JPS62141018A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPS62141018A
JPS62141018A JP28104085A JP28104085A JPS62141018A JP S62141018 A JPS62141018 A JP S62141018A JP 28104085 A JP28104085 A JP 28104085A JP 28104085 A JP28104085 A JP 28104085A JP S62141018 A JPS62141018 A JP S62141018A
Authority
JP
Japan
Prior art keywords
epoxy resin
silane coupling
parts
coupling agent
synthetic rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28104085A
Other languages
Japanese (ja)
Inventor
Makoto Yamagata
誠 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP28104085A priority Critical patent/JPS62141018A/en
Publication of JPS62141018A publication Critical patent/JPS62141018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled composition excellent in moisture resistance, cracking resistance, etc., by mixing an epoxy resin with a curing agent, a cure accelerator, an unsaturated double bond-containing synthetic rubber and a silica filler treated with a thiol group-containing silane coupling agent. CONSTITUTION:The purpose epoxy resin composition is prepared by mixing an epoxy resin (e.g., bisphenol A epoxy resin or novolak epoxy resin) with a curing agent (e.g., phthalic anhydride or maleic anhydride), a cure accelerator (e.g., trimethylamine or octylphosphine), a synthetic rubber having unsaturated double bonds in the skeleton (e.g., butadiene rubber) and a reaction product of a silica filler with 0.1wt% or above, based on the silica filler, thiol group- containing silane coupling agent (e.g., formula I or formula II). The obtained low-stress epoxy resin composition can be suitably used for sealing semiconductors.

Description

【発明の詳細な説明】 C産業上の利用分野つ 本発明は熱衝撃を受けた場合の耐クラツク性や耐湿性に
優れる低応力エピキシ樹脂組成物に係るものであり、そ
の特徴は骨格に不飽和二重結合を有する合成ゴムと、シ
リカ充填剤とチオール基含有シランカップリング剤の反
応物を併せて含有するところにある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a low-stress epixy resin composition that has excellent crack resistance and moisture resistance when subjected to thermal shock, and is characterized by its structure having no structure. It contains a synthetic rubber having saturated double bonds, a reaction product of a silica filler, and a thiol group-containing silane coupling agent.

〔従来技術〕[Prior art]

従来から、合成ゴムを使用した低応力エピキシ樹脂組成
物は色々と検討されているが、合成ゴムを添加する場合
、および合成ゴム変性工sソキシ樹脂を用いる場合のい
ずれも成形性(特に硬化性、パリ、離型性)等に問題が
あった。たとえば、カルボキシル基含有ジエン系ゴム質
ホIJマーヲ添加した場合〔特開昭58−176958
号〕では、ゴムが溶出し成形し成形性に問題があるだけ
でなく、親水性のカルボキシル基金含有するため、著し
く耐湿性が劣った。又、カルボキシル基含有ジエン系ゴ
ム質パリマーをエポキシ樹脂と予備反応させた場合でも
、熱分解しやすく添加と同様の欠点があった。
Conventionally, various low-stress epixy resin compositions using synthetic rubber have been studied, but both when adding synthetic rubber and when using synthetic rubber modified epixy resin, moldability (especially curability) has been improved. There were problems with mold releasability), etc. For example, when a carboxyl group-containing diene rubber IJ polymer is added [JP-A-58-176958
No.] not only had a problem with moldability due to the dissolution of the rubber, but also had extremely poor moisture resistance because it contained a hydrophilic carboxyl group. Further, even when a carboxyl group-containing diene-based rubbery polymer is pre-reacted with an epoxy resin, it tends to be thermally decomposed and has the same drawback as addition.

又、合成ゴムを使用しない低応力樹脂組成物も色々と検
討されている。たとえば、シリコーン変性レジンを使用
したり、シリコーン全添加する方法〔特開昭56−12
9246号、特開昭58−47014号等〕もあるが、
ゴム変性エピキシ樹脂と同様の欠点を持つだけでなく価
格が高い、即ち、汎用性に欠けるという問題を持ってい
る。
Various low stress resin compositions that do not use synthetic rubber are also being studied. For example, a method using a silicone-modified resin or adding all silicone [JP-A-56-12]
No. 9246, JP-A-58-47014, etc.], but
It not only has the same drawbacks as rubber-modified epixy resins, but also has the problem of being expensive, that is, lacking in versatility.

