine, triphenylphosphine, etc. b) Betaine type adducts of organic tertiary phosphine and compounds having a π bond: maleic anhydride-triphenylphosphine adduct, thioisocyanate-triphenylphosphine adduct, diazodiphenylmethane-triphenylphosphine adduct, etc. 1' ( c) Yes m * Suhoniu A tlL: (if!'s PGI112
$ )eCle.

Cl253pEt )eIe 1(a3pEt )ΦB
r”etc■有機アルミニウム化合物 (a)A/、 C0R)3 (R: H、アルキル基、
アリール基、アリール基含有炭化水素基〕::アルミニ
ウムイソブロポキシド、アルミニウムn−ブトキシド、
アルミニウムtert−ブトキシド、アルミニウム5e
e−ブチレート、アルミニウムベンゾエート等、(b)
アルミニウムのβジケトン錯体(アルミニウムキレート
)ニアルミニウムアセチルアセトナト、アルミニウムト
リプルオロアセチルアセトナト、アルミニウムペンタフ
ルオロアセチルアセトナト等、 ■チタン化合物 ブチルチタネート、チタン白等、 ■酸 類 パラトルエンスルホン酸 等をあげることができる。
Cl253pEt )eIe 1(a3pEt )ΦB
r"etc ■ Organoaluminum compound (a) A/, C0R)3 (R: H, alkyl group,
Aryl group, aryl group-containing hydrocarbon group]: aluminum isopropoxide, aluminum n-butoxide,
aluminum tert-butoxide, aluminum 5e
e-butyrate, aluminum benzoate, etc. (b)
Beta-diketone complexes of aluminum (aluminum chelate) Nialuminum acetylacetonate, aluminum triple-oacetylacetonato, aluminum pentafluoroacetylacetonato, etc.; ■Titanium compounds butyl titanate, titanium white, etc.; ■Acids such as para-toluenesulfonic acid, etc. be able to.

尚、エポキシ基含有合成ゴム/エポキシレジy類の比率
が大きくなるに従って低応力化するが工   )ポキシ
レジ7類の反応性は低下する。エポキシ基含有合成ゴム
/エポキシレジy類の混合比率や分子量、そして組成物
中での使用比率等は目的によシ選択することによって特
長を最大限に引き出すことができる。特にエポキシ樹脂
低圧封入成形材料用としては、成形材料中°のエポキシ
基含有合成ゴムの使用比率が0.1〜5重量%であるこ
とが菫ましい。上記以外の範囲では成形性が悪くなる等
の欠点を生じる場合もl)うる。
Note that as the ratio of epoxy group-containing synthetic rubber to epoxy resin 7 increases, the stress decreases; however, the reactivity of epoxy resin 7 decreases. The characteristics can be maximized by selecting the mixing ratio and molecular weight of the epoxy group-containing synthetic rubber/epoxy resin, and the ratio of use in the composition depending on the purpose. Particularly for low-pressure epoxy resin-encapsulated molding materials, it is preferable that the proportion of the epoxy group-containing synthetic rubber in the molding material is 0.1 to 5% by weight. l) In a range other than the above, disadvantages such as poor moldability may occur.

〔発明の効果〕〔Effect of the invention〕

このように本発明方法に従うと、成形性、耐湿性に優れ
、かつ熱衝撃を受けた場合の耐クラブ・り性等に優れる
低応力エポキシ樹脂組成物を得ることができる。特に半
導体封止用途では今後ますますプラスチックパッケージ
化が予想され、又、そのためにプラスチックの低応力化
が要求されている今日においては本発明の産業的意味役
割は非常に大きい。
According to the method of the present invention, it is possible to obtain a low-stress epoxy resin composition that has excellent moldability, moisture resistance, and excellent clubbing and scuffing resistance when subjected to thermal shock. Particularly in semiconductor encapsulation applications, it is expected that plastic packaging will be increasingly used in the future, and as a result, there is a demand for low stress in plastics, so the present invention plays a very important role in industry.

〔実施例〕〔Example〕

以下、半導体対土用成形材料での検討例で説明する。例
で用いた部は全て重量部である。本発明による実施例は
従来の技術による比較例に比べ成形性・耐湿性・耐クラ
ツク性の点で優れておシ工業的に利用できる高付加価値
を有している0本実施例で使用したエポキシ基含有合成
ゴムとは次の通シである。
The following is an explanation using a study example of molding materials for semiconductors and soil. All parts used in the examples are parts by weight. The examples according to the present invention are superior in moldability, moisture resistance, and crack resistance compared to comparative examples using conventional techniques, and have high added value that can be used industrially. The epoxy group-containing synthetic rubber is as follows.

