JPH0820762B2 - Method of manufacturing toner for electrostatic charge development - Google Patents

Method of manufacturing toner for electrostatic charge development

Info

Publication number
JPH0820762B2
JPH0820762B2 JP62307476A JP30747687A JPH0820762B2 JP H0820762 B2 JPH0820762 B2 JP H0820762B2 JP 62307476 A JP62307476 A JP 62307476A JP 30747687 A JP30747687 A JP 30747687A JP H0820762 B2 JPH0820762 B2 JP H0820762B2
Authority
JP
Japan
Prior art keywords
toner
impact
electrostatic charge
particle size
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62307476A
Other languages
Japanese (ja)
Other versions
JPH01149059A (en
Inventor
憲夫 樋掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62307476A priority Critical patent/JPH0820762B2/en
Publication of JPH01149059A publication Critical patent/JPH01149059A/en
Publication of JPH0820762B2 publication Critical patent/JPH0820762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0817Separation; Classifying
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0815Post-treatment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子写真,静電記録,静電印刷などにおける
静電荷像を現像するためのトナーの製造方法に関する。
The present invention relates to a method for producing a toner for developing an electrostatic charge image in electrophotography, electrostatic recording, electrostatic printing and the like.

[従来技術] 従来、電子写真法としては米国特許第2,297,691号明
細書、特公昭42-23910号公報及び特公昭43-24748号公報
等に記載されている如く、多数の方法が知られている
が、一般には光導電性物質を利用し、種々の手段により
感光体上に電気的潜像を形成し、次いで該潜像をトナー
を用いて現像し、必要に応じて紙等の転写材にトナー画
像を転写した後、加熱、圧力あるいは溶剤蒸気などによ
り定着して複写物を得るものである。
[Prior Art] Conventionally, as an electrophotographic method, many methods are known as described in US Pat. No. 2,297,691, Japanese Patent Publication No. 42-23910 and Japanese Patent Publication No. 43-24748. However, in general, a photoconductive substance is used to form an electrical latent image on a photoconductor by various means, and then the latent image is developed with a toner, and if necessary, a transfer material such as paper is transferred. After the toner image is transferred, it is fixed by heating, pressure or solvent vapor to obtain a copy.

顕像化粒子つまり、あるいは現像剤の荷電方法として
は、トナーを導電化し電荷を注入する電荷注入法、
電界下の誘電分極を利用した誘電分極法、コロナ・チ
ャージャー等、荷電イオンのシャワーを粒子にあびせる
イオン流荷電法、トナーとは摩擦帯電系列が異なる位
置にある物体とトナーとを摩擦する事により荷電する摩
擦帯電法等がある。この中で摩擦帯電法は絶縁性トナー
粒子を使用して充分な荷電量に調節可能であり、再現性
もあるため現在広く用いられている。
As a method of charging the visualized particles, that is, the developer, a charge injection method of electrically conducting the toner to inject a charge,
Dielectric polarization method that uses dielectric polarization under an electric field, ion current charging method that applies shower of charged ions to particles such as corona charger, and friction between an object and a toner at a position whose frictional charging series is different from that of the toner. There is a triboelectrification method and the like. Among them, the triboelectrification method is widely used at present because it can be adjusted to a sufficient charge amount by using insulating toner particles and has reproducibility.

従来、このトナーの製法としては、トナー原料を溶融
混練し冷却固化したものを、微粉砕し分級してトナー化
する、いわゆる粉砕法が一般的である。粉砕法の場合、
粉砕工程において高衝撃を与えて粉砕すると、装置の粉
砕処理能力が高く、かつ、トナーの単位重量当りに必要
なエネルギーも少なくてすむという効果がある。
Conventionally, as a method for producing this toner, a so-called pulverization method is generally used, in which a toner raw material is melt-kneaded, cooled and solidified, and then finely pulverized and classified to form a toner. In the case of the crushing method,
Grinding with a high impact in the crushing process has an effect that the crushing capacity of the apparatus is high and the energy required per unit weight of the toner is small.