エポキシ樹脂組成物はフェノール樹脂組成物やポリエス
テル樹脂組成物に比べて耐湿性に優れた特徴をもってい
る。たとえば、回路基板や半導体封止材料等に用いられ
ている。現在これら用途で強く要求されているのは低応
力化であり、特に封止材料関連で強い。これは最終製品
の国際化−あらゆる日時、場所での使用に対応するため
である。
Epoxy resin compositions have superior moisture resistance compared to phenolic resin compositions and polyester resin compositions. For example, it is used in circuit boards, semiconductor sealing materials, and the like. Currently, low stress is strongly required in these applications, especially in connection with sealing materials. This is to internationalize the final product, allowing it to be used at any time and place.

即ち、多種多用、且つ多人種によって使用されるため、
乱暴な取扱いや急激な温度変化に対する強さが要求され
ているのである。
In other words, because it is used in many different ways and by many people,
They are required to be resistant to rough handling and rapid temperature changes.

〔発明の目的〕[Purpose of the invention]

本発明は従来成形性等に問題があり、市場レベルでの適
用ができなかった合成ゴムによる低応力エピキシ樹脂組
成物のこれらの欠点を改良し、産業工業レベルでの適用
、即ち、実用的製品の開発を目的として研究した結果、
骨格に不飽和二重結合を有する合成ゴムと、シリカ充填
剤とチオール基含有シランカップリング剤の反応物を併
せて用いることにより、目的とする成形性、耐湿性に優
れかつ熱衝撃を受けた場合の耐クラツク性等に優れる低
応力エポキシ樹脂組成物が得られることを見い出したも
のである。
The present invention improves these drawbacks of low stress epixy resin compositions made of synthetic rubber, which conventionally had problems with moldability and could not be applied at the market level, and is suitable for application at the industrial level, that is, practical products. As a result of research aimed at developing
By using a synthetic rubber with an unsaturated double bond in its skeleton and a reaction product of a silica filler and a thiol group-containing silane coupling agent, it has the desired moldability, moisture resistance, and resistance to thermal shock. It has been discovered that a low stress epoxy resin composition having excellent crack resistance and the like can be obtained.

〔発明の構成〕[Structure of the invention]

本発明は(a)エピキシ樹脂、(b)硬化剤、(c)硬
化促進剤、(d)骨格に不飽和二重結合を有する合成ゴ
ム、(e)シリカ充填剤とシリカ充填剤のo、1ii%
以上のチオール基含有シランカッシリング剤の反応物を
含むことを特徴とするエポキシ檎脂組成物である。
The present invention comprises (a) an epixy resin, (b) a curing agent, (c) a curing accelerator, (d) a synthetic rubber having an unsaturated double bond in its skeleton, (e) a silica filler and a silica filler, 1ii%
This is an epoxy resin composition characterized by containing a reactant of the above thiol group-containing silane cassilling agent.

本発明において用いられるエポキシ樹脂としては、ビス
フェノールAエポキシ樹脂、ノボラック型エピキシ樹脂
、脂環式エピキシ樹脂等のタイプを使用し、これらのエ
ポキシ樹脂は単独で使用しても、二種以上混合して使用
してもよい。
The epoxy resins used in the present invention include bisphenol A epoxy resins, novolac type epixy resins, alicyclic epixy resins, etc. These epoxy resins can be used alone or in combination of two or more types. May be used.

硬化剤としては多塩基性カルボン酸無水物を単独もしく
は、二種以上混合して使用する。これらの例としては無
水フタル酸、無水へキサヒドロフタル酸、無水テトラヒ
ドロフタル酸、無水コノ・り酸、無水マレイン酸等があ
る。あるいは硬化剤として、フェノールノボラック樹脂
を使用してもよい。また硬化剤のエピキシ樹脂に配合す
る量は、1エピキシ当量に対して、0.5〜1.2当量
が望ましく、それ以外では成形性に重大な欠陥を起こす
事がある。
As the curing agent, polybasic carboxylic acid anhydrides may be used alone or in combination of two or more. Examples of these include phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, cono-phosphoric anhydride, maleic anhydride, and the like. Alternatively, a phenol novolac resin may be used as a curing agent. The amount of curing agent added to the epixy resin is desirably 0.5 to 1.2 equivalents per 1 epixy equivalent; otherwise, serious defects may occur in moldability.

