JPH01149059A - Manufacture of electrostatic charge image developing toner - Google Patents
Manufacture of electrostatic charge image developing tonerInfo
- Publication number
- JPH01149059A JPH01149059A JP62307476A JP30747687A JPH01149059A JP H01149059 A JPH01149059 A JP H01149059A JP 62307476 A JP62307476 A JP 62307476A JP 30747687 A JP30747687 A JP 30747687A JP H01149059 A JPH01149059 A JP H01149059A
- Authority
- JP
- Japan
- Prior art keywords
- impact
- toner
- particles
- fed
- pulverizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000010298 pulverizing process Methods 0.000 claims abstract description 32
- 239000002245 particle Substances 0.000 claims abstract description 26
- 239000011802 pulverized particle Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 30
- 239000002994 raw material Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 238000011161 development Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000003086 colorant Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 238000004898 kneading Methods 0.000 claims description 2
- 239000013058 crude material Substances 0.000 abstract 1
- 230000006866 deterioration Effects 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 12
- 238000012545 processing Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QJVOZXGJOGJKPT-IGHBBLSQSA-N (1r,2r,5s,11ar)-2-(prop-2-en-1-yl)-1,2,3,4,5,6,11,11a-octahydro-10h-1,5-methanopyrido[1,2-a][1,5]diazocin-10-one Chemical compound C([C@@H]12)C(=O)C=CN1C[C@@H]1CN[C@H](CC=C)[C@H]2C1 QJVOZXGJOGJKPT-IGHBBLSQSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QJVOZXGJOGJKPT-UHFFFAOYSA-N albine Natural products C12CC(=O)C=CN2CC2CNC(CC=C)C1C2 QJVOZXGJOGJKPT-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- CJPQIRJHIZUAQP-MRXNPFEDSA-N benalaxyl-M Chemical compound CC=1C=CC=C(C)C=1N([C@H](C)C(=O)OC)C(=O)CC1=CC=CC=C1 CJPQIRJHIZUAQP-MRXNPFEDSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0802—Preparation methods
- G03G9/0817—Separation; Classifying
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0802—Preparation methods
- G03G9/0815—Post-treatment
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
Description
[産業上の利用分野]
本発明は電子写真、静電記録、静電印刷などにおける静
電荷像を現像するためのトナーの製造方法に関する。
[従来技術]
従来、電子写真法としては米国特許筒2,297゜89
1号明細書、特公昭42−23810号公報及び特公昭
43−24748号公報等に記載されている如く、多数
の方法が知られているが、一般には光導電性物質を利用
し、種々の手段により感光体上に電気的潜像を形成し、
次いで該潜像をトナーを用いて現像し、必要に応じて紙
等の転写材にトナー画像を転写した後、加熱、圧力ある
いは溶剤蒸気などにより定着して複写物を得るものであ
る。
顕像化粒子つまり、あるいは現像剤の荷電方法としては
、■トナーを導電化し電荷を注入する電荷注入法、■電
界下の誘電分極を利用した誘電分極法、■コロナ・チャ
ージャー等、荷電イオンのシャワーを粒子にあびせるイ
オン流荷電法、■トナーとは摩擦帯電系列が異なる位置
にある物体とトナーとを摩擦する事により荷電する摩擦
帯電法等がある。この中で摩擦帯電法は絶縁性トナー粒
子を使用して充分な荷電量に調節可能であり、再現性も
あるため現在広く用いられている。
従来、このトナーの製法としては、トナー原料を溶融混
練し冷却固化したものを、微粉砕し分級してトナー化す
る、いわゆる粉砕法が一般的である。粉砕法の場合、粉
砕工程において高衝撃を与えて粉砕すると、装置の粉砕
処理能力が高く、かつ、トナーの単位重量当りに必要な
エネルギーも少なくてすむという効果がある。
しかしながら、現像剤の荷電に摩擦帯電荷を利用してい
ることから、トナーの表面状態の微妙な差異が画像品質
に影響を及ぼし、画像濃度は低く文字周辺の飛び散りが
増える問題があった。特にこのことは、低温低湿や高温
高湿下で顕著になる傾向がある。
これに対し比較的低衝撃の粉砕を行うと、画像濃度が高
く、しっかりした画像が得られるが、粉砕機の処理速度
は著しく低下し、かつトナーの単位重量当りに必要なエ
ネルギーが過大になるという問題点を有している。衝撃
力を弱めすぎると、この傾向が著しくなると共に、トナ
ーの画像−枚当りの消費量の増加やカブリの増加を伴う
ようになるといった現象が生じ、効率よく良好な画質を
得る障害となっている。
[発明が解決しようとする問題点]
本発明の目的は、上述したトナーの製法上の問題点を克