しかしながら、現像剤の荷電に摩擦帯電荷を利用して
いることから、トナーの表面状態の微妙な差異が画像品
質に影響を及ぼし、画像濃度は低く文字周辺の飛び散り
が増える問題があった。特にこのことは、低温低湿や高
温高湿下で顕著になる傾向がある。
However, since the frictional band charge is used to charge the developer, a slight difference in the surface state of the toner affects the image quality, resulting in a low image density and increased scattering around the characters. In particular, this tends to be remarkable under low temperature and low humidity and high temperature and high humidity.

これに対し比較的低衝撃の粉砕を行うと、画像濃度が
高く、しっかりした画像が得られるが、粉砕機の処理速
度は著しく低下し、かつトナーの単位重量当りに必要な
エネルギーが過大になるという問題点を有している。衝
撃力を弱めすぎると、この傾向が著しくなると共に、ト
ナーの画像一枚当りの消費量の増加やカブリの増加を伴
うようになるといった現象が生じ、効率よく良好な画質
を得る障害となっている。
On the other hand, when the crushing with a relatively low impact is carried out, the image density is high and a solid image is obtained, but the processing speed of the crusher is remarkably reduced, and the energy required per unit weight of the toner is excessive. There is a problem. If the impact force is weakened too much, this tendency becomes remarkable, and a phenomenon such as an increase in toner consumption per image or an increase in fog occurs, which is a hindrance to obtaining efficient and good image quality. There is.

[発明が解決しようとする問題点] 本発明の目的は、上述したトナーの製法上の問題点を
克服したトナーの製造方法を提供することにある。即
ち、本発明の目的は、粉砕装置の粉砕能力とエネルギー
効率を最大限に引き出すとともに、画像濃度が高く、適
正なトナー消費量とカブリの少ないトナーの製造方法を
提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a toner manufacturing method which overcomes the above-mentioned problems in the toner manufacturing method. That is, it is an object of the present invention to provide a method for producing a toner having a high image density, a proper toner consumption amount, and a low fog while maximizing the pulverizing ability and energy efficiency of a pulverizing device.

[問題点を解決するための手段及び作用] 本発明は、トナーの原料であるバインダー,着色剤,
荷電制御剤等を溶融混練し冷却固化する工程と、該混練
物を微粉砕する工程と、微粉砕された粒子を分級して所
望の粒度分布を得る分級工程とを有する静電荷現像用ト
ナーの製造方法において、該微粉砕工程がジェットミル
を用いて高衝撃な微粉砕を行うものであり、更にこの微
粉砕工程の後に、微粉砕時より比較的低い衝撃を0.01秒
乃至3分トナーに与える改質工程を有することを特徴と
するものである。
[Means and Actions for Solving Problems] The present invention relates to a binder, a colorant, which is a raw material of a toner,
A toner for electrostatic charge development having a step of melting and kneading a charge control agent and the like to solidify by cooling, a step of finely pulverizing the kneaded product, and a classification step of classifying the finely ground particles to obtain a desired particle size distribution. In the manufacturing method, the finely pulverizing step is to perform high impact fine pulverization using a jet mill, and after this fine pulverizing step, a relatively lower impact than that during fine pulverization is applied to the toner for 0.01 seconds to 3 minutes. It is characterized by having a reforming step.

第1図は本発明の方法に係るフローの図である。粉砕
原料は、高衝撃粉砕手段によって粉砕された粒子ととも
に第1分級手段へ送られ、粗粉と微粉に分級される。粗
粉は高衝撃手段へ送られ粉砕され、さらに第1分級手段
へと送られる。微粉側(すなわち粉砕品)は、低衝撃手
段により処理された後、第2分級手段によって分級さ
れ、規定粒度内の粒度を有する分級品と、規定内粒度以
下の粒子からなる分級微粉とにわけられる。
FIG. 1 is a flow chart relating to the method of the present invention. The pulverized raw material is sent to the first classifying unit together with the particles pulverized by the high impact pulverizing unit and classified into coarse powder and fine powder. The coarse powder is sent to the high impact means, crushed, and further sent to the first classification means. The fine powder side (that is, the pulverized product) is processed by the low impact means and then classified by the second classification means, and is classified into a classified product having a particle size within a specified particle size and a classified fine powder composed of particles having a particle size within the specified particle size. To be

