JPS6161627A - Method for sphering toner - Google Patents

Method for sphering toner

Info

Publication number
JPS6161627A
JPS6161627A JP59183422A JP18342284A JPS6161627A JP S6161627 A JPS6161627 A JP S6161627A JP 59183422 A JP59183422 A JP 59183422A JP 18342284 A JP18342284 A JP 18342284A JP S6161627 A JPS6161627 A JP S6161627A
Authority
JP
Japan
Prior art keywords
toner
air
temperature
pulverizing
pulverized material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59183422A
Other languages
Japanese (ja)
Other versions
JPH0526531B2 (en
Inventor
Masanori Fujii
正憲 藤井
Noriaki Miyamoto
宮本 謹彰
Shigeo Yabe
成男 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP59183422A priority Critical patent/JPS6161627A/en
Publication of JPS6161627A publication Critical patent/JPS6161627A/en
Publication of JPH0526531B2 publication Critical patent/JPH0526531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0808Preparation methods by dry mixing the toner components in solid or softened state
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/081Preparation methods by mixing the toner components in a liquefied state; melt kneading; reactive mixing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Glanulating (AREA)

Abstract

PURPOSE:To improve the fluidity and blocking resistance by pulverizing the roughly crushed material of a toner composition in a moment in the spiral flow of air at ultrahigh speed whose temp. is regulated to an appropriate temp., softening the surface of a toner binding resin and sphering the material. CONSTITUTION:50pts.wt. styrene. acryl resin, 50pts.wt. magnetite, 2pts.wt. low mol.wt. polypropylene, and 0.5pts.wt. calcium stearate are premixed by a Henschel mixer. The mixture is melted and kneaded by a biaxial extruder at 150 deg.C, and allowed to cool in the air to obtain a kneaded material. The material is crushed in a cutting mill to prepare a roughly crushed material 2 having <= about 3mm mean grain diameter. Said roughly crushed material 2 is charged at 30 deg.C and 70% humidity into a pulverizing zone 13 at a rate of 45kg/hr along with influent air 3 at 15 deg.C, and pulverized. The obtained pulverized toner is classified into particles having 12mum mean particle diameter and uniform particle size distribution.

Description

【発明の詳細な説明】 技術分野 本発明は、トナーの球形化法、特に、トナー組成物の粗
粉砕物が微粉砕されると同時にトナー表面が球形化され
、それにより、トナーの流動性および耐ブロッキング性
が著しく向上しうるトナーの球形化法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for spheronizing a toner, in particular, a coarsely pulverized toner composition is pulverized simultaneously, and at the same time, the surface of the toner is spheroidized, thereby improving the fluidity of the toner. This invention relates to a method for spheroidizing toner that can significantly improve blocking resistance.

(従来技術) 電子写真用のトナーは1例えば3次のようにして製造さ
れる。まず、結着樹脂1着色剤あるいは磁性体およびそ
の他動剤を加熱ロール、ミキサーあるいはニーグーなど
の混練装置により溶融・分散し、その後、混練組成物を
放冷する。次いで。
(Prior Art) Toner for electrophotography is manufactured in one, for example, three-dimensional manner. First, the binder resin 1 colorant or magnetic material and other moving agents are melted and dispersed using a kneading device such as a heated roll, a mixer, or a niegu, and then the kneaded composition is allowed to cool. Next.

これをハンマーミル、カッティングミルあるいはタラソ
シャーなどで粗粉砕した後、ジェットミルなどで微粉砕
し、必要により分級する。上記ジェットミルによる微粉
砕は、粗粉砕物を高圧ジェット気流中に投入し、これを
気流と共に衝突板に激突させて微粉砕するという機械的
な粉砕法である。
This is coarsely pulverized using a hammer mill, cutting mill, thalassoher, etc., then finely pulverized using a jet mill, etc., and classified if necessary. The above-mentioned pulverization using a jet mill is a mechanical pulverization method in which the coarsely pulverized material is introduced into a high-pressure jet stream, and is collided with the air stream against a collision plate to be pulverized.

したがって、トナーの破断面は必然的に不定形となり突
起が多数発生したものとなる。特に、マグネタイトなど
の堅い磁性体が約50重量%もの高い割合で含まれる磁
性トナーの場合は顕著である。
Therefore, the fractured surface of the toner inevitably becomes irregular in shape and has many protrusions. This is particularly noticeable in the case of magnetic toner containing a hard magnetic material such as magnetite in a proportion as high as about 50% by weight.

それゆえ、トナーの流動性は極めて乏しくなる。Therefore, the fluidity of the toner becomes extremely poor.

