JPH0472226B2 - - Google Patents

Info

Publication number
JPH0472226B2
JPH0472226B2 JP57135564A JP13556482A JPH0472226B2 JP H0472226 B2 JPH0472226 B2 JP H0472226B2 JP 57135564 A JP57135564 A JP 57135564A JP 13556482 A JP13556482 A JP 13556482A JP H0472226 B2 JPH0472226 B2 JP H0472226B2
Authority
JP
Japan
Prior art keywords
particle size
toner
particles
pulverizing
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57135564A
Other languages
Japanese (ja)
Other versions
JPS5924855A (en
Inventor
Koichi Takashima
Takeshi Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP57135564A priority Critical patent/JPS5924855A/en
Publication of JPS5924855A publication Critical patent/JPS5924855A/en
Publication of JPH0472226B2 publication Critical patent/JPH0472226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0808Preparation methods by dry mixing the toner components in solid or softened state
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は、電子写真用磁性粒子の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnetic particles for electrophotography.

従来、電子写真法では一般には光導電性物質か
らなる感光体上に形成された静電荷像を現像する
ために種々の現像剤が利用されている。
Conventionally, in electrophotography, various developers have been used to develop an electrostatic image formed on a photoreceptor made of a photoconductive material.

液体現像剤を利用すれば、静電荷像の解像力に
すぐれたきめの細い複写像を得ることができる。
しかし有機溶剤を使用することは衛生上好ましく
なく、又取扱いに不便なため現在はあまり使用さ
れていない。
By using a liquid developer, it is possible to obtain a fine-grained copy image with excellent resolution of an electrostatic charge image.
However, the use of organic solvents is not sanitary and is inconvenient to handle, so they are not used much at present.

乾式現像剤は、解像力に関しては液体現像剤に
劣るものの、液体現像剤の上記欠点を補い、複写
が高速に出来る等の利点があるため、今日では複
写機に使用される現像剤の主流となつている。さ
らに近年、現像剤の寿命が実質上無制限で、又現
像機の機構が簡単になるなど複写機の維持性を向
上させる利点を有する一成分磁性トナーの開発が
盛んとなつている。
Although dry developers are inferior to liquid developers in terms of resolution, they compensate for the above-mentioned drawbacks of liquid developers and have advantages such as high-speed copying, so they are now the mainstream developer used in copying machines. ing. Furthermore, in recent years, there has been active development of one-component magnetic toners which have the advantage of improving the maintainability of copying machines, such as having a virtually unlimited developer life and simplifying the mechanism of the developing machine.

従来の二成分トナーの場合と同様に、一成分磁
性トナーは、少なくとも結着樹脂と磁性粉とを含
む樹脂組成物を熔融混練後ジエツト気流中で粒子
同志を衝突させて粉砕して製造される。しかしこ
うして製造された磁性トナーは、二成分トナーよ
りも粒度分布が広くなり、複写機に使用するため
には分級しなければならず又、分級後の収量も少
なく製造コストが上昇する。
As in the case of conventional two-component toner, one-component magnetic toner is produced by melt-kneading a resin composition containing at least a binder resin and magnetic powder, and then crushing the resin composition by colliding the particles with each other in a jet air stream. . However, the magnetic toner produced in this manner has a wider particle size distribution than a two-component toner, and must be classified before being used in a copying machine, and the yield after classification is also low, increasing manufacturing costs.

上記のような、いわゆるジエツト粉砕によつて
得られる磁性トナーについては、特に十分な圧力
定着性を与える樹脂組成では磁性トナーの表面の
凹凸が激しくそのためトナーの流動性が悪くな
り、使用上好ましくない。
Regarding the magnetic toner obtained by so-called jet pulverization as described above, especially when the resin composition provides sufficient pressure fixing properties, the surface of the magnetic toner has severe unevenness, which deteriorates the fluidity of the toner, making it undesirable for use. .

トナーの流動性をあげるために、トナーの表面
形状を球形あるいは球形に近い形にする方法とし
てスプレードライ法が公知である。しかしスプレ
ードライ法では溶剤を使用するため爆発の危険が
あり、又溶剤を回収するための装置が必要となる
ので、製造設備が大型で高価となる。トナーの表
面形状を球形化する別の方法として、粉砕したト
ナーを熱風炉で処理し、トナー表面を熔融して球
形化する方法がある。この方法ではトナーを製造
するために粉砕後さらに熱風炉で処理するので、
製造工程が増加し、さらに熱風処理による造粒の
ため粗大粒子が生成する。従つてこの粗大粒子除
去のためにトナーを新たに分級しなければならな
い。
A spray drying method is known as a method of making the surface of the toner spherical or nearly spherical in order to improve the fluidity of the toner. However, since the spray drying method uses a solvent, there is a risk of explosion, and since a device for recovering the solvent is required, the manufacturing equipment is large and expensive. Another method for making the surface shape of toner spherical is to treat pulverized toner in a hot air oven to melt the toner surface and make it spherical. In this method, to produce toner, it is further processed in a hot air oven after being crushed.
The number of manufacturing steps increases, and coarse particles are generated due to granulation by hot air treatment. Therefore, the toner must be reclassified to remove these coarse particles.

また磁性微粒子を含む樹脂組成物を熔融混練
し、冷却後平均粒径を約10〜50ミクロンに粉砕す
る場合、ジエツト粉砕法では、平均粒径が2〜3
ミクロン以下の微粒子とともに、平均粒径150ミ
クロン以上の未粉砕粗大粒子が同時に存在し、所
定の粒径のものはごく少量で得られるにすぎな
い。この不利な現象の発生を粉砕条件の制御だけ
で防止することは非常に困難である。
In addition, when a resin composition containing magnetic fine particles is melt-kneaded and pulverized after cooling to an average particle size of about 10 to 50 microns, the jet pulverization method has an average particle size of 2 to 3 microns.
Unground coarse particles with an average particle size of 150 microns or more are present together with fine particles of less than a micron, and only a small amount of particles of a predetermined size can be obtained. It is very difficult to prevent the occurrence of this disadvantageous phenomenon simply by controlling the grinding conditions.

このように、磁性微粒子を含む樹脂組成物を微
粒化するための安全かつ効率よい製造方法の出現
が待望されている。
Thus, the emergence of a safe and efficient manufacturing method for atomizing resin compositions containing magnetic fine particles has been awaited.

従つて、本発明の目的は、上記のような欠点を
除去し、特殊な粉砕方法によつて現像剤組成物を
高収率かつ高効率に製造することのできる電子写
真用磁性粒子の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for producing magnetic particles for electrophotography, which eliminates the above-mentioned drawbacks and can produce a developer composition with high yield and efficiency using a special pulverization method. Our goal is to provide the following.