上記フロー図において示した高衝撃粉砕手段には、第
2図に示すようなジェットミルが用いられ、第2−
(a)図はジェットミルによる粉砕の状態図を示す。ホ
ッパー23からの粉体は、円錐形状のしぼり弁24を介し
て、高圧気体により加速管25から噴出され、対向する衝
突板26に衝突して微粉砕され排出口27より排出される。
ここで、衝突板には、加速管に対して直角の衝突面を有
するもの又は実質的に加速菅に対して直角である衝突板
を用いるのが望ましい。また、コンプレッサーのエアー
圧としては5.5kg/cm2〜10kg/cm2と、従来ジェットミル
で用いられている高圧気体のエアー圧の上限ないしはそ
れ以上の値で用いて粉砕することが望ましい。
A jet mill as shown in FIG. 2 is used for the high-impact crushing means shown in the above flow chart.
The figure (a) shows the state diagram of pulverization by a jet mill. The powder from the hopper 23 is ejected from the accelerating pipe 25 by the high-pressure gas through the conical squeeze valve 24, collides with the opposing collision plate 26, is pulverized, and is discharged from the discharge port 27.
Here, as the collision plate, it is desirable to use a collision plate having a collision surface at right angles to the acceleration tube or a collision plate substantially perpendicular to the acceleration tube. Further, a 5.5kg / cm 2 ~10kg / cm 2 as air pressure of the compressor, it is desirable to ground using upper limit or more values of the air pressure of the high pressure gas used in the conventional jet mill.

第2−(b)図は、実質的に加速菅のエアーの流れに
対して直角である衝突板の一例を示し、加速管のエアー
の流れに直角な方向を基準にして20°以下、好ましくは
10°以下の角度を有する衝突板26′である。トナーのご
とき比較的軟化点及びガラス転移点が低い樹脂を含有す
る粉体を直角な衝突板で高衝撃の粉砕を行うと、衝突板
に局部発熱等により融着物を作り連続的に粉砕が不可能
になるが、この場合、前述の第2−(b)図のごとき衝
突板26′を用いると、特に高圧域で融着物の発生のない
高効率の高衝撃粉砕が可能になる。
FIG. 2- (b) shows an example of a collision plate that is substantially perpendicular to the air flow in the accelerating pipe, and is preferably 20 ° or less, preferably 20 ° or less with respect to the direction perpendicular to the air flow in the accelerating pipe. Is
A collision plate 26 'having an angle of 10 ° or less. When powder containing resin having a relatively low softening point and glass transition point such as toner is crushed with a high-impact collision plate at a right angle, a fusion product is formed on the collision plate due to local heat generation, etc. However, in this case, if the collision plate 26 'as shown in FIG. 2- (b) is used, it is possible to perform highly efficient high impact crushing without generation of deposits, especially in a high pressure region.

高衝撃の粉砕のもう一つの手段としては、粉体をコン
プレッサエアーのエアー圧のフィードタンクに入れ、コ
ンプレッサエアーといっしょに加速管へ導入して、従来
のジェットミルのごとく、粉体と同時に加速管へ導入さ
れる大気圧付近の比較的低圧のエアをなくすることで、
より粉体を加速する手段も利用可能である。
As another means of high impact crushing, put powder in a feed tank of air pressure of compressor air and introduce it into the accelerating pipe together with the compressor air, and accelerate it at the same time as the powder like a conventional jet mill. By eliminating relatively low pressure air around the atmospheric pressure introduced into the pipe,
Means for accelerating the powder are also available.

このような高衝撃の粉砕手段で粉砕することにより、
粉砕機での粉砕能力及び粉砕効率は、画像品質の面を考
慮した条件より著しく向上可能になり、特に、その粒度
分布が小さいほどこの効果は顕著になる。なお粉砕機の
システムは、数mm程度のものを直接目的のトナーの粒度
にする場合も、原料粒度を10〜100μ程度にして目的の
トナーの粒度まで粉砕する場合もいずれも効果がある。
By crushing with such a high impact crushing means,
The pulverizing ability and pulverizing efficiency of the pulverizer can be remarkably improved as compared with the condition in which the image quality is taken into consideration. Particularly, the smaller the particle size distribution is, the more remarkable this effect is. The crusher system is effective both when the particle size of a few mm is directly used as the target toner particle size and when the particle size of the raw material is set to about 10 to 100 μ and the target toner particle size is crushed.