これらのトナーを用いて1例えば、現像スリーブ上に単
独もしくはキャリヤーと混合して磁気ブラシを形成した
場合、スリーブ表面上に塊を生じ1また。スリーブ表面
にトナー粒子の付着むらが生じる。これが原因で複写画
像のかすれ、または白すしを生ずる。このようなトナー
の流動性を改善するために、シリカ粉末がトナーの潤滑
材として配合される。ところが、トナー周囲に付着した
シリカ粉末は感光体に移行し、その結果、複写画像にか
ぶりなどが生ずる。さらに、これらのトナーは、その突
起により感光体表面を傷つける恐れもある。したがって
2通常、微粉砕後に熱風によるトナーの球形化処理が行
われている。しかしながら、熱風による球形化処理はト
ナーの樹脂表面が溶融する温度で行われる。そのため、
樹脂表面が溶融されトナーの粒子径や磁気力を不均一に
する。
For example, when these toners are used alone or mixed with a carrier to form a magnetic brush on a developing sleeve, lumps may form on the sleeve surface. Toner particles adhere unevenly to the sleeve surface. This causes blur or white smudges in the copied image. In order to improve the fluidity of such toner, silica powder is added as a lubricant to the toner. However, the silica powder attached around the toner migrates to the photoreceptor, resulting in fogging or the like on the copied image. Furthermore, these toners may damage the surface of the photoreceptor due to their protrusions. Therefore, after pulverization, the toner is usually spheroidized using hot air. However, the spheroidization process using hot air is performed at a temperature at which the resin surface of the toner melts. Therefore,
The resin surface is melted, making the toner particle size and magnetic force non-uniform.

さらに、熱風による球形化処理には大型の装置がいるう
えに、多大な熱エネルギーを要するため。
Furthermore, spheroidization using hot air requires large equipment and requires a large amount of thermal energy.

トナーの生産コストが高くなる。Toner production costs increase.

(発明の目的) 本発明の目的は、熱風処理および衝突摩耗方式を採らず
に、微粉砕と同時に表面を球形化することにより流動性
と耐ブロッキング性に優れたトナーの球形化法を提供す
ることにある。本発明の他の目的は、要するエネルギー
の消費量が少なく。
(Object of the Invention) The object of the present invention is to provide a method for spheroidizing toner that has excellent fluidity and anti-blocking property by simultaneously pulverizing and spheroidizing the surface without using hot air treatment or impact abrasion methods. There is a particular thing. Another object of the invention is that it requires less energy consumption.

低コストでなされるトナーの球形化法を提供することに
ある。本発明のさらに他の目的は、容易かつ連続的にト
ナーを球形化しうる方法を提供することにある。
The object of the present invention is to provide a method for spheronizing toner at low cost. Still another object of the present invention is to provide a method for easily and continuously forming toner into spheres.

(発明の構成) 本発明は、流動性と耐ブロッキング性とに優れたトナー
を調製するに当り、超高速の空気過流中で瞬間的に微粉
砕し、同時に、微粉砕時の温度を適度に制御することに
よりトナーの結着樹脂表面を軟化させ1球形化させると
いう新規な思想に基づいて完成された。それゆえ1本発
明のトナー球形化法は、(1)結着樹脂および着色剤を
主成分とするトナー組成物の粗粉砕物を、温度を制御さ
れた流入空気と共に連続的に微粉砕領域内に投入する工
程、(2)該微粉砕領域内の空気の過流および空気の圧
力振動により該粗粉砕物を微粉砕する工程。
(Structure of the Invention) In preparing a toner with excellent fluidity and anti-blocking property, the present invention instantaneously pulverizes the toner in an ultra-high-speed air flow, and at the same time maintains the temperature at the time of pulverization at an appropriate level. It was completed based on the novel concept of softening the surface of the binder resin of the toner and making it spherical by controlling the toner. Therefore, (1) the toner spheroidizing method of the present invention consists of: (1) a coarsely pulverized toner composition containing a binder resin and a colorant as main components; (2) A step of pulverizing the coarsely pulverized material by means of air flow and pressure vibration of the air in the pulverizing region.

(3)該粗粉砕物を微粉砕する間に、微粉砕領域内の雰
囲気温度を該粗粉砕物の結着樹脂のガラス転移温度付近
に調節することにより、得られる微粉砕物の少なくとも
その表面を軟化し球形化させる工程、および(4)球形
化された咳?A粉砕物をトナーとして空気と共に該微粉
砕領域から系外へ排出させる工程、を包含し、そのこと
により上記目的が達成される。
(3) While the coarsely pulverized material is being pulverized, the atmospheric temperature in the pulverizing region is adjusted to around the glass transition temperature of the binder resin of the coarsely pulverized material, thereby at least the surface of the resulting pulverized material. and (4) spherical cough? A step of discharging the pulverized product as toner together with air from the pulverization region to the outside of the system is included, thereby achieving the above object.

(実施例) 以下に本発明を実施例について述べる。(Example) The present invention will be described below with reference to examples.

本発明のトナー球形化法に用いられるトナーは。The toner used in the toner spheronization method of the present invention is as follows.

結着樹脂および着色剤を主成分とする。結着樹脂として
は2通常この分野で使用される樹脂が全て適用できる。
Main ingredients are binder resin and colorant. As the binder resin, all resins commonly used in this field can be used.