さらに本発明の他の目的は現像剤の形状、表面
構造を制御し粉体流動性の良好な現像剤組成物を
製造することのできる電子写真用磁性粒子の製造
方法を提供することにある。
Another object of the present invention is to provide a method for producing magnetic particles for electrophotography, which can control the shape and surface structure of the developer and produce a developer composition with good powder fluidity.

本発明の更に他の目的は、現像剤の形状、表面
構造を制御し、現像性、転写性の良好な電子写真
用磁性粒子の製造方法を提供することにある。
Still another object of the present invention is to provide a method for producing electrophotographic magnetic particles with good developability and transferability by controlling the shape and surface structure of a developer.

本発明の更に他の目的は、特殊な粉砕方法によ
つて現像剤の形状、表面構造を調整し、反復使
用、環境変化に対して安定な電子写真用磁性粒子
の製造方法を提供することにある。
Still another object of the present invention is to provide a method for producing electrophotographic magnetic particles that are stable against repeated use and environmental changes by adjusting the shape and surface structure of a developer using a special pulverization method. be.

本発明者等は、少なくとも結着樹脂と40重量部
以上の磁性粉とからなる溶融混練物からなる樹脂
組成物を微粉化する方法を探究した結果、回転羽
根を備えた微粉砕機を特定の条件下で使用するこ
とによつて効率よく、かつ優れた粉体特性を持つ
電子写真用磁性粒子を製造することができること
を見出した。
The present inventors investigated a method of pulverizing a resin composition consisting of a melt-kneaded material consisting of at least a binder resin and 40 parts by weight or more of magnetic powder, and as a result, the present inventors developed a pulverizer equipped with rotating blades using a specific pulverizer. It has been found that electrophotographic magnetic particles having excellent powder characteristics can be efficiently produced by using the present invention under the following conditions.

すなわち、少なくとも結着樹脂と磁性粉とから
なる混練物を粉砕する工程を有する電子写真用磁
性粒子の製造方法において、結着樹脂と該混練物
100重量部中少なくとも40重量部以上の磁性粉を
溶融混練する工程、及び、混練物の投入口、複数
の仕切り板により小粉砕室に分割され、かつこの
小粉砕室に軸支されて回転する粉砕羽根を設けて
なる粉砕室及び粉砕物を取出す排出口を備えてな
る粉砕装置により、上記混練物を該粉砕羽根及び
粉砕室内壁面に衝突させて粉砕する工程とからな
り、平均粒径10乃至50ミクロンの範囲において、
得られる磁性粒子の累積重量分率が0.9に相当す
る平均粒径d90と累積重量分率が0.1に相当する平
均粒径d10の比(d90/d10)で表わされる粒度分布
が4.2以下であることを特徴とする電子写真用磁
性粒子の製造方法により、本発明の前記の目的が
始めて達成される。
That is, in a method for producing magnetic particles for electrophotography, which includes the step of pulverizing a kneaded material consisting of at least a binder resin and a magnetic powder, the binder resin and the kneaded material are
A step of melting and kneading at least 40 parts by weight of magnetic powder out of 100 parts by weight, and dividing the kneaded material into a small grinding chamber by an inlet and a plurality of partition plates, and rotating supported by the small grinding chamber. A process of crushing the kneaded material by colliding it with the crushing blades and the wall surface of the crushing chamber using a crushing device equipped with a crushing chamber equipped with crushing blades and a discharge port for taking out the crushed material. In the range of 50 microns,
The particle size distribution expressed by the ratio (d 90 /d 10 ) of the average particle diameter d 90 corresponding to a cumulative weight fraction of 0.9 to the average particle diameter d 10 corresponding to a cumulative weight fraction of 0.1 of the magnetic particles obtained is 4.2. The above-mentioned object of the present invention is achieved for the first time by a method for producing magnetic particles for electrophotography, which is characterized as follows.

以下本発明の電子写真用磁性粒子の製造方法で
使用する粉砕装置を第1図により説明する。
The crushing apparatus used in the method for producing electrophotographic magnetic particles of the present invention will be explained below with reference to FIG.

少なくとも結着樹脂と40重量部以上の磁性粉と
からなる溶融混練物の投入口及び排出口を備えた
ケーシング6の内部は入口渦巻室9、粉砕室8及
び出口渦巻室10に分かれている。粉砕室8は仕
切円板5により小粉砕室に分割されている。小粉
砕室の各々には仕切り板に接触し回転するロータ
ー2の円周に回転羽根4が設けられ、この羽根の
先端部とケーシング内壁面の多数の溝を有するラ
イナー7との間は粉砕物の流路を形成している。
回転軸の粉砕物入口側にはローターに接して投入
された被粉砕物(少なくとも結着樹脂と40重量部
以上の磁性粉とからなる溶融混練物)を均一に粉
砕室内に分散させるためのデイストリビユーター
3が設けられている。
The interior of the casing 6, which is provided with an inlet and an outlet for a melt-kneaded product made of at least a binder resin and 40 parts by weight or more of magnetic powder, is divided into an inlet volute chamber 9, a crushing chamber 8, and an outlet volute chamber 10. The grinding chamber 8 is divided into small grinding chambers by a partition disk 5. In each of the small crushing chambers, a rotating blade 4 is provided around the circumference of a rotor 2 that rotates in contact with a partition plate, and between the tip of this blade and a liner 7 having a large number of grooves on the inner wall surface of the casing, the crushed material is It forms a flow path.
On the inlet side of the pulverized material of the rotating shaft, there is a device for uniformly dispersing the material to be pulverized (a molten kneaded material consisting of at least a binder resin and 40 parts by weight or more of magnetic powder) that is put in contact with the rotor into the pulverizing chamber. A striviewer 3 is provided.

この装置ではローターが高速回転することによ
つて機内に激しい渦流と圧力振動が発生する。原
料は空気と共に投入口から吸込まれて入口渦巻室
9で回転軸1のまわりに旋回運動を与えられデイ
ストリビユーター3によつて加速され且つ粉砕室
8へ均等に配分される。続いて激しい空気の渦流
によつてブレード回転羽根4及びライナー(内壁
面)7によつて粉砕され、原料はシヨートバスす
ることなく出口渦巻室10より空気と共に排出さ
れる。
In this device, the rotor rotates at high speed, which generates intense vortices and pressure vibrations inside the machine. The raw material is sucked in through the input port together with air, given a swirling motion around the rotating shaft 1 in the inlet swirl chamber 9, accelerated by the distributor 3, and evenly distributed to the grinding chamber 8. Subsequently, the raw material is pulverized by the blade rotating impeller 4 and the liner (inner wall surface) 7 due to the violent swirling of air, and the raw material is discharged from the outlet volute chamber 10 together with air without being subjected to a shot bath.