一方、低衝撃手段としては、回転するローター,ブレ
ード又はハンマーとそれに相対峙するライナーとの間で
衝撃を与えるか、多数の回転ピン間で衝撃を与えるよう
な方法が例示しうる。
On the other hand, examples of the low impact means include a method of applying an impact between a rotating rotor, a blade or a hammer and a liner facing the rotating rotor, or an impact between a plurality of rotating pins.

第3図は、ローターとライナーの組み合せによる低衝
撃処理装置の概略断面図である。図中31は回転軸、32は
ケーシング、33はライナー、34は送風羽根、35はロータ
ー(ブレード付)、36は出口、37は製品取出口、38はリ
ターン路、39は原料投入口、40は入口、41はジャケッ
ト、42はリターン閉鎖弁である。
FIG. 3 is a schematic cross-sectional view of a low impact treatment device using a combination of a rotor and a liner. In the figure, 31 is a rotating shaft, 32 is a casing, 33 is a liner, 34 is a blower blade, 35 is a rotor (with blade), 36 is an outlet, 37 is a product outlet, 38 is a return passage, 39 is a raw material inlet, 40 Is an inlet, 41 is a jacket, and 42 is a return closing valve.

回転するローターの周速は10〜200m/sec、好ましくは
30〜150m/secであり、又、温度はガラス転移点−5℃か
らガラス転移度−30℃の温度範囲での処理が望ましい。
高すぎると装置内で溶融してしまい、低すぎると冷却エ
ネルギーのためのコストが必要となり、実用上いずれも
好ましくない。
The peripheral speed of the rotating rotor is 10 to 200 m / sec, preferably
It is preferably 30 to 150 m / sec, and the temperature is preferably in the temperature range of glass transition point -5 ° C to glass transition degree -30 ° C.
If it is too high, it will melt in the apparatus, and if it is too low, a cost for cooling energy will be required, which is not preferable in practice.

第4図は、第3図に示した低衝撃処理装置のライナー
33と回転するローター35の位置関係を示す。ライナー33
とローター35の間隔とはライナーの内周への突出部の先
端を結んでえられる円周とローターの突出部の軌跡の2
つの円周の半径の差をいう。このローターのかわりにブ
レードやハンマーでも同様である。ブレード又はハンマ
ーとライナーとの間の間隔は0.5〜10mm程度、好ましく
は1〜5mmのものでよい結果が得られている。
FIG. 4 is a liner for the low impact treatment device shown in FIG.
The positional relationship between 33 and the rotating rotor 35 is shown. Liner 33
The distance between the rotor and the rotor 35 is the circumference of the line that connects the tip of the protrusion to the inner circumference of the liner and the locus of the protrusion of the rotor.
The difference between the radii of two circles. The same applies to blades and hammers instead of this rotor. Good results have been obtained with a distance between the blade or hammer and the liner of the order of 0.5-10 mm, preferably 1-5 mm.

第5図は、ピンミルタイプの低衝撃処理装置の概略断
面図である。51はケーシング、52はピン、53は入口、54
は原料投入口、55は循環ブロワー、56はリターン路、57
は製品抜取口、58は出口、59はローター、60はローター
と接続する回転軸、61はジャケットである。このピンミ
ルタイプにおいては、ピン間の最小間隔が0.5〜5mmであ
るのみならず、最大間隔が5〜10mm以下、好ましくは5m
m以下にすることによりよい結果が得られている。
FIG. 5 is a schematic cross-sectional view of a pin mill type low impact treatment device. 51 is a casing, 52 is a pin, 53 is an inlet, 54
Is a material input port, 55 is a circulation blower, 56 is a return path, and 57
Is a product outlet, 58 is an outlet, 59 is a rotor, 60 is a rotating shaft connected to the rotor, and 61 is a jacket. In this pin mill type, not only the minimum distance between pins is 0.5 to 5 mm, but also the maximum distance is 5 to 10 mm or less, preferably 5 m
Good results have been obtained by setting it to m or less.