例えば、スチレン・アクリル系樹脂。For example, styrene/acrylic resin.

ポリエステル系樹脂などである。着色剤としては。Polyester resin, etc. As a coloring agent.

カーボンブランクなどの黒色顔料の他、有色顔料も使用
しうる。さらに、磁性体を顔料として使用でき1例えば
、マグネタイト、ガンマヘマタイト。
In addition to black pigments such as carbon blank, colored pigments may also be used. Additionally, magnetic materials can be used as pigments, such as magnetite and gamma hematite.

ニッケルフェライトなどが用いられる。トナーには、さ
らに、上記必須成分以外に種々の助剤が必要に応じて配
合される。例えば、ニグロシンベースなどの電荷制御剤
、シリコンオイル、低分子量ポリプロピレンあるいは、
各種ワックスなどの離型剤である。
Nickel ferrite or the like is used. In addition to the above-mentioned essential components, various auxiliary agents may be added to the toner as necessary. For example, charge control agents such as nigrosine base, silicone oil, low molecular weight polypropylene or
It is a mold release agent for various waxes, etc.

上記各成分を所定の割合で混合し、これを例えば、三木
熱ロールミルあるいは二軸押出機などで溶融混練する。
The above components are mixed in a predetermined ratio, and the mixture is melt-kneaded using, for example, a Miki thermal roll mill or a twin-screw extruder.

得られた混練物は常温にて冷却される。これらは2次い
で、カッティングミルあるいはハンマーミルなどで平均
粒径が約3朋以下の粒子に粗粉砕される。この粗粉砕さ
れたトナー組成物は1例えば、第1図に示す球形化装置
1により本発明方法に従って微粉砕されると同時に球形
化され、所望のトナーが得られる。
The obtained kneaded product is cooled at room temperature. These are then coarsely ground into particles having an average particle size of about 3 mm or less using a cutting mill or a hammer mill. This coarsely pulverized toner composition is pulverized and simultaneously spheronized in accordance with the method of the present invention using, for example, a spheronizing device 1 shown in FIG. 1 to obtain a desired toner.

球形化装置1は1円筒状のケーシング11と、このケー
シング11内にケーシング軸と同軸に配置されたロータ
ー12とを備えている。ケーシング11内周面のライナ
ー110にはローター軸120方向に複数の溝が設けら
れている。ローター12には耐摩耗性の金属材料などで
なる複数のブレード121が設けられている。ライナー
110とローターブレード121 との間には適度の広
さく例えば数龍の間隙)の空間が存在し微粉砕領域13
を形成している。ローターブレード121の高速回転に
より上記微粉砕領域13内に超高速の空気過流とそれに
よって生ずる高周波の圧力振動とが発生する。この空気
過流と圧力振動の発生は上記ライナー110の溝により
効果的に増強される。
The spheronization device 1 includes a cylindrical casing 11 and a rotor 12 disposed within the casing 11 coaxially with the casing axis. A plurality of grooves are provided in the liner 110 on the inner peripheral surface of the casing 11 in the direction of the rotor shaft 120. The rotor 12 is provided with a plurality of blades 121 made of a wear-resistant metal material or the like. Between the liner 110 and the rotor blade 121, there is a space of a suitable size (for example, a gap of several dragons), and the pulverization region 13
is formed. The high-speed rotation of the rotor blades 121 generates an ultra-high-speed air flow in the pulverization region 13 and high-frequency pressure vibrations generated thereby. The generation of air turbulence and pressure oscillations is effectively enhanced by the grooves of the liner 110.

ケーシング11の上流側には、トナー組成物の粗粉砕物
2および流入空気3の投入口111が設けられている。
On the upstream side of the casing 11, an inlet 111 for the coarsely pulverized toner composition 2 and inflow air 3 is provided.

投入口111は系外の1例えば、粉体フィーダーおよび
冷却ブロワ−あるいは加熱ヒーターなどに接続されてい
る。この投入口111の下部には渦巻室112が設けら
れている。この渦巻室112近傍のローターブレード1
21には、投入粗粉砕物2および/もしくは流入空気3
を微粉砕領域13内に均等に分配するためのディストリ
ビュータ−122が適宜設けられる。
The input port 111 is connected to an external device such as a powder feeder, a cooling blower, or a heater. A swirl chamber 112 is provided below the input port 111. The rotor blade 1 near this swirl chamber 112
21 contains the input coarsely ground material 2 and/or the incoming air 3.
A distributor 122 is appropriately provided for evenly distributing the powder into the pulverizing region 13.

ケーシング11の下流側には排出口113が設けられ、
系外の1例えば、サイクロン集m機あるいはバグフィル
タ−などに接続されている。このような装置1としては
2例えば、ターボ工業社製のターボミルが採用されうる
A discharge port 113 is provided on the downstream side of the casing 11,
It is connected to an external device such as a cyclone collector or a bag filter. As such an apparatus 1, 2, for example, a Turbo Mill manufactured by Turbo Kogyo Co., Ltd. may be employed.