従来のジエツト気流を利用した粉砕法(ジエツ
ト粉砕法)では、大部分の粉砕は粒子同志の衝突
によつて行われる。一方、回転羽根あるいは回転
針を利用した粉砕法(機械粉砕法)では、大部分
の粉砕は粒子と回転羽根及び粉砕機壁面との衝突
によつて粉砕される。この粉砕形態の違いが得ら
れた微粒子の粒度分布や粉体特性、あるいはさら
に電気特性の違いに表われてくるものと考えられ
る。
In the conventional pulverization method using jet airflow (jet pulverization method), most of the pulverization is performed by collisions between particles. On the other hand, in a pulverization method using rotating blades or rotating needles (mechanical pulverization method), most of the pulverization is caused by collisions between particles and the rotating blades and the wall surface of the pulverizer. It is thought that this difference in the pulverization form is reflected in the particle size distribution and powder properties of the obtained fine particles, or even in the electrical properties.

本発明の機械粉砕法によつて製造される現像剤
組成物の粒度及び粒度分布は、回転羽根の回転
数、樹脂組成物の供給量及び回転羽根と粉砕機の
外壁との間隔を変えることによつて制御すること
ができる。すなわち、本発明者等は、本願明細書
の特許請求の範囲に定義した粉砕装置を用いた機
械粉砕法を採用することにより種々の電子写真用
磁性粒子について粒度分布を約2.6〜4.2の範囲
に、又平均粒径を10〜50ミクロンの範囲に制御す
ることができることを確認した。ここで粒度分布
はマイクロトラツク粒度分析計(リーズ アンド
ノースラツプ社製)で粒度を測定し全粒子に対し
微粉からの累積重量分率が0.9に相当する平均粒
径d90と微粉からの累積重量分率が0.1に相当する
平均粒径d10との比d90/d10で示される。ジエツト
粉砕方式においては粒度分布を上記範囲内に治め
ることは非常に困難である。樹脂組成物中の磁性
微粒子の含有量が、少なくとも結着樹脂と磁性粉
とからなる混練物100重量部中40重量%以上とな
る場合には、粒度分布が広くなる傾向がより顕著
になるため、本発明の機械粉砕方式が非常に有効
となる。
The particle size and particle size distribution of the developer composition produced by the mechanical pulverization method of the present invention can be determined by changing the rotation speed of the rotary blade, the supply amount of the resin composition, and the distance between the rotary blade and the outer wall of the pulverizer. Therefore, it can be controlled. That is, the present inventors have achieved a particle size distribution of various electrophotographic magnetic particles in the range of approximately 2.6 to 4.2 by employing a mechanical pulverization method using a pulverizer as defined in the claims of the present specification. It was also confirmed that the average particle size could be controlled within the range of 10 to 50 microns. Here, the particle size distribution is determined by measuring the particle size using a Microtrack particle size analyzer (manufactured by Leeds & Northrup Co., Ltd.), and calculating the average particle size d 90 , which corresponds to a cumulative weight fraction of fine powder of 0.9 to all particles, and the cumulative weight fraction of fine powder. It is expressed as the ratio d 90 /d 10 with respect to the average particle diameter d 10 corresponding to a weight fraction of 0.1. In the jet pulverization method, it is very difficult to control the particle size distribution within the above range. When the content of magnetic fine particles in the resin composition is 40% by weight or more based on 100 parts by weight of a kneaded material consisting of at least a binder resin and magnetic powder, the particle size distribution tends to become broader. , the mechanical crushing method of the present invention is very effective.

粉砕された電子写真用磁性粒子を複写機等に使
用する場合、粉砕後さらに分級を必要とする場合
がある。本発明の機械粉砕方式を利用すれば、ジ
エツト粉砕方式を利用する場合より粒度分布が狭
くなるので、分級後の現像剤組成物の得率はジエ
ツト粉砕方式を利用する場合よりも大きく、分級
度が同じ平均粒度、同じ粒度分布の場合で比較す
れば有利であることは自明である。
When pulverized electrophotographic magnetic particles are used in a copying machine or the like, further classification may be required after pulverization. If the mechanical pulverization method of the present invention is used, the particle size distribution will be narrower than when the jet pulverization method is used, so the yield of the developer composition after classification will be higher than when the jet pulverization method is used. It is obvious that it is advantageous to compare cases where the particles have the same average particle size and the same particle size distribution.

同じ樹脂組成物に対して機械粉砕方式を適用す
る場合とジエツト粉砕方式を適用する場合との間
に粒度分布に相違が見られることは、粒子の粉砕
され方が二つの粉砕方式の間で違いがあることを
意味している。それぞれの粉砕方式の粒子粉砕の
様子を第2図及び第3図に示す。
The difference in particle size distribution between the mechanical pulverization method and the jet pulverization method for the same resin composition is due to the difference in the way the particles are pulverized between the two pulverization methods. It means that there is. The state of particle pulverization by each pulverization method is shown in FIGS. 2 and 3.

第2図はジエツト粉砕方式における粒子の粉砕
様式を模式的に示したものである。粒子11は一
点鎖線で示した粉砕線に沿つて粉砕される。主と
して粒子の外側から粉砕線に沿つて粉砕される。
従つてB′B′あるいはC′C′での粉砕の方がA′A′の
粉砕よりも優先的に発生する。
FIG. 2 schematically shows the manner in which particles are pulverized in the jet pulverization method. The particles 11 are pulverized along the pulverization line shown by the dashed line. The particles are crushed mainly from the outside along the crushing lines.
Therefore, crushing at B′B′ or C′C′ occurs preferentially over crushing at A′A′.