なお、第3図及び第5図では、滞留時間のコントロー
ルのためリサイクルできるタイプになっているが、滞留
時間の短い場合は特に風速や衝撃を加える部分の長さを
コントロールして一過式で処理を行う。
In Fig. 3 and Fig. 5, the type is recyclable to control the residence time. However, when the residence time is short, the wind speed and the length of the part to which the impact is applied are controlled to make it a transient system. Perform processing.

低衝撃処理の目的は、球形化ではなく表面特性の改質
であるので、装置内の滞留時間は極めて短く、その時間
は、それぞれのトナーの性質及びローターの周速によっ
て異るが、例えば周速200m/secで0.01秒〜2秒であり、
条件により0.01秒〜3分の間で選択する。従って、形状
やトナーの表面への影響も少なく、粉砕時にトナーの短
径と長径の比が0.60〜0.70のものが0.65〜0.85程度にシ
フトする程度であり、かつトナー表面の状態を走査型電
子顕微鏡でみても球形化と異り、特に大きな変化は見あ
たらない。
Since the purpose of the low impact treatment is to modify the surface characteristics, not to make it spherical, the residence time in the apparatus is extremely short, and the time varies depending on the properties of each toner and the peripheral speed of the rotor. At a speed of 200 m / sec, it is 0.01 to 2 seconds,
Select from 0.01 seconds to 3 minutes depending on the conditions. Therefore, there is little influence on the shape and the surface of the toner, and when the ratio of the short diameter to the long diameter of the toner is 0.60 to 0.70 when pulverized, it is about to shift to about 0.65 to 0.85, and the toner surface state is When viewed under a microscope, unlike spheroidization, no significant changes are found.

この低衝撃処理時間(滞留時間)を前述の時間より長
くしすぎると、トナー消費量の増加やクリーニング性の
低下に伴うカブリの増加等の現象がつよくなり、逆に短
すぎると表面特性の改質効果が弱くなり、又、文字部の
トナーの飛び散りが増加する傾向がみられる。
If this low impact treatment time (residence time) is set to be longer than the above-mentioned time, phenomena such as increase in toner consumption and increase in fog due to deterioration in cleaning property will be increased. Conversely, if it is too short, surface characteristics will be improved. The quality effect becomes weaker, and the toner scattering in the character portion tends to increase.

なお、低衝撃手段の周速が比較的速い周速である100
〜150m/secの領域では、粉砕も一部行われ粒度がシフト
する場合もあるので、低衝撃手段に風力分級機を装着
し、低衝撃手段の入口粒度を出口粒度より1〜2μ程度
粗くして処理することも材料の粉砕性のいい場合は可能
である。この場合前工程の粉砕機の処理能力及び効率は
更によくなることになる。
In addition, the peripheral speed of the low-impact means is relatively high 100
In the region of ~ 150m / sec, the crushing may be partially performed and the particle size may shift, so attach a wind classifier to the low impact means and make the inlet particle size of the low impact means about 1 to 2μ coarser than the outlet particle size. It is also possible to treat the material if the material has good pulverizability. In this case, the processing capacity and efficiency of the pulverizer in the previous step will be further improved.

この低衝撃処理を行うことで、前工程での高衝撃粉砕
で低下した濃度低下がカバーされ、しっかりした画像を
得ることが可能になり、装置の処理能力とエネルギー効
率ともに大巾に向上することができる。
By carrying out this low impact treatment, it is possible to cover the decrease in concentration that was caused by the high impact pulverization in the previous process, and it becomes possible to obtain a solid image, and the processing capacity and energy efficiency of the device are greatly improved. You can