硬化促進剤としては ■第3級アミン又この訪導体 トリメチルアミン、トリエチルアミン、2.3.4.6
.7.8.9、l’ O−オクタハイドロ−ピラミド(
1,2−a )アゼピン等又は、これらの′vJ4アン
モニウム塩 ■M機ホスフィン化合物 (a>第1 、u 2.443ホスフイン オクチルホ
スフィン、ジフェニルホスフィン、ブチルフェニルホス
フィン、トリシクロヘキシルホスフィン、トリフェニル
ホスフィン等、 (b)有機第3ホスフインとπ結合全イアする化合物の
ベタイン型付線′v!lJ:無水マレイン酸−トリフェ
ニルホスフィン付加物、チオイソシアネート−トリフェ
ニルホスフィン付加物、ジアゾジフェニルメタン−トリ
フェニルホスフィン付加物等(c)有+幾ホスホニウム
塩“(ρ3PCH2殻」■Ct○、(1213PEt)
■16’、 (a3PEt 、l■Br○etc■有機
アルミニウム化合物 (a) kt(OR)3 (R:H、アルキル基、アリ
ール基、アリール基含有炭化水素基〕:アルミニウムイ
ソゾロボキシド、アルミニウムn−ブトキシド、アルミ
ニウムtert−ブトキシド、アルミニウムsec −
7’テレ−1・、アルミニウムベンゾエート等、(b)
アルミニウムのβジケトン錯体(アルミニウムキレート
);アルミニウムアセチルアセトナト、アルミニウムト
リフルオロアセチルアセトナト、アルミニウムにンタフ
ルオロアセチルアセトナト等、 ■チタン化合物 ブチルチタネート、チタン白等、 ■酸類 パラトルエンスルホン酸 等をあげることができる。
As a curing accelerator, ■ tertiary amine or its conductor-visitor trimethylamine, triethylamine, 2.3.4.6
.. 7.8.9, l' O-octahydro-pyramide (
1,2-a) Azepine, etc., or these 'vJ4 ammonium salts ■ M-type phosphine compounds (a>1st, u 2.443 phosphine, octylphosphine, diphenylphosphine, butylphenylphosphine, tricyclohexylphosphine, triphenylphosphine, etc.) , (b) Betaine type attached line 'v!lJ' of compounds having all π bonds with organic tertiary phosphine: maleic anhydride-triphenylphosphine adduct, thioisocyanate-triphenylphosphine adduct, diazodiphenylmethane-triphenylphosphine Adducts, etc. (c) Yes + several phosphonium salts “(ρ3PCH2 shell”) ■Ct○, (1213PEt)
■16', (a3PEt, l■Br○etc■organoaluminium compound (a) kt(OR)3 (R:H, alkyl group, aryl group, aryl group-containing hydrocarbon group): aluminum isozoroboxide, aluminum n-butoxide, aluminum tert-butoxide, aluminum sec -
7'Tele-1・, aluminum benzoate, etc. (b)
Beta-diketone complexes of aluminum (aluminum chelate): aluminum acetylacetonate, aluminum trifluoroacetylacetonate, aluminum acetylacetonate, etc., ■ titanium compounds butyl titanate, titanium white, etc., ■ acids such as para-toluenesulfonic acid, etc. be able to.

骨格に不飽和二重結合を有する合成ゴムとは、ブタジェ
ンゴム、インプレンゴム、アクリロニトリルゴム及びこ
れらの共重合体や、末端や分子内にビニル基、水酸基、
カルボキシル基、アミノ基、エゼキシ基等の官能基を導
入した変性品のことを言う。
Synthetic rubbers with unsaturated double bonds in the skeleton include butadiene rubber, imprene rubber, acrylonitrile rubber, copolymers thereof, and rubbers with vinyl groups, hydroxyl groups, or
Refers to modified products that have functional groups such as carboxyl groups, amino groups, and ezoxy groups introduced.