第3図は機械粉砕方式における粒子の粉砕様式
を模式的に示したものである。粒子11は第2図
の場合と同様一点鎖線で示した粉砕線に沿つて粉
砕される。太い鎖線で示すAA次いでBBのよう
に粉砕初期には比較的大粒径粒子の粉砕が発生す
る。次にやや小粒径となつた粒子が細い一点鎖線
に沿つて順次粉砕される。すなわちジエツト粉砕
方式の場合には粒子の周辺から小片となつて順次
粉砕されるのに対し、機械粉砕の場合には初期の
粉砕はジエツト粉砕の場合よりも大きな粒子同志
に粉砕され、この粉砕粒子がさらに幾度か粉砕さ
れて分割され、適度な粒径になる。
FIG. 3 schematically shows the particle pulverization mode in the mechanical pulverization method. The particles 11 are pulverized along the pulverization line shown by the dashed line as in the case of FIG. At the initial stage of crushing, comparatively large particles are crushed, as shown by the thick chain lines AA and then BB. Next, the particles, which have become slightly smaller in size, are sequentially crushed along the thin dot-dash line. In other words, in the case of jet pulverization, the particles are sequentially pulverized into small pieces starting from the periphery, whereas in the case of mechanical pulverization, the initial pulverization is pulverized into larger particles than in the case of jet pulverization, and these pulverized particles is further crushed and divided several times to obtain a suitable particle size.

従つて、機械粉砕方式を利用することによつて
粒度分布が狭くなるという以外にさらに新たな利
点が考えられる。すなわち、上記のような粉砕機
構によれば、機械粉砕方式の場合、粉砕された粒
子間では組成の片寄りが少なくなる。そのため粉
砕粒子間における粉体特性、電気特性さらに粒子
間の磁気特性等の片寄りが少なくなる。従つて、
従来一成分磁性トナーにおいて度々見られていた
トナーの選択現像による複写画像の劣化を防止す
ることが出来、長期間に亘つて安定した画像の得
られる一成分現像剤を提供することが可能となつ
た。
Therefore, it is conceivable that the use of mechanical pulverization provides new advantages in addition to narrowing the particle size distribution. That is, according to the above-described crushing mechanism, in the case of a mechanical crushing method, the compositional deviation among the crushed particles is reduced. Therefore, deviations in powder properties, electrical properties, and magnetic properties between particles among the pulverized particles are reduced. Therefore,
It is possible to prevent the deterioration of copied images due to selective development of toner, which has often been seen with conventional single-component magnetic toners, and it is now possible to provide a single-component developer that provides stable images over a long period of time. Ta.

本発明の機械粉砕方式を利用する場合の新たな
利点としては、現像剤組成物の粉体流動性がジエ
ツト粉砕方式によつて得られたものより良好であ
ることである。本発明者等は電子顕微鏡観察によ
つてその原因を見出した。本発明の機械粉砕方式
によつて製造されたトナーの形状はジエツト粉砕
方式で製造されたトナーと同様に不定形である
が、表面の形状はジエツト粉砕方式によつて製造
されたトナーよりも凹凸が少なくなめらかであ
る。即ち、本発明の機械粉砕方式によつて製造さ
れたトナーの形状は不定形でかつ表面状態は滑ら
かである。トナーの形状が不定形であるにもかか
わらず表面状態が滑らかなために、粉砕後のトナ
ーに、例えば球形化処理による流動性改善を行な
わなくてもトナーの粉砕流動性が改善される。粉
体流動性を示す指標として次式 C=100(ρTAP−ρAPP)/ρTAP(%) (式中、ρTAPは粉体のタツプ密度、ρAPPは粉体
の見掛密度である。) で定義される粉体圧縮率Cを採用すると、本発明
方法で使用する粉砕装置により粉砕した現像剤
は、粉体圧縮率Cが従来のそれに比較し、3〜7
%低くなり、粉体流動性が良好なものとなる。
An additional advantage of utilizing the mechanical grinding system of the present invention is that the powder flow properties of the developer composition are better than those obtained with the jet grinding system. The inventors discovered the cause through electron microscopic observation. The shape of the toner produced by the mechanical pulverization method of the present invention is irregular, similar to the toner produced by the jet pulverization method, but the surface shape is more uneven than that of the toner produced by the jet pulverization method. It is smooth with little turbulence. That is, the toner produced by the mechanical pulverization method of the present invention has an irregular shape and a smooth surface. Since the surface condition of the toner is smooth even though the shape of the toner is irregular, the pulverized fluidity of the toner can be improved even if the pulverized toner is not subjected to, for example, spheroidization treatment to improve its fluidity. As an indicator of powder fluidity, the following formula C = 100 (ρ TAP - ρ APP ) / ρ TAP (%) (where ρ TAP is the tap density of the powder, and ρ APP is the apparent density of the powder. ), the developer pulverized by the pulverizer used in the method of the present invention has a powder compressibility C of 3 to 7 compared to that of the conventional method.
%, and the powder fluidity becomes good.

本発明の機械粉砕方式を利用すれば、このよう
に流動性が改良されるため粉砕後のトナーの球形
化処理が不要となる。
If the mechanical pulverization method of the present invention is used, the fluidity is improved in this way, so that it becomes unnecessary to spheroidize the toner after pulverization.

また、本発明の機械粉砕方式は熱定着用現像剤
組成物及び加圧定着用現像剤組成物のいずれにも
使用することができる。本発明による電子写真用
磁性粒子の製造方法に使用される結着樹脂は特に
限定されるものではない。結着樹脂成分として、
互に相溶性の悪い結着樹脂を含有する樹脂状物の
粉砕には特に有効である。互に相溶性の悪い組合
わせとして、例えばポリエチレンワツクス、ポリ
プロピレンワツクスあるいはその他のワツクス状
材料に対するスチレン系、アクリル系樹脂あるい
はそれらの共重合体材料、エポキシ系樹脂或いは
ポリエステル系樹脂等の組合せがあるが、これら
はごくわずかの例に過ぎず、一般には二つの樹脂
の溶解性パラメータを夫々δ1,δ2とすると、δ1
δ2の差の絶対値ΔδがΔδ>0.5を満たす樹脂の組合
わせである。溶解性パラメータの値としては「化
学便覧応用編改訂2版(1973年)」あるいは
「Polymer handbook 2nd Ed. John wiley &
Sons」を参照されたい。
Furthermore, the mechanical pulverization method of the present invention can be used for both heat fixing developer compositions and pressure fixing developer compositions. The binder resin used in the method for producing magnetic particles for electrophotography according to the present invention is not particularly limited. As a binder resin component,
It is particularly effective for pulverizing resinous materials containing binder resins that are poorly compatible with each other. Examples of combinations that are incompatible with each other include combinations of polyethylene wax, polypropylene wax, or other wax-like materials with styrene resins, acrylic resins, copolymer materials thereof, epoxy resins, or polyester resins. However, these are just a few examples, and in general, if the solubility parameters of two resins are δ 1 and δ 2 , respectively, then the absolute value Δδ of the difference between δ 1 and δ 2 satisfies Δδ>0.5. It is a combination of The solubility parameter values can be found in "Chemistry Handbook Applied Edition 2nd Edition (1973)" or "Polymer Handbook 2nd Ed. John wiley &
Please refer to ``Sons''.