[実施例] 実施例1 スチレンブチルアクリレート−ジビニルベンゼン共重合
体(w≒30万) 90重量部 ニグロシン 2重量部 ハイワックス200p(三井石油化学製ポリエチレンワック
ス) 4重量部 磁性体(比表面積8m2/g) 60重量部 上記処方の成分をロールミルにて150℃下で約30分
間、熱混練し、得られた混練物を冷却し、2mmスクリー
ンにてハンマーミルで粗砕した粗砕物を日本ニューマチ
ック工業製I−5-DS5型粉砕機で、トナー粒径を10.5μ
(コールタカウンターによる体積平均径)まで粉砕し
た。このとき、衝突板は加速管のエアーの流れ方向の90
°の面を基準にして10°の角度を有する円錐状のものを
用い、コンプレッサーエアー圧を6.5kg/m2、エアー量を
6.5m3/minにコントロールして粉砕した。
Example 1 Styrene butyl acrylate-divinylbenzene copolymer (w≈300,000) 90 parts by weight Nigrosine 2 parts by weight Hiwax 200p (polyethylene wax manufactured by Mitsui Petrochemical) 4 parts by weight Magnetic material (specific surface area 8 m 2 / g) 60 parts by weight The components of the above formulation were heat-kneaded in a roll mill at 150 ° C for about 30 minutes, the resulting kneaded product was cooled, and the coarsely crushed product was roughly crushed with a hammer mill on a 2 mm screen to produce a new product. Matic I-5-DS5 crusher with a toner particle size of 10.5μ
(Volume average diameter measured by Coulter counter). At this time, the collision plate moves 90 ° in the direction of air flow in the acceleration tube.
Use a cone with an angle of 10 ° with respect to the plane of °, and set the compressor air pressure to 6.5 kg / m 2 and the air amount.
It was crushed while controlling to 6.5 m 3 / min.

その後、第3図に示す表面処理装置にて回転速度が周
速130m/sec、ライナーとローターのクリアランスが5m
m、装置の出口側の温度が40℃である条件下で、トナー
の改質処理を行った。
After that, with the surface treatment device shown in FIG. 3, the rotation speed is 130 m / sec and the clearance between the liner and the rotor is 5 m.
The toner was modified under the condition that the temperature at the outlet side of the apparatus was 40 ° C.

次にアルピネ社製ジクザク分級機で体積平均径約11
μ、6.35μ以下を個数平均で20%以下になるように微粉
カットして分級仕上り品を得た。このとき、粉砕機の能
力は、26kg/hrであった。
Next, using a Zine Zaku classifier manufactured by Alpine, a volume average diameter of about 11
Fine particles were cut so that the number average of μ and 6.35 μ was 20% or less to obtain a classified finished product. At this time, the capacity of the crusher was 26 kg / hr.

実施例2及び3 表−1に示すように、高衝撃微粉工程におけるコンプ
レッサーエアー圧及びエアー量,第2分級工程における
粉砕機能力を変えた以外は、、実施例1と全く同様にし
て実施例2に係る分級仕上り品(トナー)を得た。
Examples 2 and 3 As shown in Table 1, the same procedure as in Example 1 was carried out except that the compressor air pressure and air amount in the high impact fine powder process and the crushing functional force in the second classification process were changed. A classified finished product (toner) according to No. 2 was obtained.

また、第1分級工程におけるトナー粒径,低衝撃処理
工程における回転速度,第2分級工程における粉砕機能
力を変えた以外は実施例1と全く同様にして実施例3に
係る分級仕上り品(トナー)を得た。
Further, the classified finished product (toner) according to Example 3 is exactly the same as Example 1 except that the toner particle size in the first classification step, the rotation speed in the low impact treatment step, and the crushing functional force in the second classification step are changed. ) Got.

比較例1〜3 表−1に示す条件で低衝撃処理を全く行わない以外
は、実施例1と同様にして比較例1〜3に係る分級仕上
り品(トナー)を得た。
Comparative Examples 1 to 3 Classification finished products (toners) according to Comparative Examples 1 to 3 were obtained in the same manner as in Example 1 except that the low impact treatment was not performed under the conditions shown in Table 1.

次に、各実施例及び比較例のトナー各100重量部に、
アミノシリコンオイルで処理されたコロイダルシリカ0.
5重量部を添加し、回転羽根のある混合機で混合して製
品トナーとし、これを用いてキャノン製複写機NP3525に
て絵出しを行った。
Next, for each 100 parts by weight of the toner of each Example and Comparative Example,
Colloidal silica treated with amino silicone oil 0.
5 parts by weight was added and mixed by a mixer having a rotary blade to obtain a product toner, and this was used to perform drawing on a Canon copier NP3525.