服したトナーの製造方法を提供することにある。即ち、
本発明の目的は、粉砕装置の粉砕能力とエネルギー効率
を最大限に引き出すとともに、画像濃度が高く、適正な
トナー消費量とカブリの少ないトナーの製造方法を提供
することにある。
[問題点を解決するための手段及び作用]本発明は、ト
ナーの原料であるバインダー、着色剤、荷電制御剤等を
溶融混練し冷却固化する工程と、該混練物を微粉砕する
工程と、微粉砕された粒子を分級して所望の粒度分布を
得る分級工程とを有する静電荷現像用トナーの製造方法
において、該微粉砕工程がジェットミルを用いて高衝撃
な微粉砕を行うものであり、更にこの微粉砕工程とは別
に、微粉砕時より比較的低い衝撃を短時間トナーに与え
る改質工程を有することを特徴とするものである。
第1図は本発明の方法に係るフローの図である。゛粉砕
原料は、高衝撃粉砕手段によって粉砕された粒子ととも
に第1分級手段へ送られ、粗粉と微粉に分級される。粗
粉は高衝撃手段へ送られ粉砕され、さらに第1分級手段
へと送られる。微粉側(すなわち粉砕品)は、低衝撃手
段により処理された後、第2分級手段によって分級され
、規定粒度内の粒度を有する分級品と、規定内粒度以下
の粒子からなる分級微粉とにわけられる。
上記フロー図において示した高衝撃粉砕手段には、第2
図に示すようなジェットミルが用いられ、第2−(a)
図はジェットミルによる粉砕の状態図を示す、ホッパー
23からの粉体は、円錐形状のしぼり弁24を介して、
高圧気体により加速管25から噴出され、対向する衝突
板2Bに衝突して微粉砕され排出口27より排出される
。ここで、衝突板には、加速管に対して直角の衝突面を
有するもの又は実質的に加速管に対して直角である衝突
板を用いるのが望ましい、また、コンプレッサーのエア
ー圧としては5.5kg/cm2〜10kg/cm2と
、従来ジェットミルで用いられている高圧気体のエアー
圧の上限ないしはそれ以上の値で用いて粉砕することが
望ましい。
第2−(b)図は、実質的に加速管のエアーの流れに対
して直角である衝突板の一例を示し、加速管のエアーの
流れに直角な方向を基準にして20°以下、好ましくは
10°以下の角度を有する衝突板26′である。トナー
のごとき比較的軟化点及びガラス転移点が低い樹脂を含
有する粉体を直角な衝突板で高衝撃の粉砕を行うと、衝
突板に局部発熱等により融着物を作り連続的に粉砕が不
可能になるが、この場合、前述の第2−(b)図のごと
き衝突板26′を用いると、特に高圧域で融着物の発生
のない高効率の高衝撃粉砕が可能になる。
高衝撃の粉砕のもう一つの手段としては、粉体をコンプ
レッサエアーのエアー圧のフィードタンクに入れ、コン
プレッサエアーといっしょに加速管へ導入して、従来の
ジェットミルのごとく、粉体と同時に加速管へ導入され
る大気圧付近の比較的低圧のエアをなくすることで、よ
り粉体を加速する手段も利用可能である。
このような高衝撃の粉砕手段で粉砕することにより、粉
砕機での粉砕能力及び粉砕効率は、画像品質の面を考慮
した条件より著しく向上可能になり、特に、その粒度分
布が小さいほどこの効果は顕著になる。なお粉砕機のシ
ステムは、数■程度のものを直接目的のトナーの粒度に
する場合も、原料粒度を10〜100ル程度にして目的
のトナーの粒度まで粉砕する場合もいずれも効果がある
。
一方、低衝撃手段としては、回転するローター、ブレー
ド又はハンマーとそれに相対峙するライナーとの間で衝
撃を与えるか、多数の回転ピン間で衝撃を与えるような
方法が例示しうる。
第3図は、ローターとライナーの組み合せによる低衝撃
処理装置の概略断面図である0図中31は回転軸、32
はケーシング、33はライナー、34は送風羽根、35
はローター(ブレード付)、36は出口、37は製品取
出口、38はリターン路、39は原料投入口、40は入
口、41はジャケット、42はリターン閉鎖弁である。
回転するローターの周速は10〜200ra/sec、
好ましくは30〜150m/seaであり、又、温度は
ガラス転移点−5°Cからガラス転移度−30℃の温度
範囲での処理が望ましい、高すぎると装置内で溶融して
しまい、低すぎると冷却エネルギーのためのコストが必
要となり、実用上いずれも好ましくない。
第4図は、第3図に示した低衝撃処理装置のライナー3
3と回転するローター35の位置関係を示す、ライナー
33とローター35の間隔とはライナーの内周への突出
部の先端を結んでえられる円周とローターの突出部の軌
跡の2つの円周の半径の差をいう、このローターのかわ
りにブレードやハンマーでも同様である。ブレード又は
ハンマーとライナーとの間の間隔は0.5〜10mm程
度、好ましくは1〜5III+のものでよい結果が得ら
れている。
第5図は、ピンミルタイプの低衝撃処理装置の概略断面
図である。51はケーシング、52はピン、53は入口
、54は原料投入口、55は循環ブロワ−156はリタ
ーン路、57は製品抜取口、58は出口、59はロータ
ー、60はローターと接続する回転軸、61はジャケッ
トである。このピンミルタイプにおいては、ピン間の最
小間隔が0.5〜5■であるのみならず、最大間隔が5
〜10mm以下、好ましくは5!1層以下にすることに
よりよい結果が得られている。
なお、第3図及び第5図では、滞留時間のコントロール
のためリサイクルできるタイプになっているが、滞留時
間の短い場合は特に風速や衝撃を加える部分の長さをコ
ントロールして一過式で処理を行う。
低衝撃処理の目的は、球形化ではなく表面特性の改質で
あるので、装置内の滞留時間は極めて短く、その時間は
、それぞれのトナーの性質及びローターの周速によって
異るが、例えば周速200諺/seaで0.01秒〜2
秒であり、条件により0.01秒〜3分程度の間で選択
する。従って、形状やトナーの表面への影響も少なく、
粉砕時にトナーの短径と長径の比が0.60〜0,70
のものが0.85〜0.85程度にシフトする程度であ
り、かつトナー表面の状態を走査型電子顕微鏡でみても
球形化と異り、特に大きな変化は見あたらない。
この低衝撃処理時間(滞留時間)を前述の時間より長く
しすぎると、トナー消費量の増加やクリーニング性の低
下に伴うカブリの増加等の現象がつよくなり、逆に短す
ぎると表面特性の改質効果が弱くなり、又、文字部のト
ナーの飛び散りが増加する傾向がみられる。
なお、低衝撃手段の周速が比較的速い周速である100
−150m/secの領域では、粉砕も一部行われ粒度
がシフトする場合もあるので、低衝撃手段に風力分級機
を装着し、低衝撃手段の入口粒度を出口粒度より1〜2
IL程度粗くして処理することも材料の粉砕性のいい場
合は可能である。この場合前工程の粉砕機の処理能力及
び効率は更によくなることになる。
この低衝撃処理を行うことで、前工程での高衝撃粉砕で
低下した濃度低下がカバーされ、しっかリした画像を得
ることが可能になり、装置の処理能力とエネルギー効率
ともに大巾に向上することができる。
[実施例]
実施例1
スチレンブチルアクリレート−ジビニルベンゼン共重合
体(UW嬌30万)90重量部ニグロシン
2重量部ハイワックス200p (三井石
油化学製ポリエチレンワックス) 4重量部
磁性体(比表面積8 m2/g) 60重量
部上記処方の成分をロールミルにて150℃下で約30
分間、熱混練し、得られた混練物を冷却し、2+amス