上記球形化装置1に投入されたトナー組成物の粗粉砕物
2は次のようにして連続的に微粉砕され。
The coarsely pulverized toner composition 2 introduced into the spheronizing device 1 is continuously pulverized as follows.

同時に球形化される。平均粒径が約3龍以下の粗粉砕物
2を流入空気3と共に連続的に投入口111から適当な
速度で投入する。流入空気3の温度は。
At the same time, it becomes spherical. Coarsely pulverized material 2 having an average particle size of about 3 yen or less is continuously introduced together with inflowing air 3 from an input port 111 at an appropriate speed. What is the temperature of incoming air 3?

微粉砕領域13内の雰囲気温度が粗粉砕されたトナー組
成物2の結着樹脂のガラス転移温度付近になるようあら
かじめ設定される。この流入空気3の温度Tは1次式(
1)に従って制御される:T=(Tg−ΔT)±5  
 ・・・(1)ここで、Tは流入空気温度(℃)、Tg
はトナー結着樹脂のガラス転移温度(℃)、そしてΔT
は上昇温度(℃)で約45°C〜55℃の範囲である。
The ambient temperature in the finely pulverized region 13 is set in advance to be around the glass transition temperature of the binder resin of the coarsely pulverized toner composition 2 . The temperature T of this inflowing air 3 is expressed by the linear formula (
1): T=(Tg-ΔT)±5
...(1) Here, T is the inflow air temperature (℃), Tg
is the glass transition temperature (℃) of the toner binder resin, and ΔT
ranges from about 45°C to 55°C in elevated temperatures (°C).

投入された粗粉砕物2および流入空気3は渦巻室112
で旋回流動を与えられ、そしてディストリビュータ−1
22により加速されて微粉砕領域13内べ□へ均等に分
配されてゆく。この微粉砕領域13内の粗粉砕物2は空
気の超高速過流および圧力振動によって瞬間的に微粉砕
される。微粉砕領域13内には常時投入口111より温
度の制御された流入空気3が供給されているため、微粉
砕時の摩擦熱の発生にもかかわらず急激な温度上昇が抑
制されトナー結着樹脂のガラス転移温度付近に維持され
る。
The coarsely ground material 2 and the incoming air 3 are fed into the swirl chamber 112.
, and the distributor-1
22, and the particles are evenly distributed in the pulverization area 13. The coarsely pulverized material 2 in this pulverization region 13 is instantaneously pulverized by ultrahigh-speed air flow and pressure vibration. Since temperature-controlled inflow air 3 is constantly supplied into the pulverization region 13 from the inlet 111, a rapid temperature rise is suppressed despite the generation of frictional heat during pulverization, and the toner binding resin is maintained near the glass transition temperature of .

結着樹脂のガラス転移温度が高い場合には、必要に応じ
て、流入空気3は図外のヒーターなどで加温されて微粉
砕領域13内に投入される。結着樹脂は、このようにし
て、ガラス転移温度付近に維持されるため、微粉砕され
たトナーの破断面に生じた突起は軟化し除去され、適度
に球形化された微粉砕トナー20が得られる。上記ロー
ター12の回転数は球形化された微粉砕トナー20の平
均粒径が5μm〜15μmになるようあらかじめ2例え
ば、 5000〜11000rpに設定される。球形化
された微粉砕トナー20は空気30と共に排出口113
から系外に排出される。このときの排出口113付近の
温度は約40°C〜約50°C以下である。次いで1球
形化されたi故粉砕トナー20は系外の1例えば、サイ
クロン集塵機によって適宜空気30と分離され、捕集さ
れる。
When the glass transition temperature of the binder resin is high, the inflowing air 3 is heated by a heater (not shown) or the like as necessary and then introduced into the pulverization region 13. In this way, the binder resin is maintained near the glass transition temperature, so that the protrusions that appear on the fractured surface of the finely pulverized toner are softened and removed, resulting in a finely pulverized toner 20 that is appropriately spherical. It will be done. The rotational speed of the rotor 12 is set in advance to, for example, 5,000 to 11,000 rpm so that the average particle size of the spherical finely pulverized toner 20 is 5 μm to 15 μm. The spherical finely pulverized toner 20 is discharged from the discharge port 113 together with the air 30.
is discharged from the system. At this time, the temperature near the discharge port 113 is about 40°C to about 50°C or less. Next, the spherical pulverized toner 20 is appropriately separated from air 30 and collected by an outside system, for example, a cyclone dust collector.

着色剤として磁性体が使われた場合、得られた球形化微
粉砕磁性トナー20の表面には磁性体が結着樹脂に対し
偏在することなく均一に分散しうる。
When a magnetic substance is used as the colorant, the magnetic substance can be uniformly dispersed on the surface of the obtained spherical finely pulverized magnetic toner 20 without being unevenly distributed in the binder resin.

本実施例の具体例を以下に述べる。A specific example of this embodiment will be described below.