以上の各実施例及び比較例に係るトナーを得るにあた
ってのエネルギー効率及び投資効率を、各々、表−2及
び表−3に示した。更に、絵出しの結果を表−4に示し
た。
The energy efficiency and investment efficiency in obtaining the toner according to each of the above Examples and Comparative Examples are shown in Table 2 and Table 3, respectively. Further, the results of drawing out are shown in Table-4.

以上のように本発明の方法によれば、エネルギー効
率,投資効率とも大巾に向上し、かつ品質的には従来行
われている比較例2と同等のものが得られることが判
る。
As described above, according to the method of the present invention, it is understood that both energy efficiency and investment efficiency are significantly improved, and the quality is equivalent to that of the comparative example 2 which has been conventionally performed.

[発明の効果] 本発明は、特に画質を考慮しない高衝撃のジェットミ
ルによる微粉砕工程の後に、低衝撃の表面改質処理工程
を組合せたものである。
[Effect of the Invention] The present invention combines a low impact surface modification treatment step after a fine impact pulverization step with a high impact jet mill that does not particularly consider image quality.

このため、ジェットミルとしては装置1台当りの処理
能力とエネルギー効率の両方の面で著しく効率のよい粉
砕を可能にする。同時に、安価で低動力の低衝撃装置で
0.01秒乃至3分の処理をすることにより画像濃度を濃
く、かつトナー消費量を適正にコントロールすることが
可能になる。ジェットミルの後工程として、このような
低衝撃装置を設置しても、従来の方法よりも必要な生産
能力を得るのに必要な投資は減少し、かつエネルギー効
率はよくなる。
Therefore, as a jet mill, it is possible to perform grinding with extremely high efficiency in terms of both processing capacity and energy efficiency per device. At the same time, with an inexpensive, low-power, low-impact device
By performing the processing for 0.01 seconds to 3 minutes, it is possible to increase the image density and properly control the toner consumption amount. Even with such a low impact device installed as a post process of the jet mill, the investment required to obtain the required production capacity and the energy efficiency are better than those of the conventional methods.

また、本発明のもう一つの大きな効果は、粉砕工程に
かかわらず、この低衝撃処理の工程によって、現像装置
とのマッチングを図って、より高い濃度や、画像当りの
トナー消費量及びカブリ等のコントロールが可能になっ
たことである。
In addition, another great effect of the present invention is that, regardless of the crushing process, the process of this low-impact treatment matches the developing device to obtain higher density, toner consumption per image, and fogging. It is now possible to control.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のフローチャートであり、第2図は高衝
撃粉砕手段の一例を示し、第2−(a)図はその状態図
を示し、第2−(b)図は高衝撃粉砕手段の衝突板の一
例を示し、第3図はローターとライナーの組み合せによ
る低衝撃処理装置の概略断面図であり、第4図は第3図
に示した装置のライナーとローターの位置関係を示す図
であり、第5図はピンミルタイプの低衝撃処理装置の概
略断面図である。 25……加速菅、26,26′……衝突板 33……ライナー、35……ローター 52……ピン、59……ローター
FIG. 1 is a flow chart of the present invention, FIG. 2 shows an example of high impact crushing means, FIG. 2- (a) shows its state diagram, and FIG. 2- (b) shows high impact crushing means. FIG. 3 shows an example of a collision plate of FIG. 3, FIG. 3 is a schematic cross-sectional view of a low impact treatment device by combining a rotor and a liner, and FIG. 4 is a diagram showing a positional relationship between the liner and the rotor of the device shown in FIG. FIG. 5 is a schematic cross-sectional view of a pin mill type low impact treatment device. 25 …… Accelerating pipe, 26, 26 ′ …… Collision plate 33 …… Liner, 35 …… Rotor 52 …… Pin, 59 …… Rotor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】トナーの原料であるバインダー,着色剤,
荷電制御剤等を溶融混練し冷却固化する工程と、該混練
物を微粉砕する工程と、微粉砕された粒子を分級して所
望の粒度分布を得る分級工程とを有する静電荷現像用ト
ナーの製造方法において、該微粉砕工程がジェットミル
を用いて高衝撃な微粉砕を行うものであり、更にこの微
粉砕工程の後に、微粉砕時より比較的低い衝撃を0.01秒
乃至3分トナーに与える改質工程を有することを特徴と
する静電荷現像用トナーの製造方法。
1. A binder, a colorant, which is a raw material of a toner,
A toner for electrostatic charge development having a step of melting and kneading a charge control agent and the like to solidify by cooling, a step of finely pulverizing the kneaded product, and a classification step of classifying the finely ground particles to obtain a desired particle size distribution. In the manufacturing method, the finely pulverizing step is to perform high impact fine pulverization using a jet mill, and after this fine pulverizing step, a relatively lower impact than that during fine pulverization is applied to the toner for 0.01 seconds to 3 minutes. A method for producing a toner for electrostatic charge development, comprising a modification step.
JP62307476A 1987-12-07 1987-12-07 Method of manufacturing toner for electrostatic charge development Expired - Lifetime JPH0820762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307476A JPH0820762B2 (en) 1987-12-07 1987-12-07 Method of manufacturing toner for electrostatic charge development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307476A JPH0820762B2 (en) 1987-12-07 1987-12-07 Method of manufacturing toner for electrostatic charge development