チオール基含有シランカップリング剤とは、−分子中に
チオール基とシラノール基又は;Si −0−R(Rは
アルキル基)基を持つシランカップリング剤の事を言う
。たとえば、H5C3H6S i (OCH3)3、H
8C3H6Si(OCH3)2a(3等がこれに含まれ
る。
The thiol group-containing silane coupling agent refers to a silane coupling agent having a thiol group and a silanol group or a Si-0-R (R is an alkyl group) group in the molecule. For example, H5C3H6S i (OCH3)3, H
8C3H6Si(OCH3)2a (3 etc. are included in this.

シリカ充填剤とチオール基含有シランカップリング剤の
反応は加熱により容易に行なう事ができ、 る。シリカ
充填剤中にチオール基含有シランカップリング剤全分散
させ、100℃以上に加熱する事によシ反応はほぼ完結
する。シリカ充填剤に対し、チオール基含有シランカッ
プリング剤はシリカ充填剤の0.1 it量チ以上使用
する事がのぞましく、01重量%未満では成形性、耐湿
性の劣化が見られる。
The reaction between the silica filler and the thiol group-containing silane coupling agent can be easily carried out by heating. By completely dispersing the thiol group-containing silane coupling agent in the silica filler and heating it to 100° C. or higher, the silane reaction is almost completed. It is preferable to use the thiol group-containing silane coupling agent in an amount of 0.1 t or more of the silica filler, and if it is less than 0.1 wt %, the moldability and moisture resistance deteriorate.

合成ゴムと、シリカ充填剤とチオール基含有シランカッ
プリング剤の反応物を併用する事によシ低応力、高耐湿
性金両立する事ができる。シリカ充填剤にチオール基含
有シランカップリング剤を反応させる事により、樹脂組
成物中で容易に合成ゴム−シランカップリング剤−シリ
カの化学的結合が形成される為、合成ゴムが溶出する事
がない。
By using synthetic rubber, a reactant of a silica filler, and a thiol group-containing silane coupling agent, it is possible to achieve both low stress and high moisture resistance. By reacting the thiol group-containing silane coupling agent with the silica filler, a chemical bond between synthetic rubber, silane coupling agent, and silica is easily formed in the resin composition, which prevents the synthetic rubber from eluting. do not have.

又、この結合の形成によシリカ/合成ゴム界面に隙間を
生じる事もなく、耐湿性の劣化は起こらない。チオール
系以外のシランカップリング剤を用いた場合には、合成
ゴム−シランカッシリング剤の結合がうまく形成されな
い為、合成ゴムが溶出し成形性が劣化する。またシリカ
/合成ゴム界面に隙間を生じ耐湿性が劣化する等の問題
がある。
Further, due to the formation of this bond, no gap is created at the silica/synthetic rubber interface, and moisture resistance does not deteriorate. When a silane coupling agent other than a thiol type is used, the bond between the synthetic rubber and the silane coupling agent is not formed well, and the synthetic rubber is eluted and the moldability deteriorates. Further, there is a problem that a gap is formed at the silica/synthetic rubber interface, resulting in deterioration of moisture resistance.

シリカ充填剤とチオール基含有シランカップリング剤の
反応物は、基材の全部又は一部として用いる事ができる
The reaction product of the silica filler and the thiol group-containing silane coupling agent can be used as all or part of the base material.

〔発明の効果〕〔Effect of the invention〕

このように本発明方法に従うと、成形性、耐湿性に優れ
、かつ熱衝撃を受けた場合の耐クラツク性等にすぐれる
低応カエボキシ樹脂組成物を得ることができる。特に、
半導体封止用途では今後ますますプラスチックノぞツケ
ージ化が予想され、又、そのためにプラスチックの低応
力化が要求されている今日においては本発明の産業的意
味役割は非常に大きい。
According to the method of the present invention, it is possible to obtain a low-resistance carboxy resin composition that has excellent moldability, moisture resistance, and crack resistance when subjected to thermal shock. especially,
It is expected that plastic groove cages will be used more and more in the future for semiconductor encapsulation applications, and as a result, there is a demand for lower stress in plastics, so the present invention plays an extremely important role in industry.

〔実施例〕〔Example〕

以下、半導体封止用成形材料での検討例で説明する。例
で用いた部は全て重量部である。本発明による実施例は
従来の技術による比較例に比べ成形性・耐湿性・耐クラ
ツク性の点で優れており工業的に利用できる高付加価値
を有している。
The following is an explanation using a study example of a molding material for semiconductor encapsulation. All parts used in the examples are parts by weight. The examples according to the present invention are superior to the comparative examples according to the prior art in terms of moldability, moisture resistance, and crack resistance, and have high added value that can be used industrially.