さらに本発明の電子写真用磁性粒子の製造方法
によれば、樹脂組成物が磁性微粒子を少なくとも
40重量部、好ましくは50重量部以上含む場合に、
ジエツト粉砕方式よりも特にすぐれた性能が発揮
される。樹脂組成物に含まれる磁性微粒子として
は感磁性を示すあらゆる材料が用いられる。例え
ば、鉄、ニツケル、コバルト等の金属、金属酸化
物、合金等である。現像剤組成物を磁性トナーと
して用いる場合、四三酸化鉄、三二酸化鉄、コバ
ルト添加酸化鉄、フエライト、ニツケル粉末等が
用いられる。なお磁性微粉末の粒径及び形状は現
像剤組成物の粒径やその特性に応じて決定される
のでここでは特に限定されない。
Furthermore, according to the method for producing magnetic particles for electrophotography of the present invention, the resin composition contains at least magnetic fine particles.
When containing 40 parts by weight, preferably 50 parts by weight or more,
Particularly superior performance is demonstrated compared to the jet grinding method. Any material exhibiting magnetism can be used as the magnetic fine particles contained in the resin composition. Examples include metals such as iron, nickel, and cobalt, metal oxides, and alloys. When the developer composition is used as a magnetic toner, triiron tetroxide, iron sesquioxide, cobalt-added iron oxide, ferrite, nickel powder, etc. are used. Note that the particle size and shape of the magnetic fine powder are determined depending on the particle size of the developer composition and its characteristics, and are not particularly limited here.

本発明方法に使用する粉砕装置によつても、樹
脂組成物によつては一回の粉砕で磁性トナーとし
て使用できる平均粒径にまで粉砕できないことが
ある。この場合には所望の平均粒径になるまで幾
度でも本発明方法において使用する粉砕装置を作
動させることが可能である。この理由は、機械粉
砕方式においては限界粉砕粒径を例えば2〜3ミ
クロンに設定することが可能であり、従つて2回
以上粉砕機にかけても2〜3ミクロンの微粒子の
数が1回目の粉砕より増加することはほとんどな
く、2回目以後の粉砕では粉砕未了の粗大粒子が
順次粉砕されて行くためである。
Even with the pulverizing apparatus used in the method of the present invention, some resin compositions may not be pulverized in one pulverization process to an average particle size that can be used as a magnetic toner. In this case, it is possible to operate the grinding device used in the method of the invention as many times as necessary until the desired average particle size is achieved. The reason for this is that in the mechanical pulverization method, it is possible to set the limit pulverized particle size to, for example, 2 to 3 microns, so even if the pulverizer is used more than once, the number of 2 to 3 micron particles will be smaller than the number of 2 to 3 micron particles in the first pulverization. There is almost no increase in the number of particles, because in the second and subsequent pulverization, unpulverized coarse particles are sequentially pulverized.

本発明方法に使用する粉砕装置では、装置内に
室温の空気を循環して行なうことができるが、空
気、被粉砕物あるいは粉砕物と回転羽根や壁面と
の摩擦により粉砕機が発熱するため冷却空気を循
環するのが好ましい。循環空気の温度は粉砕され
る樹脂状組成物により異なり広い範囲で適当な温
度が選択される。
In the crushing apparatus used in the method of the present invention, air at room temperature can be circulated within the apparatus, but the crusher generates heat due to friction between the air, the material to be crushed, or the material to be crushed, and the rotating blades or walls, so cooling is not possible. Preferably, the air is circulated. The temperature of the circulating air varies depending on the resinous composition to be pulverized, and an appropriate temperature can be selected within a wide range.

発熱が激しい系では、必要に応じて樹脂組成物
を、例えば液体窒素であらかじめ冷却し、空気の
代わりに液体窒素から気化直後の窒素気体を循環
させて粉砕することも可能である。
In a system that generates a lot of heat, it is possible to pre-cool the resin composition, for example, with liquid nitrogen, as necessary, and circulate nitrogen gas immediately after vaporization from the liquid nitrogen instead of air to crush it.

本発明方法に使用する粉砕装置によれば、粉砕
後の分級が不必要な粒度分布に制御することが可
能であるが、必要に応じて該粉砕装置による粉砕
後分級して現像剤組成物を製造しても良い。又該
粉砕装置による粉砕後、あるいは粉砕・分級後、
必要に応じてトナー粒子と共に外部添加剤を混合
しても良い。外部添加剤は現像剤組成物の流動
性、現像、転写性、保存安定性をより以上に改善
するため、或いは光導電体表面へのフイルミング
の防止、トナーのクリーニング性の向上のために
使用されるものであり、本発明方法の欠点を補う
ためのものではない。
According to the pulverizing device used in the method of the present invention, it is possible to control the particle size distribution so that classification after pulverization is unnecessary, but if necessary, it is possible to classify the developer composition after pulverizing by the pulverizing device. May be manufactured. After pulverization by the pulverizer, or after pulverization and classification,
External additives may be mixed with the toner particles if necessary. External additives are used to further improve the fluidity, development, transferability, and storage stability of the developer composition, to prevent filming on the photoconductor surface, and to improve the cleaning properties of the toner. This is not intended to compensate for the drawbacks of the method of the present invention.

前述のように、本発明の機械粉砕方法により得
られる現像剤粒子は、比較的なめらかな凹凸のあ
る不定形表面構造を有する。そのため従来のジエ
ツト粉砕粒子、或いはスプレイドライ法、直接重
合法等で得られる球形粒子に比べて外部剤添加剤
を混合する際、現像剤粒子表面に外部添加剤がク
ーロン力、フアン・デル・ワールス力等により有
効に、かつ安定して保持されやすいといつた利点
をも有する。
As described above, the developer particles obtained by the mechanical pulverization method of the present invention have a relatively smooth irregular surface structure with irregularities. Therefore, compared to conventional jet-pulverized particles or spherical particles obtained by spray drying, direct polymerization, etc., when external additives are mixed, the external additives are exposed to the Coulomb force and Van der Waals force on the developer particle surface. It also has the advantage of being easily held effectively and stably by force.

外部添加剤としては、長鎖脂肪酸及びその誘導
体、フツ素樹脂等の樹脂微粉末、酸化アルミニウ
ム、酸化チタン、シリカ、カーボンブラツク等の
無機微粉末を使用する事が出来る。
As external additives, long-chain fatty acids and derivatives thereof, resin fine powders such as fluororesins, and inorganic fine powders such as aluminum oxide, titanium oxide, silica, and carbon black can be used.