合成ゴムA二両末端エポキシ基含有1,4トランスタイ
プポリブタジエン(エポキシ当 量1450) 合成ゴムB:分子内エポキシ基含有1.4トランスタイ
プポリブタジエン(数平均分子 量3ooo、エポキシ当量200) 合成ゴムC:分子内エボ中シ基含有1,2ビニルタイプ
ポリブタジエン(数平均分子量 700、エポキシ当量220) 合成ゴムD二分子内エポキシ基含有1,2ビニルタイプ
ポリブタジエン(数平均分子量 L000、エポキシ当量190) 合成ゴムE:分子内エポキシ基含有1,2ビニルタイプ
ポリブタジエン(数平均分子量 L8001エポキシ当量220) 又、本実施例で使用した反応触媒とは次の通シである。
Synthetic rubber A: 1,4 trans-type polybutadiene containing epoxy groups at both terminals (epoxy equivalent: 1450) Synthetic rubber B: 1.4 trans-type polybutadiene containing epoxy groups within the molecule (number average molecular weight: 3 ooo, epoxy equivalent: 200) Synthetic rubber C: Molecule Synthetic rubber D 1,2 vinyl type polybutadiene containing internal epoxy groups (number average molecular weight L000, epoxy equivalent weight 190) Synthetic rubber E : 1,2 vinyl type polybutadiene containing epoxy groups in the molecule (number average molecular weight L8001 epoxy equivalent weight 220) The reaction catalyst used in this example is as follows.

触媒αニトリフェニルホスフィン 触媒βニアルミニウムアセチルアセトナト触媒γ:2.
3.4.6.7.8、・9.10−オクタハイドロビラ
ミド(1,2−a)アセビン 実施例1〜7 エポキシ基含有合成ゴムX部とエポキシレジン(旭チパ
: ECN −1273) 7部を反応触媒の存在、非
存在下150℃で1時間加熱混合した後冷却粉砕し7[
の合成ゴム変性エポキシ樹脂を得た。これら合成ゴム変
性エポキシ樹脂に溶融シリカ(龍森製)70部、表面処
理剤(日本ユニカーA −186)0.4部、エポキシ
レジン(注文化学ESCN −1028)20−yiL
 フェノールノボラック(注文ベークライト製)10部
、硬化促進剤(ケーアイ化成PP−360/四国化成況
=9/1)0.2部、顔料(三菱化成)0.5部、離型
剤(ヘキストジャパンヘキストOP/ヘキストS =1
/1) 0.4部を加え混合した後コニーダーで混練し
7種のエポキシ樹脂組成物を得た。これらの成形材料の
成形性・耐クラツク性を測定した結果、表のように比較
例に比べて優れることがわかった。又、合成ゴムは多い
程、耐クラツク性に優れるが多すぎると成形性は劣った
Catalyst α Nitriphenylphosphine catalyst β Nialuminum acetylacetonato catalyst γ: 2.
3.4.6.7.8, 9.10-octahydrobyramide (1,2-a) acevin Examples 1 to 7 Epoxy group-containing synthetic rubber X part and epoxy resin (Asahi Chipa: ECN-1273) 7 parts were heated and mixed at 150°C for 1 hour in the presence and absence of a reaction catalyst, then cooled and pulverized to give 7[
A synthetic rubber-modified epoxy resin was obtained. To these synthetic rubber-modified epoxy resins, 70 parts of fused silica (Tatsumori), 0.4 parts of surface treatment agent (Nippon Unicar A-186), and 20-yiL of epoxy resin (Order Chemical ESCN-1028)
Phenol novolac (order made by Bakelite) 10 parts, curing accelerator (KAI Kasei PP-360/Shikoku Kaseikyo = 9/1) 0.2 parts, pigment (Mitsubishi Kasei) 0.5 parts, mold release agent (Hoechst Japan Hoechst) OP/Hoechst S = 1
/1) 0.4 part was added and mixed, and then kneaded in a co-kneader to obtain seven types of epoxy resin compositions. As a result of measuring the moldability and crack resistance of these molding materials, it was found that they were superior to the comparative examples as shown in the table. Moreover, the more synthetic rubber there is, the better the crack resistance is, but when it is too much, the moldability is poor.