まず、スチレン・アクリル樹脂(ガラス転移温度Tg;
66℃)50重量部、マグネタイト(粒径0.3μIl
l〜0.9μ偏 ;嵩比重0.46g / tal) 
50重量部。
First, styrene/acrylic resin (glass transition temperature Tg;
66°C) 50 parts by weight, magnetite (particle size 0.3μIl)
l~0.9μ deviation; bulk specific gravity 0.46g/tal)
50 parts by weight.

低分子量ポリプロピレン2重量部およびステアリン酸カ
ルシウム0.5uiffi部をヘンシェルミキサーで前
混合した。これをさ、らに二軸押出機で150℃にて溶
融混練し、そして放冷した。この混練品をカッティング
ミルで平均粒径が約3龍以下になるように粗粉砕した。
Two parts by weight of low molecular weight polypropylene and 0.5 parts of calcium stearate were premixed in a Henschel mixer. This was further melt-kneaded at 150° C. using a twin-screw extruder, and then allowed to cool. This kneaded product was coarsely pulverized using a cutting mill so that the average particle size was approximately 3.5 mm or less.

この粗粉砕物2を以下に示す5通りの微粉砕条件にて微
粉砕を行った。
This coarsely pulverized product 2 was pulverized under five types of pulverization conditions shown below.

ル較拠上 室温30℃および湿度70%の環境下において上記粗粉
砕物2を1時間に45kgの割合で室温空気と共に上記
装置lの微粉砕領域13内へ投入した。ローター12の
回転数は7000rpa+に設定した。微粉砕領域13
内の雰囲気温度は80℃にも上昇したため、微粉砕領域
13内ではトナーの固着が甚だしく装置lを継続して運
転することが不可能になった。
Based on the comparison, the coarsely pulverized material 2 was charged into the pulverizing region 13 of the apparatus 1 together with room temperature air at a rate of 45 kg per hour under an environment of a room temperature of 30° C. and a humidity of 70%. The rotation speed of the rotor 12 was set to 7000 rpa+. Fine grinding area 13
As the atmospheric temperature within the pulverization zone 13 rose to 80.degree. C., the toner adhered to such an extent that it became impossible to continue operating the apparatus 1.

上記比較例1により装置lの微粉砕領域13内の雰囲気
温度の上昇が約50℃であることが判明した。
It was found from Comparative Example 1 that the atmospheric temperature within the pulverization region 13 of the apparatus 1 increased by about 50°C.

去呈血上 流入空気3の温度を15℃に冷却すること以外はすべて
比較例1と同様の微粉砕条件で微粉砕を行った。微粉砕
領域13内の雰囲気温度は65℃であった。得られた微
粉砕トナーを平均粒径が12μmかつ粒度分布が一定に
なるように分級した。この分級された微粉砕トナーの球
形化をパウダーテスター(線用ミクロン社製)にて測定
した。ゆるみ見掛は比重(嵩比重)は0.60.そして
固め見掛は比重(タップ比重)は0.81であり9球形
化度は25.9%であった。この微粉砕トナー粒子の球
形化は顕微鏡観察により確認された。次いで、得られた
微粉砕トナーの30gを第2図に示す落下量試験機4に
投入し、ローレフト加工が施された金属性ローラー41
を5分間回転させ、そのときのトナー落下量を調べた。
Fine pulverization was carried out under the same pulverization conditions as in Comparative Example 1, except that the temperature of the air 3 flowing in above the extracted blood was cooled to 15°C. The atmospheric temperature within the pulverization area 13 was 65°C. The obtained finely pulverized toner was classified so that the average particle size was 12 μm and the particle size distribution was constant. The spheroidization of the classified finely pulverized toner was measured using a powder tester (manufactured by Line Micron Co., Ltd.). The specific gravity (bulk specific gravity) of the loose appearance is 0.60. The apparent hardening had a specific gravity (tap specific gravity) of 0.81 and a degree of sphericity of 25.9%. The spherical shape of the finely ground toner particles was confirmed by microscopic observation. Next, 30 g of the obtained finely pulverized toner was put into a drop tester 4 shown in FIG.
was rotated for 5 minutes, and the amount of toner falling at that time was examined.

トナーの落下量は6.9g15分であり、極めて良好な
流動性を有することが確認された。耐ブロッキング性も
良好であった。その結果を下表に示す。表中の球形化度
は次式(2)により求められる。表示数値が小さいほど
球形化度の高いことを示す。
The amount of toner falling was 6.9 g in 15 minutes, and it was confirmed that the toner had extremely good fluidity. Blocking resistance was also good. The results are shown in the table below. The degree of sphericity in the table is determined by the following equation (2). The smaller the displayed value, the higher the degree of sphericity.

球形化度(%) 室温が5℃で、流入空気3の温度をヒーターで15℃に
加温すること以外はすべて実施例1と同様の条件で微粉
砕を行った。微粉砕領域13内の雰囲気温度は実施例1
と同じ<65℃であった。以下。
Degree of Spheroidization (%) Fine pulverization was performed under the same conditions as in Example 1 except that the room temperature was 5° C. and the temperature of the inflowing air 3 was heated to 15° C. with a heater. The atmospheric temperature in the pulverization area 13 is as in Example 1.
The temperature was <65°C. below.