なお、本発明で使用する粉砕装置によつて製造
された現像剤組成物は、必ずしも一種類のみで構
成される必要はなく、一種以上の現像剤の組成物
であつても良い。又二種以上の現像剤組成物で構
成される場合においては、これら現像剤組成物が
すべて本発明による方法で製造されたものである
必要はなく、二種以上のうち少なくとも一つが本
発明による方法で製造された現像剤組成物として
も有効である。
Note that the developer composition produced by the crushing device used in the present invention does not necessarily have to be composed of only one type of developer, and may be a composition of more than one type of developer. In addition, in the case where the developer composition is composed of two or more kinds of developer compositions, it is not necessary that all of these developer compositions are produced by the method according to the present invention, and at least one of the two or more kinds is produced according to the method according to the present invention. It is also effective as a developer composition produced by the method.

代表的な使用形態としては磁性トナーとして一
成分現像法で用いる場合、更にトナー及び/もし
くはキヤリアとして二成分現像法で用いる場合が
ある。又、磁性トナーの場合には、電気的潜像だ
けでなく、磁気潜像の現像にも使用することが出
来る。キヤリアとして二成分現像法で用いる場合
には、磁性粉分散型キヤリアとして数10μの粒径
のものが用いられる。特に、磁性粉が40重量部以
上であり、かつ、粒度分布が4.2以下である現像
剤は、帯電量分布を狭くすることができ、かつ安
定性を良好なものとすることができる。
Typical usage patterns include cases where it is used as a magnetic toner in a one-component development method, and further used as a toner and/or carrier in a two-component development method. Furthermore, in the case of magnetic toner, it can be used not only for developing electrical latent images but also for developing magnetic latent images. When used as a carrier in a two-component development method, a magnetic powder-dispersed carrier with a particle size of several tens of microns is used. In particular, a developer containing 40 parts by weight or more of magnetic powder and a particle size distribution of 4.2 or less can have a narrow charge amount distribution and have good stability.

以下に本発明の実施例の一部を示すが、勿論本
発明はこれらの例にのみ限定されるものではな
い。
Some examples of the present invention are shown below, but of course the present invention is not limited only to these examples.

なお実施例中の部は重量部である。 Note that parts in the examples are parts by weight.

実施例 1 ポリスチレン樹脂(ハーキユリーズ社製 ピコ
ラステイツク D−125) 35部 ポリエチレンワツクス(三洋化成社製 商品名
E−300) 5部 エチレン酢酸ビニル共重合体(三井ポリケミカ
ル社製 エバフレツクス420) 10部 四三酸化鉄(チタン工業社製 RB−BL) 50部 カーボンブラツク(キヤボツト社製 BP−
1300) 2部 を熔融混練し、冷却後第1図に示した方式の粉砕
機を使用し供給量30Kg/h、ローター回転数
6000rpm、羽根と外壁間隔3mmの条件で粉砕し
た。得られたトナーの平均粒径は12.1μで粒度分
布は3.6であつた。このトナーを顕微鏡で観察す
るとトナーの形状が不定形で表面には凹凸がほと
んどなく、なめらかであつた。このトナーの粉体
圧縮率は49%であつた。又トナー中の5μ以下の
含有量が5wt%以下で平均粒径が15μになるよう
に風力分級機で分級したところ、分級得率は65%
であつた。富士ゼロツクス(株)2300複写機に一成分
現像機を組込み、本トナーで現像し、更に紙に転
写後線圧20Kg/cmの定着ロールで定着を行つたと
ころ、良好な画像を得た。更に5000枚の繰返し複
写を行つたが、画質は安定かつ良好であり、機内
の汚染等も観察されなかつた。
Example 1 Polystyrene resin (Picolastick D-125, manufactured by Hercules) 35 parts Polyethylene wax (trade name E-300, manufactured by Sanyo Chemical Co., Ltd.) 5 parts Ethylene-vinyl acetate copolymer (Evaflex 420, manufactured by Mitsui Polychemicals Co., Ltd.) 10 Part triiron tetroxide (RB-BL manufactured by Titan Kogyo Co., Ltd.) 50 parts Carbon black (BP- manufactured by Kayabot Co., Ltd.)
1300) Two parts were melted and kneaded, and after cooling, a crusher of the type shown in Figure 1 was used to feed the mixture at a feed rate of 30 kg/h and a rotor rotation speed.
Grinding was performed at 6000 rpm and a distance between the blade and the outer wall of 3 mm. The average particle size of the obtained toner was 12.1μ, and the particle size distribution was 3.6. When this toner was observed under a microscope, it was found to have an irregular shape and a smooth surface with almost no irregularities. The powder compressibility of this toner was 49%. Furthermore, when the toner was classified using a wind classifier so that the content of particles below 5μ was 5wt% or less and the average particle size was 15μ, the classification yield was 65%.
It was hot. A one-component developer was installed in a Fuji Xerox Co., Ltd. 2300 copying machine, and the toner was developed. After being transferred to paper, the image was fixed using a fixing roll with a linear pressure of 20 kg/cm, and a good image was obtained. A further 5,000 copies were made, and the image quality was stable and good, and no contamination inside the machine was observed.

比較例 1 実施例1と同じ混練組成物をジエツト粉砕方式
の粉砕機で粉砕した。得られたトナーの平均粒径
は11.9μで粒度分布は5.6であつた。実施例1と比
較すると平均粒径はほぼ同じにもかかわらず粒度
分布が非常に広い。このトナーを顕微鏡で観察し
たところトナーの形状は不定形で、表面には多数
の凹凸が見られた。このトナーの圧縮率は55%で
あつた。実施例1で得られたトナーより流動性が
悪かつた。トナー中の5μ以下の含有量が5wt%以
下、平均粒径が15μになるように風力分級機で分
級したところ分級得率は31%であつた。
Comparative Example 1 The same kneaded composition as in Example 1 was pulverized using a jet pulverizer. The average particle size of the obtained toner was 11.9μ, and the particle size distribution was 5.6. Compared to Example 1, the particle size distribution is very wide although the average particle diameter is almost the same. When this toner was observed under a microscope, the shape of the toner was irregular, and many irregularities were observed on the surface. The compression ratio of this toner was 55%. The fluidity was worse than that of the toner obtained in Example 1. When the toner was classified using an air classifier so that the content of particles below 5μ in the toner was 5wt% or less and the average particle size was 15μ, the classification yield was 31%.