クリーンにてハンマーミルで粗砕した粗砕物を日本ニュ
ーマチック工業製l−5−DSS型粉砕機で、トナー粒
径を10.5g (コールタカウンターによる体積平均
径)まで粉砕した。このとき、衝突板は加速管のエアー
の流れ方向の90°、の面を基準にして10°の角度を
有する円錐状のものを用い、コンプレッサーエアー圧を
6.5kg/腸2、エアー量を6.5m3/winにコ
ントロールして粉砕した。
その後、第3図に示す表面処理装置にて回転速度が周速
130m/sec、ライナーとローグーのクリアランス
が5m履、装置の出口側の温度が40℃である条件下で
、トナーの改質処理を行った。
次にアルビネ社製ジクザク分級機で体積平均径的1iI
L、6.351L以下を個数平均で20%以下になるよ
うに微粉カットして分級仕上り品を得た。このとき、粉
砕機の能力は、26kg/hrであった。
実施例2及び3
表−1に示すように、高衝撃微粉工程におけるコンプレ
ッサーエアー圧及びエアー量、第2分級工程における粉
砕機能力を変えた以外は2、実施例1と全く同様にして
実施例2に係る分級仕上り品(トナー)を得た。
また、第1分級工程におけるトナー粒径、低衝撃処理工
程における回転速度、第2分級工程における粉砕機能力
を変えた以外は実施例1と全く同様にして実施例3に係
る分級仕上り品(トナー)を得た。
比較例1〜3
表−1に示す条件で低衝撃処理を全く行わない以外は、
実施例1と同様にして比較例1〜3に係る分級仕上り品
(トナー)を得た。
(以下余白)
次に、各実施例及び比較例のトナー6100重量部に、
アミンシリコンオイルで処理されたコロイダルシリカ0
.5重量部を添加し、回転羽根のある混合機で混合して
製品トナーとし、これを用いてキャノン製複写機NP3
525にて絵出しを行った。
以上の各実施例及び比較例に係るトナーを得るにあたっ
てのエネルギー効率及び投資効率を、各々、表−2及び
表−3に示した。更に、絵出しの結果を表−4に示した
。
(以下余白)
以上のように本発明の方法によれば、エネルギー効率、
投資効率とも大巾に向上し、かつ品質的には従来性われ
ている比較例2と同等のものが得られることが判る。[Industrial Field of Application] The present invention relates to a method for producing toner for developing electrostatic images in electrophotography, electrostatic recording, electrostatic printing, and the like. [Prior art] Conventionally, as an electrophotographic method, the U.S. Patent No. 2,297°89
Although many methods are known, as described in Japanese Patent Publication No. 1, Japanese Patent Publication No. 42-23810, Japanese Patent Publication No. 43-24748, etc., they generally utilize photoconductive substances and perform various methods. forming an electrical latent image on the photoreceptor by means;
The latent image is then developed using toner, and if necessary, the toner image is transferred to a transfer material such as paper, and then fixed by heat, pressure, solvent vapor, or the like to obtain a copy. Methods for charging the developing particles or developer include: ■Charge injection method, which makes toner conductive and injects charge; ■Dielectric polarization method, which uses dielectric polarization under an electric field; and ■Corona charger, etc., which charge charged ions. There is an ion flow charging method in which particles are exposed to a shower, and a triboelectric charging method in which the toner is charged by rubbing the toner against an object at a position where the frictional charging series is different from that of the toner. Among these methods, the triboelectric charging method is currently widely used because it can be adjusted to a sufficient amount of charge using insulating toner particles and is reproducible. Conventionally, as a method for producing this toner, a so-called pulverization method is generally used, in which toner raw materials are melt-kneaded, cooled and solidified, and then finely pulverized and classified to form a toner. In the case of the pulverization method, applying a high impact during the pulverization step has the effect that the pulverization processing capacity of the apparatus is high and that less energy is required per unit weight of toner. However, since triboelectric charges are used to charge the developer, subtle differences in the surface condition of the toner affect image quality, resulting in low image