Publications (2)

Publication Number Publication Date
JPH01149059A JPH01149059A (en) 1989-06-12
JPH0820762B2 true JPH0820762B2 (en) 1996-03-04

Family

ID=17969538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307476A Expired - Lifetime JPH0820762B2 (en) 1987-12-07 1987-12-07 Method of manufacturing toner for electrostatic charge development

Country Status (1)

Country Link
JP (1) JPH0820762B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651131B2 (en) * 1989-12-07 1994-07-06 キヤノン株式会社 Collision type airflow crusher and crushing method
JPH0651130B2 (en) * 1989-09-22 1994-07-06 キヤノン株式会社 Collision type airflow crusher and crushing method
JPH03287173A (en) * 1990-04-02 1991-12-17 Canon Inc Production of electrostatically charged image developing toner
JP2001051465A (en) 1999-08-11 2001-02-23 Ricoh Co Ltd Method for forming full color image, toner for full color electrophotography, manufacture thereof, and intermediate transfer body to be adopted for the full color image forming method

Also Published As

Publication number Publication date
JPH01149059A (en) 1989-06-12

Similar Documents

Publication Publication Date Title
JP2791013B2 (en) Method and apparatus for producing triboelectric toner for developing electrostatic images
KR900008078B1 (en) Process for producing toner powder
US5435496A (en) Collision-type gas current pulverizer and method for pulverizing powders
US4782001A (en) Process for producing toner for developing electrostatic images and apparatus therefor
US5087546A (en) Device for continuously mixing powder and process for producing toner for developing electrostatic image
JPH0820762B2 (en) Method of manufacturing toner for electrostatic charge development
JPH0549349B2 (en)
EP0605169B2 (en) Method for producing toner for electrostatic development
JP3094676B2 (en) Magnetic toner
JPH0526531B2 (en)
JP2002131979A (en) Method for manufacturing toner
JPS6316978B2 (en)
JPH0689045A (en) Production of toner
JP2654989B2 (en) Powder grinding method
US5178460A (en) Device for continuously mixing powder and process for producing toner for developing electrostatic image
JP2759499B2 (en) Powder grinding method
JPH0934175A (en) Method for making electrostatic charge image developing toner spherical
JP2805332B2 (en) Grinding method
JPS63101861A (en) Method and device for manufacturing electrostatically charged image developing toner
JP2654569B2 (en) Method for producing toner for developing electrostatic images
JPH08141509A (en) Air flow type classifying apparatus and preparation of toner
JPH0980805A (en) Production of electrophotographic toner
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP3295794B2 (en) Airflow classifier and toner manufacturing method
JP2004198565A (en) Developing device and image forming apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term