実施例1と同様の操作で、複写画質の評価を行
つたところ、実施例1のトナーと同等の材料組
成、粒度分布であるにもかかわらず、実施例1の
場合よりもベタ黒画像の再現に劣り、更に連続複
写によつて画像濃度が低下するといつた現象が見
られた。これは粉砕方式の違いに基づく、トナー
形状、表面構造の違い、材料組成の分布等に起因
するものと思われる。
When copying image quality was evaluated using the same operations as in Example 1, it was found that although the material composition and particle size distribution were the same as the toner in Example 1, the reproduction of a solid black image was better than in Example 1. Furthermore, there was a phenomenon in which the image density decreased due to continuous copying. This is considered to be due to differences in toner shape, surface structure, distribution of material composition, etc. based on differences in pulverization methods.

実施例 2 スチレン−ブチルメタクリレート共重合体(ス
チレン成分70%) 16部 低分子量ポリアミド樹脂(日本ヘンケル社製
バーサミド930) 16部 スチレン−ブタジエン共重合体(シエル化学製
TR−1102) 8部 四三酸化鉄(チタン工業社製 BL−500) 60部 を熔融混練し、冷却後第1図に示す方式の粉砕機
を使用して供給量60Kg/h、ローター回転数
5000rpm、羽根と外壁間隔3mmの条件で粉砕し
た。得られたトナーの平均粒径は12.5μで粒度分
布は3.8であつた。このトナーの形状、表面形態
は実施例1の場合とほとんど同じであつた。この
トナーの圧縮率は44%であつた。
Example 2 Styrene-butyl methacrylate copolymer (styrene component 70%) 16 parts Low molecular weight polyamide resin (manufactured by Henkel Japan)
Versamide 930) 16 parts styrene-butadiene copolymer (Ciel Chemical Co., Ltd.)
TR-1102) 8 parts Triiron tetroxide (BL-500, manufactured by Titan Kogyo Co., Ltd.) 60 parts were melted and kneaded, and after cooling, they were milled using a crusher of the type shown in Figure 1 at a feed rate of 60 kg/h and a rotor rotation speed.
The material was crushed at 5000 rpm and the distance between the blade and the outer wall was 3 mm. The average particle size of the obtained toner was 12.5μ, and the particle size distribution was 3.8. The shape and surface morphology of this toner were almost the same as in Example 1. The compression ratio of this toner was 44%.

実施例1と同じ粒度条件で風力分級機にて分級
したところ、分級得率は72%であつた。このトナ
ーにカーボンブラツク(キヤボツト社製、モナー
ク1300)を、前記トナー100部に対して0.25部添
加混合し、実施例1と同様の操作で複写画像を評
価したところ、極めて良好な画質が得られた。
When the particles were classified using a wind classifier under the same particle size conditions as in Example 1, the classification yield was 72%. 0.25 parts of carbon black (Monarch 1300, manufactured by Kayabot Co., Ltd.) was added to this toner and mixed to 100 parts of the above toner, and the copied images were evaluated in the same manner as in Example 1. Very good image quality was obtained. Ta.

比較例 2 実施例2と同じ混練組成物をジエツト粉砕方式
の粉砕機で粉砕した。得られたトナーの粒径は
12.1μで粒度分布は6.2であつた。実施例2と比較
すると、平均粒径はほぼ同じにもかかわらず粒度
分布が非常に広い。このトナーの形状や表面形態
は比較例1の場合とほぼ同じであつた。このトナ
ーの圧縮率は49%で実施例2のトナーよりも流動
性が悪かつた。実施例2と同じ粒度条件で風力分
級機にて分級したところ分級得率は32%であつ
た。
Comparative Example 2 The same kneaded composition as in Example 2 was pulverized using a jet pulverizer. The particle size of the obtained toner is
The particle size distribution was 6.2 at 12.1μ. Compared to Example 2, the particle size distribution is very wide although the average particle size is almost the same. The shape and surface morphology of this toner were almost the same as those of Comparative Example 1. The compression ratio of this toner was 49%, and its fluidity was worse than that of the toner of Example 2. When the particles were classified using a wind classifier under the same particle size conditions as in Example 2, the classification yield was 32%.

実施例2と同様、更にカーボンブラツクを添加
混合し、複写画像を比較したところ、比較例1と
同様の欠陥が見られた。
As in Example 2, carbon black was further added and mixed, and when the copied images were compared, the same defects as in Comparative Example 1 were observed.

実施例 3 スチレン−ブチルメタクリレート樹脂(スチレ
ン成分60%、重量平均分子量12万) 47部 低分子量ポリプロピレン(融点約130℃) 3部 亜鉛フエライト 50部 を熔融混練し、冷却後、実施例1と同様の条件で
粉砕し、平均粒度15.2μ、粒度分布3.4、粉体圧縮
率29%のトナーを得た。このトナーを風力分級機
で平均粒度14μ、粒度分布2.8に調整したところ、
分級収率は81%であつた。このトナーに、更にカ
ーボンブラツクを0.3重量%添加混合し、実施例
1と同じ複写機で現像、転写し、更に温度170℃
の熱ロール定着機と定着したところ5000枚の連続
複写の間、常に良好な画質を得ることが出来た。
Example 3 Styrene-butyl methacrylate resin (styrene component 60%, weight average molecular weight 120,000) 47 parts low molecular weight polypropylene (melting point approximately 130°C) 3 parts zinc ferrite 50 parts were melt-kneaded, and after cooling, the same as Example 1 was prepared. A toner having an average particle size of 15.2μ, a particle size distribution of 3.4, and a powder compressibility of 29% was obtained. When this toner was adjusted to an average particle size of 14μ and a particle size distribution of 2.8 using a wind classifier,
The classification yield was 81%. To this toner, 0.3% by weight of carbon black was added and mixed, and the toner was developed and transferred using the same copying machine as in Example 1, and the temperature was further increased to 170°C.
When I fixed it with a hot roll fixing machine, I was able to consistently obtain good image quality during continuous copying of 5,000 sheets.

比較例 3 実施例3と同じ混練粉砕物を、比較例1と同様
のジエツト粉砕機で粉砕したところ、トナーの粉
砕粒度は14.7μ、粒度分布は4.7、粉体圧縮率は35
%であつた。
Comparative Example 3 When the same kneaded and pulverized product as in Example 3 was pulverized using the same jet pulverizer as in Comparative Example 1, the pulverized particle size of the toner was 14.7μ, the particle size distribution was 4.7, and the powder compressibility was 35.
It was %.

このトナーを風力分級で平均粒度14μ、粒度分
布2.8に調整したところ、分級収率は43%であつ
た。
When this toner was adjusted to an average particle size of 14μ and a particle size distribution of 2.8 by wind classification, the classification yield was 43%.