density and increased scattering around characters. This tends to be particularly noticeable under low temperature and low humidity conditions and high temperature and high humidity conditions. On the other hand, relatively low-impact pulverization yields high image density and solid images, but the processing speed of the pulverizer is significantly reduced and the energy required per unit weight of toner is excessive. There is a problem with this. If the impact force is weakened too much, this tendency becomes more pronounced, and phenomena such as an increase in toner consumption per image and an increase in fogging occur, which becomes an obstacle to efficiently obtaining good image quality. There is. [Problems to be Solved by the Invention] An object of the present invention is to provide a toner manufacturing method that overcomes the above-mentioned problems in the toner manufacturing method. That is,
An object of the present invention is to provide a method for producing toner that maximizes the crushing ability and energy efficiency of a crushing device, has high image density, has appropriate toner consumption, and has low fog. [Means and effects for solving the problems] The present invention comprises a process of melting and kneading toner raw materials such as a binder, a colorant, a charge control agent, etc., cooling and solidifying the mixture, and a process of finely pulverizing the kneaded product. In a method for producing toner for electrostatic charge development, which includes a classification step of classifying finely pulverized particles to obtain a desired particle size distribution, the pulverization step involves performing high-impact pulverization using a jet mill. Furthermore, apart from this pulverization step, the present invention is characterized in that it includes a modification step in which a comparatively lower impact than during pulverization is applied to the toner for a short period of time. FIG. 1 is a flow diagram of the method of the present invention. ``The pulverized raw material is sent to the first classification means together with the particles pulverized by the high-impact pulverization means, and is classified into coarse powder and fine powder. The coarse powder is sent to high impact means to be crushed and then sent to first classification means. The fine powder side (i.e., the pulverized product) is processed by a low-impact means and then classified by a second classification means, and is divided into a classified product having a particle size within the specified particle size and a classified fine powder consisting of particles with a particle size below the specified particle size. It will be done. The high-impact crushing means shown in the above flow diagram includes a second
A jet mill as shown in the figure is used, and the second-(a)
The figure shows a state diagram of pulverization by a jet mill. Powder from a hopper 23 passes through a conical throttle valve 24.