トナーの球形化度、流動性および耐ブロッキング性にお
いても実施例1と同様の結果が得られた。
The same results as in Example 1 were also obtained regarding the degree of sphericity, fluidity, and blocking resistance of the toner.

その結果を下表に示す。The results are shown in the table below.

止較災主 室温が5℃で、流入空気3を室温空気とすること以外は
すべて実施例1と同様の条件で微粉砕を行った。微粉砕
領域13内の雰囲気温度は50℃に上昇した。得られた
微粉砕トナーを実施例1と同様にして分級し2球形化度
を調べた。ゆるみ見掛は比重は0.56そして固め見掛
は比重は0.79であり。
Fine pulverization was carried out under the same conditions as in Example 1, except that the main room temperature was 5° C. and the inflow air 3 was room temperature air. The atmospheric temperature within the pulverization region 13 rose to 50°C. The obtained finely pulverized toner was classified in the same manner as in Example 1, and the degree of 2-spheroidization was examined. The specific gravity of the loose appearance is 0.56, and the specific gravity of the hardened appearance is 0.79.

球形化度は29.1%であった。いずれも実施例1およ
び実施例2の値よりも劣っていた。このトナー粒子には
球形状をなさないトナー粒子が混在していることが顕微
鏡観察から認められた。さらに実施例1と同様にして、
トナーの落下量を調べた。
The degree of sphericity was 29.1%. Both values were inferior to those of Example 1 and Example 2. Microscopic observation revealed that these toner particles contained toner particles that did not have a spherical shape. Furthermore, in the same manner as in Example 1,
The amount of toner falling was investigated.

その値は6.6 g / 5分であり、実施例1および
実施例2と較べ流動性に劣っていた。トナーのブロッキ
ングもわずかに見られた。その結果を下表に示す。
The value was 6.6 g/5 minutes, and compared to Examples 1 and 2, the fluidity was inferior. A slight amount of toner blocking was also observed. The results are shown in the table below.

几1u11 実施例1に用いた粗粉砕物2を従来のジェットミル(1
式ジェットミル;日本ニューマチック工業社製)により
微粉砕し、実施例1と同様に分級して微粉砕トナーを得
た。この微扮睦トナーの球形化は、そのゆるみ見掛は比
重が0.48そして固め見掛は比重が0.70であった
ことから、いずれも実施例1.実施例2および比較例2
の微粉砕トナーよりも劣っていることがわかった。この
微粉砕トナー粒子を顕微鏡観察したところ1球形化され
ていないトナー粒子の混在が認められた。さらに。
几1u11 The coarsely ground material 2 used in Example 1 was milled using a conventional jet mill (1
The toner was pulverized using a type jet mill (manufactured by Nippon Pneumatic Kogyo Co., Ltd.) and classified in the same manner as in Example 1 to obtain a pulverized toner. The spherical shape of this slightly shaped toner was determined by the fact that the apparent looseness had a specific gravity of 0.48 and the apparent hardened specific gravity had a specific gravity of 0.70. Example 2 and Comparative Example 2
was found to be inferior to finely ground toner. When the finely pulverized toner particles were observed under a microscope, it was found that there were toner particles that were not unispherical. moreover.

実施例1と同様にして、この微粉砕トナーの落下量を調
べたところ、その値は5.9 g / 5分であり。
The falling amount of this finely pulverized toner was examined in the same manner as in Example 1, and the value was 5.9 g/5 minutes.

実施例1.実施例2および比較例2の微粉砕トナーより
も流動性は劣っていることがわがった。しかも、トナー
のブロッキングが認められた。その結果を下表に示す。
Example 1. It was found that the fluidity was inferior to the finely pulverized toners of Example 2 and Comparative Example 2. Furthermore, toner blocking was observed. The results are shown in the table below.

(以下余白) (発明の効果) 本発明のトナー球形化法によれば、このように。(Margin below) (Effect of the invention) According to the toner spheroidization method of the present invention, as described above.