このトナーに、更にカーボンブラツクを0.3重
量%添加混合し、実施例3と同様の操作で、その
画質を評価したところ、初期画質はほぼ同等であ
つたが、約300枚の複写後、画像濃度に低下が見
られた。
When 0.3% by weight of carbon black was added to this toner and the image quality was evaluated in the same manner as in Example 3, the initial image quality was almost the same, but after about 300 copies, the image density A decrease was seen in

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法で使用する粉砕装置の一例
の概要図、第2図はジエツト粉砕方式における粒
子の粉砕の様子を示す模式図、第3図は機械粉砕
方式における粒子の粉砕の様子を示す模式図であ
る。 図中符号、1……回転軸、2……ローター、3
……デイストリビユーター、4……ブレード、5
……仕切円板、6……ケーシング、7……ライナ
ー、8……粉砕室、9……入口渦巻室、10……
出口渦巻室、11……粒子。
Figure 1 is a schematic diagram of an example of a crushing device used in the method of the present invention, Figure 2 is a schematic diagram showing how particles are crushed in a jet crushing method, and Figure 3 is a schematic diagram showing how particles are crushed in a mechanical crushing method. FIG. Symbols in the figure: 1...rotating shaft, 2...rotor, 3
...Destrivator, 4...Blade, 5
...Partition disk, 6...Casing, 7...Liner, 8...Crushing chamber, 9...Inlet volute chamber, 10...
Outlet vortex chamber, 11...particles.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも結着樹脂と磁性粉とからなる混練
物を粉砕する工程を有する電子写真用磁性粒子の
製造方法において、結着樹脂と該混練物100重量
部中少なくとも40重量部以上の磁性粉を溶融混練
する工程、及び、混練物の投入口、複数の仕切り
板により小粉砕室に分割され、かつこの小粉砕室
に軸支されて回転する粉砕羽根を設けてなる粉砕
室及び粉砕物を取出す排出口を備えてなる粉砕装
置により、上記混練物を該粉砕羽根及び粉砕室内
壁面に衝突させて粉砕する工程とからなり、平均
粒径10乃至50ミクロンの範囲において、得られる
磁性粒子の累積重量分率が0.9に相当する平均粒
径d90と累積重量分率が0.1に相当する平均粒径d10
の比(d90/d10)で表わされる粒度分布が4.2以下
であることを特徴とする電子写真用磁性粒子の製
造方法。
1. In a method for producing magnetic particles for electrophotography, which includes the step of pulverizing a kneaded material consisting of at least a binder resin and magnetic powder, at least 40 parts by weight of the binder resin and the magnetic powder in 100 parts by weight of the kneaded material are melted. The process of kneading, an inlet for the kneaded material, a pulverizing chamber divided into small pulverizing chambers by a plurality of partition plates, and provided with pulverizing blades that are rotatably supported by the small pulverizing chambers, and an exhaust for taking out the pulverized material. The process includes a step of pulverizing the kneaded material by colliding with the pulverizing blades and the wall surface of the pulverizing chamber using a pulverizing device equipped with an outlet. The average particle size d 90 corresponds to a ratio of 0.9 and the average particle size d 10 corresponds to a cumulative weight fraction of 0.1.
1. A method for producing magnetic particles for electrophotography, characterized in that the particle size distribution expressed by the ratio (d 90 /d 10 ) is 4.2 or less.
JP57135564A 1982-08-03 1982-08-03 Grinder for developer Granted JPS5924855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135564A JPS5924855A (en) 1982-08-03 1982-08-03 Grinder for developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135564A JPS5924855A (en) 1982-08-03 1982-08-03 Grinder for developer

Publications (2)

Publication Number Publication Date
JPS5924855A JPS5924855A (en) 1984-02-08
JPH0472226B2 true JPH0472226B2 (en) 1992-11-17

Family

ID=15154755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135564A Granted JPS5924855A (en) 1982-08-03 1982-08-03 Grinder for developer

Country Status (1)

Country Link
JP (1) JPS5924855A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161627A (en) * 1984-08-31 1986-03-29 Mita Ind Co Ltd Method for sphering toner
JPH0629979B2 (en) * 1985-06-06 1994-04-20 昭和電工株式会社 Toner for electrostatic image development
JPH0677161B2 (en) * 1987-03-31 1994-09-28 キヤノン株式会社 Method for producing toner for developing electrostatic image
US6673506B2 (en) 2000-12-15 2004-01-06 Canon Kabushiki Kaisha Toner production process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842057A (en) * 1981-09-08 1983-03-11 Konishiroku Photo Ind Co Ltd Preparation of electrostatic image developing toner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104261U (en) * 1972-12-28 1974-09-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842057A (en) * 1981-09-08 1983-03-11 Konishiroku Photo Ind Co Ltd Preparation of electrostatic image developing toner

Also Published As

Publication number Publication date
JPS5924855A (en) 1984-02-08

Similar Documents

Publication Publication Date Title
KR100417559B1 (en) Toner, Image-Forming Method and Process Cartridge
US5087546A (en) Device for continuously mixing powder and process for producing toner for developing electrostatic image
JP2003173046A (en) Toner production process
JP4290107B2 (en) Toner production method
US5856056A (en) Process for producing toner
JP2006201563A (en) Method for manufacturing negatively charged spherical toner
JPH0472226B2 (en)
JP2000140661A (en) Production of toner particle
JP2002040705A (en) Toner
JP2008122754A (en) Device for modification of toner surface and method for manufacturing toner
JP2003280249A (en) Electrophotographic toner
JP4448019B2 (en) Toner production method and apparatus for modifying the surface of toner particles
JP2006308640A (en) Method for manufacturing toner
JP2007148077A (en) Method for manufacturing toner
JP3486524B2 (en) Method and system for manufacturing toner
JP2007296494A (en) Method for classifying powder, method for manufacturing toner and powder classifier
JP2002268277A (en) Method for manufacturing toner for electrophotography
JP3693683B2 (en) Toner manufacturing method for developing electrostatic image
JP3317136B2 (en) Toner for developing electrostatic images
JP4869168B2 (en) Toner surface reformer
JP4208693B2 (en) Toner production method and toner particle surface modification device
US5178460A (en) Device for continuously mixing powder and process for producing toner for developing electrostatic image
JP3637611B2 (en) Method for producing toner composition
JPH0934175A (en) Method for making electrostatic charge image developing toner spherical
JP3317135B2 (en) Toner for developing electrostatic images