The high-pressure gas is ejected from the accelerating tube 25, collides with the opposing collision plate 2B, and is pulverized and discharged from the discharge port 27. Here, it is desirable to use a collision plate having a collision surface perpendicular to the acceleration tube or a collision plate substantially perpendicular to the acceleration tube, and the air pressure of the compressor is 5. It is desirable to use an air pressure of 5 kg/cm2 to 10 kg/cm2, which is the upper limit of the air pressure of the high-pressure gas conventionally used in jet mills or higher. Figure 2-(b) shows an example of an impingement plate that is substantially perpendicular to the air flow in the accelerator tube, preferably less than 20° with respect to the direction perpendicular to the air flow in the accelerator tube. is the impingement plate 26' having an angle of less than 10°. When a powder containing a resin with a relatively low softening point and glass transition point, such as toner, is pulverized with high impact using a perpendicular collision plate, a fused substance is formed on the collision plate due to local heat generation, resulting in continuous pulverization failure. However, in this case, if a collision plate 26' as shown in FIG. 2-(b) is used, highly efficient and high-impact crushing without the generation of fused materials becomes possible, especially in a high pressure region. Another method of high-impact grinding is to put the powder into a compressor air feed tank and introduce it together with the compressor air into an accelerator tube, which accelerates the powder at the same time as in a conventional jet mill. It is also possible to use means to further accelerate the powder by eliminating relatively low-pressure air near atmospheric pressure introduced into the tube. By pulverizing with such a high-impact pulverizing means, the pulverizing capacity and pulverizing efficiency of the pulverizer can be significantly improved compared to the conditions in terms of image quality.In particular, the smaller the particle size distribution, the more effective this effect is. becomes noticeable. The pulverizer system is effective both when directly reducing the particle size of several square centimeters to the desired toner particle size, and when pulverizing the raw material particle size to about 10 to 100 l to the desired toner particle size. On the other hand, examples of low-impact means include methods in which impact is applied between a rotating rotor, blade, or hammer and a liner facing it, or between a number of rotating pins. Figure 3 is a schematic cross-sectional view of a low-impact treatment device that combines a rotor and a liner.
is a casing, 33 is a liner, 34 is a blower blade, 35
36 is a rotor (with blades), 36 is an outlet, 37 is a product outlet, 38 is a return path, 39 is a raw material inlet, 40 is an inlet, 41 is a jacket, and 42 is a return closing valve. The circumferential speed of the rotating rotor is 10 to 200 ra/sec,
Preferably it is 30 to 150 m/sea, and the temperature is preferably from the glass transition point -5°C to the glass transition temperature -30°C. If it is too high, it will melt in the equipment, and if it is too low Both of these methods are undesirable from a practical point of view. Figure 4 shows the liner 3 of the low impact treatment equipment shown in Figure 3.