比較例1 末端カルボキシル基ポリイソプレン(クラン:LIR−
403) 2部とエポキシ樹脂(旭チパ: ECN−1
273) 20部を150℃で1時間加熱混合し、冷却
粉砕した後、溶融シリカ70部、表面処理剤0、4部、
フェノールノボラック10部、硬化促進剤0.2部、顔
料0.5部、離型剤0.4部(いずれも実施例と同一原
料)を加え、実施例と同様に材料化した。この材料の成
形性・耐クラツク性・耐湿性の結果は表の通シで実施例
に比べて成形性、耐湿性の点で大幅に劣る。
Comparative Example 1 Terminal carboxyl group polyisoprene (Clan: LIR-
403) 2 parts and epoxy resin (Asahi Chipa: ECN-1
273) After heating and mixing 20 parts at 150°C for 1 hour, cooling and pulverizing, 70 parts of fused silica, 0 and 4 parts of surface treatment agent,
10 parts of phenol novolak, 0.2 part of curing accelerator, 0.5 part of pigment, and 0.4 part of mold release agent (all the same raw materials as in the example) were added, and the material was prepared in the same manner as in the example. The results of the moldability, crack resistance, and moisture resistance of this material are shown in the table, and the material is significantly inferior to the Examples in terms of moldability and moisture resistance.

比較例2 カルボキシル基含有アクリロニトリル−ブタジェン共重
合体(ハイカーCTBN1300 X 8 ) 2部と
エポキシレジン(旭チバECN −1273) 20部
、を150℃で1時間トリフェニルホスフィン(ケーア
イ化成PP−360)の存在下加熱混合し、冷却粉砕し
た後、溶融シリカ70部、表面処理剤04部、硬化剤1
0部、硬化促進剤0.2部、顔料0.5部、離型剤0.
4部(いずれも実施例と同一原料)を加え、実施例と同
様に材料化した。この材料の成形性・耐クラツク性・耐
湿性の結果は表の通シで実施例に比べて成形性、耐湿性
の点で大幅に劣る。
Comparative Example 2 2 parts of carboxyl group-containing acrylonitrile-butadiene copolymer (Hiker CTBN1300 After heating and mixing in the presence of the mixture, cooling and pulverizing, 70 parts of fused silica, 04 parts of surface treatment agent, and 1 part of hardening agent were added.
0 parts, curing accelerator 0.2 parts, pigment 0.5 parts, mold release agent 0.
4 parts (all the same raw materials as in the example) were added, and the material was prepared in the same manner as in the example. The results of the moldability, crack resistance, and moisture resistance of this material are shown in the table, and the material is significantly inferior to the Examples in terms of moldability and moisture resistance.

比較例3 溶融シリカ70部、エポキシ樹脂20部、フェノールノ
ボラック10部、表面処理剤0.4部、硬化促進剤0.
2部、顔料0.5部、離型剤0.4部(いずれも実施例
と同一原料)を混合した後コニーダーで混練し、エポキ
シ樹脂組成物を得た。この成形材料の成形性・耐クラツ
ク性・耐湿性の結果は表の通シで実施例に比べて耐クラ
ツク性の点で大@に劣る。
Comparative Example 3 70 parts of fused silica, 20 parts of epoxy resin, 10 parts of phenol novolak, 0.4 part of surface treatment agent, 0.0 parts of curing accelerator.
2 parts of pigment, 0.5 part of pigment, and 0.4 part of mold release agent (all the same raw materials as in Examples) were mixed and kneaded in a co-kneader to obtain an epoxy resin composition. The results of the moldability, crack resistance, and moisture resistance of this molding material are as shown in the table, and as shown in the table, it is significantly inferior to the Examples in terms of crack resistance.

*1.16 pin DIPを成形した時のリードビン
上のパリ発生程度で判定タイバ一部までの距離のh以下
9侍A、1/、〜込の時81局〜%の時01乞以上(タ
イバーを超えた)D *27CT、4■×9瓢の大きさの模擬素子を封止した
1 6 pin DIP K−65℃(30分) 室温
(5分) 150℃(30分)なる熱衝撃を200サイ
クル与えクラック発生数/総数で判定 *3TST、4wX 6mの大きさの模擬素子を封止し
た1 6 pin DIPに一165℃(2分) 15
0← ℃(2分)なる熱衝撃を200サイクル与えクラック発
生数/総数で判定 *4耐湿性、アル、ミ模擬素子を封止した1 6 pi
nDIPを135℃、100q6の条件で1000hr
保管しアルミ腐食による不良率/m数で判定
*1.16 pin Judgment based on the degree of occurrence of paris on the lead bin when forming DIP (exceeded)D Judging by the number of cracks generated/total number given for 200 cycles *3TST, 165℃ (2 minutes) 15
200 cycles of thermal shock of 0←℃ (2 minutes) and judgment based on the number of cracks generated/total number *4 Moisture resistant, aluminum, aluminum simulating element sealed 16 pi
nDIP for 1000 hours at 135℃ and 100q6
Determined by defective rate/number of meters due to aluminum corrosion during storage

Claims (2)