実施例1 溶融シリカ(龍森!り100部にチオール基含有シラン
カップリング剤(A−189日本ユニカー製)を0.5
部加えミキサーで混合したのち、100℃に加熱しなが
ら攪拌5分間行ない、溶融シリカとチオール基含有シラ
ンカップリング剤の反応物を得た。この反応物70部に
対し、表面処理剤(日本ユニカーA−186)0.4部
加えミキサーで混合した。さらにエピキシ樹脂(旭チノ
< : ECN −1273)20部、フェノールノボ
ラック(群栄化学MP−120) 10部、硬化促進剤
(ケーアイ化成PP−360/四国化成2MZ =%)
0.2部、顔料(三菱化成)0.5部、離型剤(ヘキス
トジャ・2ン:ヘキス)OP/ヘキスト5=J)o、4
部、合成コム(R−45EPI出光石油化学製)3部を
加え混合した後コニーダーで混練しエピキシ樹脂組成物
を得た。
Example 1 0.5 parts of thiol group-containing silane coupling agent (A-189 manufactured by Nippon Unicar) was added to 100 parts of fused silica (Tatsumori!).
After mixing with a mixer, the mixture was stirred for 5 minutes while heating to 100° C. to obtain a reaction product of fused silica and a thiol group-containing silane coupling agent. To 70 parts of this reaction product, 0.4 part of a surface treatment agent (Nippon Unicar A-186) was added and mixed using a mixer. Furthermore, 20 parts of epixy resin (Asahi Chino <: ECN-1273), 10 parts of phenol novolac (Gunei Chemical MP-120), and a curing accelerator (KII Kasei PP-360/Shikoku Kasei 2MZ = %)
0.2 part, pigment (Mitsubishi Kasei) 0.5 part, mold release agent (Hoechst JAN 2: HEX) OP/Hoechst 5=J) o, 4
and 3 parts of synthetic comb (R-45EPI manufactured by Idemitsu Petrochemical) were added and mixed, and then kneaded in a co-kneader to obtain an epixy resin composition.

実施例2 実施例1で用いた溶融シリカとチオール基含有シランカ
ップリング剤の反応物30部に、溶融シリカ(lti森
製)40部を加え、さらに表面処理剤0、4部を加えミ
キサーで混合した。さらにエポキシ樹脂20部、フェノ
ールノボラック10部、硬化促進剤0.2部、顔料0.
5部、離型剤04部、合成ゴム(CHEMIGUM P
83 Good Year製)3部を加え混合した後コ
ニーダーで混練し、エピキシ樹脂組成物を得た。(特に
記述しなかった原料については実施例1と同一原料を用
いた。) 比較例1 溶融シリカ100部にチオール基含有シランカップリン
グ剤0.05部加え、ミキサーで混合した後、100℃
に加熱しながら攪拌5分間行ない、溶融シリカとチオー
ル基含有シランカップリング剤の反応物を得た。この反
応物を用いて実施例1と同様の方法によりエピキシ樹脂
組成物を得た。
Example 2 To 30 parts of the reaction product of fused silica and thiol group-containing silane coupling agent used in Example 1, 40 parts of fused silica (manufactured by lti Mori) was added, and 0 and 4 parts of a surface treatment agent were added and mixed in a mixer. Mixed. Additionally, 20 parts of epoxy resin, 10 parts of phenol novolac, 0.2 parts of curing accelerator, and 0.0 parts of pigment.
5 parts, mold release agent 04 parts, synthetic rubber (CHEMIGUM P
83 (manufactured by Good Year) were added and mixed, and then kneaded in a co-kneader to obtain an epixy resin composition. (For raw materials not specifically described, the same raw materials as in Example 1 were used.) Comparative Example 1 0.05 part of a thiol group-containing silane coupling agent was added to 100 parts of fused silica, mixed with a mixer, and then heated at 100°C.
Stirring was carried out for 5 minutes while heating to obtain a reaction product of fused silica and a thiol group-containing silane coupling agent. Using this reaction product, an epixy resin composition was obtained in the same manner as in Example 1.