トナー組成物の粗粉砕物が適度に温度制御された空気の
過流中で微粉砕されることにより、トナー表面は球形化
され、流動性に優れた電子写真用トナーが連続的に調製
されうる。しかも磁性体が着色剤として含有される場合
にももd性体がこの微粉砕トナー表面に均一分散されう
る。その結果、このトナーを用いて得られた複写画像は
画像むらなどがなく極めて鮮明である。トナーの耐ブロ
ンキング性も改善される。また1本発明によれば、この
ように簡単な構成の装置を用い容易かつ連続的に処理が
なされるのでトナーは安価に供給され得る。
By pulverizing the coarsely pulverized toner composition in a turbulent flow of air at an appropriately controlled temperature, the surface of the toner becomes spherical, and an electrophotographic toner with excellent fluidity can be continuously prepared. . Moreover, even when a magnetic substance is contained as a colorant, the d-type substance can be uniformly dispersed on the surface of this finely pulverized toner. As a result, the copied images obtained using this toner are extremely clear without image unevenness. The bronking resistance of the toner is also improved. Furthermore, according to the present invention, toner can be supplied at low cost because the toner can be processed easily and continuously using a device with such a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の球形化法に用いられた装置の一実施例
を示す要部正面断面図、第2図は本発明、      
の球形化法により得られたトナーの流動性を調べる実験
に用いられた装置の斜視図である。 1・・・球形化装置、2・・・粗粉砕されたトナー組成
物、3・・・流入空気、4・・・落下量試験機、11・
・・ケーシング、12・・・ローター、13・・・微粉
砕領域、20・・・球形化された微粉砕トナー、30・
・・空気、41・・・ローラ+、  110・・・ライ
ナー、111・・・投入口、112・・・渦巻室、11
3・・・排出口、120・・・ローター軸、121・・
・ブレード、122・・・ディストリビュータ−0以上
FIG. 1 is a front cross-sectional view of essential parts showing an embodiment of the apparatus used in the spheronization method of the present invention, and FIG.
FIG. 2 is a perspective view of an apparatus used in an experiment to examine the fluidity of toner obtained by the spheronization method. DESCRIPTION OF SYMBOLS 1... Spheronization device, 2... Coarsely pulverized toner composition, 3... Inflowing air, 4... Fall amount tester, 11.
...Casing, 12... Rotor, 13... Finely pulverized region, 20... Spheroidized finely pulverized toner, 30.
... Air, 41 ... Roller +, 110 ... Liner, 111 ... Inlet, 112 ... Vortex chamber, 11
3...Discharge port, 120...Rotor shaft, 121...
・Blade, 122...Distributor - 0 or more

Claims (1)

【特許請求の範囲】 1、(1)結着樹脂および着色剤を主成分とするトナー
組成物の粗粉砕物を、温度を制御された流入空気と共に
連続的に微粉砕領域内に投入する工程、(2)該微粉砕
領域内の空気の過流および空気の圧力振動により該粗粉
砕物を微粉砕する工程、(3)該粗粉砕物を微粉砕する
間に、微粉砕領域内の雰囲気温度を該粗粉砕物の結着樹
脂のガラス転移温度付近に調節することにより、得られ
る微粉砕物の少なくともその表面を軟化し球形化させる
工程、および (4)球形化された該微粉砕物をトナーとして空気と共
に該微粉砕領域から系外へ排出させる工程、 を包含するトナーの球形化法。 2、前記微粉砕領域内の雰囲気温度が流入空気の温度お
よび粗粉砕物の投入量で調節される特許請求の範囲第1
項に記載のトナーの球形化法。 3、前記流入空気の温度が次式にしたがって制御される
特許請求の範囲第1項に記載のトナーの球形化法: T=(Tg−ΔT)±5 ここで、Tは流入空気温度(℃)、Tgはトナー結着樹
脂のガラス転移温度(℃)、そしてΔTは上昇温度(℃
)で約45℃〜55℃の範囲である。
[Claims] 1. (1) A step of continuously introducing a coarsely pulverized toner composition containing a binder resin and a colorant as main components into a pulverizing region together with temperature-controlled incoming air. , (2) finely pulverizing the coarsely pulverized material by air overflow and air pressure vibration in the pulverizing region; (3) reducing the atmosphere within the pulverizing region while pulverizing the coarsely pulverized material; a step of softening at least the surface of the resulting finely pulverized material to make it spherical by adjusting the temperature to around the glass transition temperature of the binder resin of the coarsely pulverized material; and (4) sphericalized pulverized material. A method for spheronizing toner, comprising: discharging the toner from the pulverization region to the outside of the system together with air. 2. The first aspect of the present invention is that the atmospheric temperature in the pulverization area is adjusted by the temperature of the incoming air and the amount of coarsely pulverized material.
The toner spheronization method described in Section 1. 3. The toner spheroidization method according to claim 1, wherein the temperature of the inflowing air is controlled according to the following formula: T=(Tg-ΔT)±5, where T is the inflowing air temperature (°C ), Tg is the glass transition temperature (°C) of the toner binder resin, and ΔT is the rising temperature (°C
) in the range of about 45°C to 55°C.
JP59183422A 1984-08-31 1984-08-31 Method for sphering toner Granted JPS6161627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59183422A JPS6161627A (en) 1984-08-31 1984-08-31 Method for sphering toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183422A JPS6161627A (en) 1984-08-31 1984-08-31 Method for sphering toner

Publications (2)

Publication Number Publication Date
JPS6161627A true JPS6161627A (en) 1986-03-29
JPH0526531B2 JPH0526531B2 (en) 1993-04-16

Family

ID=16135501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183422A Granted JPS6161627A (en) 1984-08-31 1984-08-31 Method for sphering toner

Country Status (1)