【特許請求の範囲】[Claims] (1)エポキシレジン類と末端又は分子内にエポキシ基
を含有する合成ゴムの加熱溶融混合物を含むことを特徴
とするエポキシ樹脂組成物。
(1) An epoxy resin composition comprising a heat-melted mixture of an epoxy resin and a synthetic rubber containing an epoxy group at the end or within the molecule.
(2)エポキシレジン類と末端又は分子内にエポキシ基
を含有する合成ゴムを、第3級アミン若しくはこの誘導
体、有機ホスフィン化合物、有機アルミニウム化合物、
チタン化合物、酸類の中から選ばれた一種又は二種以上
の存在下で、加熱溶融させた混合物を含むことを特徴と
するエポキシ樹脂組成物。
(2) Epoxy resins and synthetic rubber containing an epoxy group at the end or within the molecule, a tertiary amine or its derivative, an organic phosphine compound, an organic aluminum compound,
An epoxy resin composition comprising a mixture heated and melted in the presence of one or more selected from titanium compounds and acids.
JP18436884A 1984-09-05 1984-09-05 Epoxy resin composition Pending JPS6162514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18436884A JPS6162514A (en) 1984-09-05 1984-09-05 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18436884A JPS6162514A (en) 1984-09-05 1984-09-05 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JPS6162514A true JPS6162514A (en) 1986-03-31

Family

ID=16152000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18436884A Pending JPS6162514A (en) 1984-09-05 1984-09-05 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS6162514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114243A (en) * 1986-10-31 1988-05-19 Nitto Electric Ind Co Ltd Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120A (en) * 1980-06-04 1982-01-05 Hitachi Ltd Curable resin composition
JPS57105447A (en) * 1980-12-20 1982-06-30 Idemitsu Kosan Co Ltd Epoxy resin composition
JPS57180626A (en) * 1981-04-30 1982-11-06 Hitachi Ltd Thermosetting resin composition
JPS58113267A (en) * 1981-12-28 1983-07-06 Kansai Paint Co Ltd Resin composition for powder coating
JPS58174416A (en) * 1982-04-07 1983-10-13 Toshiba Corp Epoxy resin composition for sealing of semiconductor
JPS60110748A (en) * 1983-11-21 1985-06-17 Matsushita Electric Works Ltd Resin composition for casting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120A (en) * 1980-06-04 1982-01-05 Hitachi Ltd Curable resin composition
JPS57105447A (en) * 1980-12-20 1982-06-30 Idemitsu Kosan Co Ltd Epoxy resin composition
JPS57180626A (en) * 1981-04-30 1982-11-06 Hitachi Ltd Thermosetting resin composition
JPS58113267A (en) * 1981-12-28 1983-07-06 Kansai Paint Co Ltd Resin composition for powder coating
JPS58174416A (en) * 1982-04-07 1983-10-13 Toshiba Corp Epoxy resin composition for sealing of semiconductor
JPS60110748A (en) * 1983-11-21 1985-06-17 Matsushita Electric Works Ltd Resin composition for casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114243A (en) * 1986-10-31 1988-05-19 Nitto Electric Ind Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
EP0707042B1 (en) Epoxy resin molding material for sealing electronic parts and sealed semiconductor device using the same
US5476884A (en) Semiconductor device-encapsulating epoxy resin composition containing secondary amino functional coupling agents
US5644003A (en) Epoxy resin composition, process for producing the same and resin-sealed semiconductor device
JP2003213081A (en) Epoxy resin composition and semiconductor device
JPS61168618A (en) Epoxy resin composition for semiconductor sealing
JPS6162514A (en) Epoxy resin composition
JPS62290720A (en) Epoxy resin molding material for sealing electronic component
JPH0525364A (en) Epoxy resin composition for sealing semiconductor
JPH09241483A (en) Epoxy resin composition
JPS6162512A (en) Epoxy resin composition
JPS58174416A (en) Epoxy resin composition for sealing of semiconductor
JP3404378B2 (en) One-part moisture-curable epoxy resin composition
JP5153141B2 (en) Epoxy resin composition
JPH0977958A (en) Epoxy resin composition and semiconductor device
JPS6356515A (en) Epoxy resin composition for sealing semiconductor
JPS6189221A (en) Epoxy resin composition for encapsulation of semiconductor
JP2501149B2 (en) Epoxy resin composition for semiconductor encapsulation
JP4096806B2 (en) Phenol resin, epoxy resin curing agent, and epoxy resin composition
JPS6162511A (en) Epoxy resin composition
JPS62141018A (en) Epoxy resin composition
JP3450260B2 (en) Epoxy resin composition and coil casting
JPS63132918A (en) Epoxy resin composition
JPS6317926A (en) Epoxy resin composition for semiconductor sealing
JPS6317922A (en) Epoxy resin composition for semiconductor sealing
JP2823636B2 (en) High heat resistant epoxy resin composition