The distance between the liner 33 and the rotor 35, which indicates the positional relationship between the liner 33 and the rotating rotor 35, is defined by the two circumferences: the circumference obtained by connecting the tips of the protrusions toward the inner circumference of the liner, and the locus of the protrusions of the rotor. The same is true for blades or hammers instead of this rotor. Good results have been obtained with a spacing between the blade or hammer and the liner of about 0.5 to 10 mm, preferably 1 to 5III+. FIG. 5 is a schematic sectional view of a pin mill type low impact processing device. 51 is a casing, 52 is a pin, 53 is an inlet, 54 is a raw material input port, 55 is a circulation blower, 156 is a return path, 57 is a product extraction port, 58 is an outlet, 59 is a rotor, and 60 is a rotating shaft connected to the rotor. , 61 is a jacket. In this pin mill type, not only the minimum spacing between pins is 0.5 to 5cm, but also the maximum spacing is 5mm.
Good results have been obtained by setting the thickness to 10 mm or less, preferably 5!1 layers or less. In addition, in Figures 3 and 5, the type is recyclable in order to control the retention time, but if the retention time is short, the one-time type can be used, especially by controlling the wind speed and the length of the part that applies impact. Perform processing. Since the purpose of low-impact treatment is to modify the surface properties rather than spheroidization, the residence time in the device is extremely short and varies depending on the nature of the individual toner and the circumferential speed of the rotor, but e.g. Speed 200 proverbs/sea 0.01 seconds to 2
The time is approximately 0.01 seconds to 3 minutes depending on the conditions. Therefore, there is little effect on the shape and toner surface.
When crushed, the ratio of the short axis to long axis of the toner is 0.60 to 0.70.
However, when observing the state of the toner surface using a scanning electron microscope, no particularly large change was found, unlike spherical formation. If this low-impact processing time (residence time) is made too long than the above-mentioned time, phenomena such as increased toner consumption and increased fog due to decreased cleaning performance will be exacerbated, while if it is too short, the surface characteristics will not be improved. There is a tendency for the quality effect to become weaker and toner scattering in character areas to increase. Note that the circumferential speed of the low impact means is relatively high, 100
- In the region of -150 m/sec, some pulverization occurs and the particle size may shift, so a wind classifier is attached to the low-impact means, and the inlet particle size of the low-impact means is 1 to 2 times smaller than the outlet particle size.
It is also possible to process the material as coarsely as IL if the material has good pulverizability. In this case, the throughput and efficiency of the pulverizer in the previous step will be further improved. By performing this low-impact processing, the drop in density caused by high-impact pulverization in the previous process is covered, making it possible to obtain sharper images, and greatly improving both the processing capacity and energy efficiency of the equipment. be able to. [Example] Example 1 Styrene butyl acrylate-divinylbenzene copolymer (UW 300,000) 90 parts by weight Nigrosine
2 parts by weight Hiwax 200p (polyethylene wax made by Mitsui Petrochemicals) 4 parts by weight Magnetic material (specific surface area 8 m2/g) 60 parts by weight
The resulting kneaded material was cooled and crushed using a hammer mill using a 2+am screen. (Volume average diameter measured by Coulter counter). At this time, the collision plate used was a conical one having an angle of 10° with respect to the 90° plane of the air flow direction of the accelerator tube, the compressor air pressure was 6.5 kg/intestinal 2, and the air amount was The powder was pulverized at a controlled rate of 6.5 m3/win. Thereafter, the toner was modified using the surface treatment device shown in Fig. 3 under the conditions that the rotational speed was 130 m/sec, the clearance between the liner and the log was 5 m, and the temperature on the exit side of the device was 40°C. I did it. Next, the volume average diameter was 1iI using an Albine jig-zag classifier.
L, 6.351 L or less was cut into fine powder so that the number average was 20% or less to obtain a classified finished product. At this time, the capacity of the crusher was 26 kg/hr. Examples 2 and 3 As shown in Table 1, the examples were carried out in exactly the same manner as in Example 1, except that the compressor air pressure and air amount in the high-impact pulverization process and the crushing function in the second classification process were changed. A classified finished product (toner) according to No. 2 was obtained. In addition, the classified finished product according to Example 3 (toner ) was obtained. Comparative Examples 1 to 3 Except for not performing any low impact treatment under the conditions shown in Table-1,
Classified finished products (toner) according to Comparative Examples 1 to 3 were obtained in the same manner as in Example 1. (Left below) Next, to 6100 parts by weight of the toner of each example and comparative example,
Colloidal silica treated with amine silicone oil 0
.. 5 parts by weight was added and mixed in a mixer with rotating blades to obtain a product toner, which was used to produce a Canon copier NP3.