Country Link
JP (1) JPS6161627A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287237A (en) * 1985-10-11 1987-04-21 Miyoshi Kasei:Kk Surface treated powders and its preparation
EP0606872A1 (en) * 1993-01-11 1994-07-20 Canon Kabushiki Kaisha Production of toner for developing electrostatic images
JP2003088770A (en) * 2001-09-19 2003-03-25 Ricoh Co Ltd Grinder and method for producing toner by using the same
JP2007209924A (en) * 2006-02-10 2007-08-23 Nippon Pneumatic Mfg Co Ltd Crushing equipment and conglobation treatment method of powder
US7941073B2 (en) 2007-04-20 2011-05-10 Fuji Xerox Co., Ltd. Toner cartridge
JP2014178372A (en) * 2013-03-13 2014-09-25 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
CN109442992A (en) * 2018-11-01 2019-03-08 常州信息职业技术学院 One kind being based on electronically controlled processing smelting apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951665A (en) * 1972-09-22 1974-05-20
JPS49135260A (en) * 1973-05-01 1974-12-26
JPS5164661A (en) * 1974-12-03 1976-06-04 Turbo Kogyo Kk TAABOSHIKI BIFUNSAIKI
JPS5924855A (en) * 1982-08-03 1984-02-08 Fuji Xerox Co Ltd Grinder for developer
JPS59112849A (en) * 1982-12-20 1984-06-29 川崎重工業株式会社 Cooling device in pulverizer
JPH0526531A (en) * 1991-07-18 1993-02-02 Toshiba Corp Air-conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951665A (en) * 1972-09-22 1974-05-20
JPS49135260A (en) * 1973-05-01 1974-12-26
JPS5164661A (en) * 1974-12-03 1976-06-04 Turbo Kogyo Kk TAABOSHIKI BIFUNSAIKI
JPS5924855A (en) * 1982-08-03 1984-02-08 Fuji Xerox Co Ltd Grinder for developer
JPS59112849A (en) * 1982-12-20 1984-06-29 川崎重工業株式会社 Cooling device in pulverizer
JPH0526531A (en) * 1991-07-18 1993-02-02 Toshiba Corp Air-conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287237A (en) * 1985-10-11 1987-04-21 Miyoshi Kasei:Kk Surface treated powders and its preparation
EP0606872A1 (en) * 1993-01-11 1994-07-20 Canon Kabushiki Kaisha Production of toner for developing electrostatic images
JP2003088770A (en) * 2001-09-19 2003-03-25 Ricoh Co Ltd Grinder and method for producing toner by using the same
JP2007209924A (en) * 2006-02-10 2007-08-23 Nippon Pneumatic Mfg Co Ltd Crushing equipment and conglobation treatment method of powder
US7941073B2 (en) 2007-04-20 2011-05-10 Fuji Xerox Co., Ltd. Toner cartridge
JP2014178372A (en) * 2013-03-13 2014-09-25 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
CN109442992A (en) * 2018-11-01 2019-03-08 常州信息职业技术学院 One kind being based on electronically controlled processing smelting apparatus
CN109442992B (en) * 2018-11-01 2020-04-17 常州信息职业技术学院 Processing smelting device based on electronic control

Also Published As

Publication number Publication date
JPH0526531B2 (en) 1993-04-16

Similar Documents

Publication Publication Date Title
JP5773769B2 (en) Heat treatment method for powder particles and toner production method
US4288519A (en) Dual purpose electrophotographic magnetic toner and process of making
US4345013A (en) Dual purpose magnetic toner
US5087546A (en) Device for continuously mixing powder and process for producing toner for developing electrostatic image
JPS6161627A (en) Method for sphering toner
JP2006126587A (en) Process for producing toner
JP2000350944A (en) Method for grinding and classifying thermoplastic resin composition
JPH0689045A (en) Production of toner
JP4183388B2 (en) Grinding device, toner manufacturing device and toner
US5178460A (en) Device for continuously mixing powder and process for producing toner for developing electrostatic image
JP6782623B2 (en) Toner manufacturing method
JPH0820762B2 (en) Method of manufacturing toner for electrostatic charge development
JP3146434B2 (en) Toner for developing electrostatic latent images
JPH0934175A (en) Method for making electrostatic charge image developing toner spherical
JPH07244399A (en) Production of electrostatic charge image developing toner
JPH0472226B2 (en)
JP3693683B2 (en) Toner manufacturing method for developing electrostatic image
JP4208693B2 (en) Toner production method and toner particle surface modification device
JP4869168B2 (en) Toner surface reformer
JP4235590B2 (en) Toner production method and surface modification apparatus
JP3779975B2 (en) Method for producing toner for developing electrostatic image and pulverizing and classifying device for toner
JP3726026B2 (en) Method for producing toner for developing electrostatic image
JP2654569B2 (en) Method for producing toner for developing electrostatic images
JP2016032782A (en) Heat treatment device for powder particle and method for producing powder particle
JP2006011017A (en) Manufacturing method and surface reformer for toner