(原料は実施例1と全て同一原料) 比較例2 溶融シリカ70部に表面処理剤0.4部を加え、ミキサ
ーで混合した。さらにエポキシ樹脂20部、フェノール
ノボラック10部、硬化促進剤0.2部、顔料05部、
離型剤0.4部(いずれも実施例1と同一原料)、合成
ゴム(CTBN 1300 X 8宇部興産製)3部を
加え混合した後コニーダーで混練しエポキシ樹脂組成物
を得た。
(All raw materials were the same as in Example 1) Comparative Example 2 0.4 parts of a surface treatment agent was added to 70 parts of fused silica, and the mixture was mixed with a mixer. Furthermore, 20 parts of epoxy resin, 10 parts of phenol novolak, 0.2 parts of curing accelerator, 05 parts of pigment,
0.4 parts of a mold release agent (all the same raw materials as in Example 1) and 3 parts of synthetic rubber (CTBN 1300 X 8 manufactured by Ube Industries) were added and mixed, and then kneaded in a co-kneader to obtain an epoxy resin composition.

比較例3 溶融シリカ70部に表面処理剤0.4部を加え、ミキサ
ーで混合した。さらにエポキシ樹脂20部、フェノール
ノボラック10部、硬化促進剤0.2部、顔140.5
部、離型剤0.4部(いずれも実施例1と同一原料)を
加え混合した後コニーダーで混練しエピキシ樹脂組成物
を得た。
Comparative Example 3 0.4 parts of a surface treatment agent was added to 70 parts of fused silica and mixed with a mixer. Additionally, 20 parts of epoxy resin, 10 parts of phenol novolac, 0.2 parts of curing accelerator, and 140.5 parts of epoxy resin.
1 part, and 0.4 parts of a mold release agent (all the same raw materials as in Example 1) were added and mixed, and then kneaded in a co-kneader to obtain an epixy resin composition.

これらの成形材料の成形性、耐クラツク性、耐湿性、曲
げ強度を測定した結果、別表の通り実施例は比較例に比
べて優れることがわかった。
As a result of measuring the moldability, crack resistance, moisture resistance, and bending strength of these molding materials, it was found that the examples were superior to the comparative examples as shown in the attached table.

実施例に比べ合成ゴムを用いないと耐クラツク性に劣り
、合成ゴムを用いた場合でもシリカに対しチオール基含
有シランカップリング剤の反応量が少ない又はチオール
基含有シランカップリング剤を用いない場合には成形性
、耐湿性に重大な問題点があった。
Compared to the examples, if synthetic rubber is not used, the crack resistance is inferior, and even if synthetic rubber is used, the amount of reaction of the thiol group-containing silane coupling agent to silica is small, or if the thiol group-containing silane coupling agent is not used. had serious problems with moldability and moisture resistance.

*L  16 pin DIP ’c成形した時のリー
ドビン上のハリ発生程度で判定タイバ一部までの距離の
し以下の時A、2〜しの時B、し〜隆の部・h以上(タ
イバーを超えた)D *2TC’r 14 rtrm X 9簡の大きさの模
擬素子を封止した1 6 pin DIPに一65℃(
30分)。室温(5分)−150℃(30分)なる熱衝
撃を200サイクル与えクラック発生数/a数で判定 *3TST 14 ryes X 6 wnの大きさの
模擬素子を封止した1 6 pin DIPに一165
℃(2分) −150℃(2分)なる熱衝撃を200サ
イクル与えクラック発生数/総数で判定 *4耐湿性、アルミ模擬素子を封止した1 6 pin
DIPを135℃、100%の条件で1000 hr保
管しアルミ腐食による不良率/総数で判定
*L 16 pin DIP 'c Determine the degree of tension on the lead bin when forming )D *2TC'r 14 rtrm
30 minutes). Thermal shock from room temperature (5 minutes) to 150°C (30 minutes) was applied for 200 cycles and determined by the number of cracks generated/number of a. 165
℃ (2 minutes) -150℃ (2 minutes) thermal shock is applied for 200 cycles and judged by the number of cracks generated/total number *4 Moisture resistance, 16 pin sealed with aluminum simulated element
DIP was stored at 135℃ and 100% condition for 1000 hours and judged by defective rate/total number due to aluminum corrosion.

Claims (1)

【特許請求の範囲】[Claims] (a)エポキシ樹脂、(b)硬化剤、(c)硬化促進剤
、(d)骨格に不飽和二重結合を有する合成ゴム、(e
)シリカ充填剤とシリカ充填剤の0.1重量%以上のチ
オール基含有シランカップリング剤の反応物を含むこと
を特徴とするエポキシ樹脂組成物。
(a) Epoxy resin, (b) Curing agent, (c) Curing accelerator, (d) Synthetic rubber having an unsaturated double bond in the skeleton, (e
) An epoxy resin composition comprising a silica filler and a reaction product of a thiol group-containing silane coupling agent in an amount of 0.1% by weight or more of the silica filler.
JP28104085A 1985-12-16 1985-12-16 Epoxy resin composition Pending JPS62141018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28104085A JPS62141018A (en) 1985-12-16 1985-12-16 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28104085A JPS62141018A (en) 1985-12-16 1985-12-16 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JPS62141018A true JPS62141018A (en) 1987-06-24

Family

ID=17633456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28104085A Pending JPS62141018A (en) 1985-12-16 1985-12-16 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS62141018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255849A (en) * 1996-03-26 1997-09-30 Shiaru:Kk Epoxy resin composition for sealing semiconductor
JP2006206722A (en) * 2005-01-27 2006-08-10 Admatechs Co Ltd Lowly reactive silica powder, epoxy resin composition given by using the same, and epoxy resin molded product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210920A (en) * 1982-05-31 1983-12-08 Shin Etsu Chem Co Ltd Thermosetting epoxy resin composition
JPS608315A (en) * 1983-06-29 1985-01-17 Toshiba Corp Epoxy resin molding material for sealing semiconductor
JPS6042437A (en) * 1983-08-17 1985-03-06 Kao Corp Surface-coated inorganic filler
JPS60188418A (en) * 1984-03-09 1985-09-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device sealed therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210920A (en) * 1982-05-31 1983-12-08 Shin Etsu Chem Co Ltd Thermosetting epoxy resin composition
JPS608315A (en) * 1983-06-29 1985-01-17 Toshiba Corp Epoxy resin molding material for sealing semiconductor
JPS6042437A (en) * 1983-08-17 1985-03-06 Kao Corp Surface-coated inorganic filler
JPS60188418A (en) * 1984-03-09 1985-09-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device sealed therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255849A (en) * 1996-03-26 1997-09-30 Shiaru:Kk Epoxy resin composition for sealing semiconductor
JP2006206722A (en) * 2005-01-27 2006-08-10 Admatechs Co Ltd Lowly reactive silica powder, epoxy resin composition given by using the same, and epoxy resin molded product

Similar Documents

Publication Publication Date Title
US5476884A (en) Semiconductor device-encapsulating epoxy resin composition containing secondary amino functional coupling agents
JPS62141018A (en) Epoxy resin composition
JP3116577B2 (en) Epoxy composition for semiconductor encapsulation
EP0384707B1 (en) Semiconductor device encapsulating epoxy resin composition
JP2003213081A (en) Epoxy resin composition and semiconductor device
JPH0525364A (en) Epoxy resin composition for sealing semiconductor
JP2001089638A (en) Liquid sealing resin composition
JPS58174416A (en) Epoxy resin composition for sealing of semiconductor
JP2503067B2 (en) Epoxy composition
JPS62138523A (en) Epoxy resin composition
JPS6281446A (en) Epoxy resin composition
JPS6356515A (en) Epoxy resin composition for sealing semiconductor
JPH0733429B2 (en) Epoxy resin composition
JP2501149B2 (en) Epoxy resin composition for semiconductor encapsulation
JPS6162511A (en) Epoxy resin composition
JPS6310166B2 (en)
JPS6162514A (en) Epoxy resin composition
JPH04370159A (en) Combination filler and epoxy resin composition compounded with the combination filler
JP3450260B2 (en) Epoxy resin composition and coil casting
JP3092184B2 (en) Epoxy resin composition
JP3413923B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JPH0150249B2 (en)
JP3451710B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JPS6317926A (en) Epoxy resin composition for semiconductor sealing
JPS6317922A (en) Epoxy resin composition for semiconductor sealing