Illustrated at 525. The energy efficiency and investment efficiency in obtaining the toners according to each of the above examples and comparative examples are shown in Table 2 and Table 3, respectively. Furthermore, the results of the illustrations are shown in Table 4. (Hereinafter, blank space) As described above, according to the method of the present invention, energy efficiency,
It can be seen that the investment efficiency is greatly improved, and the quality is equivalent to that of Comparative Example 2, which is conventional.
本発明は、特に画質を考慮しない高衝撃のジェットミル
による微粉砕工程とは別に、低衝撃の表面改質処理工程
を組合せたものである。
このため、ジェットミルとしては装置1台当りの処理能
力とエネルギー効率の両方の面で著しく効率のよい粉砕
を可能にする。同時に、安価で低動力の低衝撃装置で短
時間の処理をすることにより画像濃度を濃く、かつトナ
ー消費量を適正にコントロールすることが可能になる。
ジェットミルの後工程として、このような低衝撃装置を
設置しても、従来の方法よりも必要な生産能力を得るの
に必要な投資は減少し、かつエネルギー効率はよくなる
。
また1本発明のもう一つの大きな効果は、粉砕工程にか
かわらず、この低衝撃処理の工程によって、現像装置と
のマツチングを図って、より高い濃度や1画像当りのト
ナー消費量及びカプリ等のコントロールが可能になった
ことである。The present invention combines a low-impact surface modification treatment process in addition to a high-impact pulverization process using a jet mill that does not take image quality into account. Therefore, as a jet mill, it is possible to achieve extremely efficient pulverization in terms of both throughput and energy efficiency per unit. At the same time, by performing processing in a short time using an inexpensive, low-power, low-impact device, it becomes possible to increase image density and appropriately control toner consumption. Installing such low-impact equipment as a downstream step to a jet mill also requires less investment and is more energy efficient than traditional methods to achieve the required production capacity. Another major effect of the present invention is that regardless of the pulverization process, this low-impact processing process allows for better matching with the developing device, resulting in higher density, toner consumption per image, and capri, etc. It has become possible to control it.
第1図は本発明のフローチャートであり、第2図は高衝
撃粉砕手段の一例を示し、第2−(a)図はその状態図
を示し、第2−(b)図は高衝撃粉砕手段の衝突板の一
例を示し、第3図はローターとライナーの組み合せによ
る低衝撃処理装置の概略断面図であり、第4図は第3図
に示した装置のライナーとローターの位置関係を示す図
であり、第5図はピンミルタイプの低衝撃処理装置の概
略断面図である。FIG. 1 is a flowchart of the present invention, FIG. 2 shows an example of a high-impact crushing means, FIG. 2-(a) shows its state diagram, and FIG. 2-(b) shows a high-impact crushing means. FIG. 3 is a schematic cross-sectional view of a low-impact processing device using a combination of a rotor and a liner, and FIG. 4 is a diagram showing the positional relationship between the liner and rotor of the device shown in FIG. 3. FIG. 5 is a schematic cross-sectional view of a pin mill type low impact processing device.
Claims (1)
を溶融混練し冷却固化する工程と、該混練物を微粉砕す
る工程と、微粉砕された粒子を分級して所望の粒度分布
を得る分級工程とを有する静電荷現像用トナーの製造方
法において、該微粉砕工程がジェットミルを用いて高衝
撃な微粉砕を行うものであり、更にこの微粉砕工程とは
別に、微粉砕時より比較的低い衝撃を短時間トナーに与
える改質工程を有することを特徴とする静電荷現像用ト
ナーの製造方法。A process of melt-kneading the binder, colorant, charge control agent, etc. that are raw materials for toner, cooling and solidifying it, a process of pulverizing the kneaded material, and a classification of the pulverized particles to obtain the desired particle size distribution. In the method for producing toner for electrostatic charge development, the pulverization step involves performing high-impact pulverization using a jet mill; A method for producing a toner for electrostatic charge development, comprising a modification step of applying a low impact to the toner for a short period of time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62307476A JPH0820762B2 (en) | 1987-12-07 | 1987-12-07 | Method of manufacturing toner for electrostatic charge development |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62307476A JPH0820762B2 (en) | 1987-12-07 | 1987-12-07 | Method of manufacturing toner for electrostatic charge development |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01149059A true JPH01149059A (en) | 1989-06-12 |
JPH0820762B2 JPH0820762B2 (en) | 1996-03-04 |
Family
ID=17969538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62307476A Expired - Lifetime JPH0820762B2 (en) | 1987-12-07 | 1987-12-07 | Method of manufacturing toner for electrostatic charge development |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0820762B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03109951A (en) * | 1989-09-22 | 1991-05-09 | Canon Inc | Collision type air flow grinder and grinding method |
JPH03178351A (en) * | 1989-12-07 | 1991-08-02 | Canon Inc | Impact type air jet grinder and grinding method |
JPH03287173A (en) * | 1990-04-02 | 1991-12-17 | Canon Inc | Production of electrostatically charged image developing toner |
US6355389B1 (en) | 1999-08-11 | 2002-03-12 | Ricoh Company, Ltd. | Full color image forming method, and toner and intermediate transfer material for the method |
-
1987
- 1987-12-07 JP JP62307476A patent/JPH0820762B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03109951A (en) * | 1989-09-22 | 1991-05-09 | Canon Inc | Collision type air flow grinder and grinding method |
JPH0651130B2 (en) * | 1989-09-22 | 1994-07-06 | キヤノン株式会社 | Collision type airflow crusher and crushing method |
JPH03178351A (en) * | 1989-12-07 | 1991-08-02 | Canon Inc | Impact type air jet grinder and grinding method |
JPH03287173A (en) * | 1990-04-02 | 1991-12-17 | Canon Inc | Production of electrostatically charged image developing toner |
US6355389B1 (en) | 1999-08-11 | 2002-03-12 | Ricoh Company, Ltd. | Full color image forming method, and toner and intermediate transfer material for the method |
US6562538B2 (en) | 1999-08-11 | 2003-05-13 | Ricoh Company, Ltd | Full color image forming method, and toner and intermediate transfer material for the method |
US6638676B2 (en) | 1999-08-11 | 2003-10-28 | Ricoh Company, Ltd. | Full color image forming method, and toner and intermediate transfer material for the method |
Also Published As
Publication number | Publication date |
---|---|
JPH0820762B2 (en) | 1996-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4784333A (en) | Process for producing toner powder | |
US5358183A (en) | Pneumatic pulverizer and process for producing toner | |
US4782001A (en) | Process for producing toner for developing electrostatic images and apparatus therefor | |
US5087546A (en) | Device for continuously mixing powder and process for producing toner for developing electrostatic image | |
JPH01149059A (en) | Manufacture of electrostatic charge image developing toner | |
JPH0549349B2 (en) | ||
EP0605169B1 (en) | Method for producing toner for electrostatic development | |
JP2002131979A (en) | Method for manufacturing toner | |
JPH0526531B2 (en) | ||
JPS6316978B2 (en) | ||
JPH0689045A (en) | Production of toner | |
JP3094676B2 (en) | Magnetic toner | |
JP2993624B2 (en) | Method for manufacturing color toner | |
US5178460A (en) | Device for continuously mixing powder and process for producing toner for developing electrostatic image | |
JP2654989B2 (en) | Powder grinding method | |
JP2759499B2 (en) | Powder grinding method | |
JPH0934175A (en) | Method for making electrostatic charge image developing toner spherical | |
JPH08314191A (en) | Production of electrostatic charge image developing toner | |
JP2654569B2 (en) | Method for producing toner for developing electrostatic images | |
JPS63101861A (en) | Method and device for manufacturing electrostatically charged image developing toner | |
JPH0980805A (en) | Production of electrophotographic toner | |
JP5029392B2 (en) | Method for reducing residual monomer in binder resin for toner and method for producing toner | |
JPH09197712A (en) | Production of electrostatic charge image developing toner | |
JPH0980808A (en) | Production of electrostatic latent image developing toner | |
JPS61217053A (en) | Production of electrophotographic toner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |