JP4183388B2 - Grinding device, toner manufacturing device and toner - Google Patents

Grinding device, toner manufacturing device and toner Download PDF

Info

Publication number
JP4183388B2
JP4183388B2 JP2001002068A JP2001002068A JP4183388B2 JP 4183388 B2 JP4183388 B2 JP 4183388B2 JP 2001002068 A JP2001002068 A JP 2001002068A JP 2001002068 A JP2001002068 A JP 2001002068A JP 4183388 B2 JP4183388 B2 JP 4183388B2
Authority
JP
Japan
Prior art keywords
stator
rotor
side wall
wall surface
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001002068A
Other languages
Japanese (ja)
Other versions
JP2002204966A (en
Inventor
哲也 田中
芳浩 斎藤
力 清水
英輔 杉沢
和好 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001002068A priority Critical patent/JP4183388B2/en
Publication of JP2002204966A publication Critical patent/JP2002204966A/en
Application granted granted Critical
Publication of JP4183388B2 publication Critical patent/JP4183388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、例えば電子写真方式や静電記録方式,静電印刷方式などにおける静電荷像を現像する乾式トナー等の微粉末を製造する粉砕装置とトナーの製造装置及びそれにより製造されたトナー、特に破砕した粒子の円形度の向上に関するものである。
【0002】
【従来の技術】
例えば電子写真方式の画像形成装置で感光体に形成された潜像を現像するためのトナー等を製造するためにミクロンオーダーの粉砕を行う機械式の粉砕装置は、回転軸に支持され、外側表面の母線に沿って多数の凹凸部を有する回転子と、回転子との間に間隙を有して配置され、内側表面の母線に沿って多数の凹凸部を有する固定子とを有する。そして回転子を回転させながら、固定子の外側表面の一方の端部に設けた供給口から固体の被粉砕物を供給し、回転している回転子と固定子の間で被粉砕物を所定の大きさに粉砕する。この被粉砕物を効率良く粉砕するため、例えば特開平5−269393号公報に示す機械式の粉砕装置は、図8に示すように、回転子41と対向する固定子61の内表面をアーチ形断面の凹部62にし、凹部62内部に回転子4の回転方向とは反対の回転方向の旋回流63を発生させるようにしている。この破砕装置に供給された被粉砕物は、図9の模式図に示すように、固定子61の円形状に形成した凹部62の回転方向下流側壁面64に衝突したのち次の凹部62に導かれ衝突を繰り返して粉砕される。この粉砕作用を繰り返して受けた後、固定子61の凹部62内部で高速に旋回しながら出口に向かって流れている空気旋回流の中に入って、凹部62の曲率中心を中心とする旋回運動によって遠心分級作用が行われ、粗大粒子は凹部62より投げ出され、細かいものは凹部62中より排出口に向かって運び出されて過粉砕が生じることを防いでいる。
【0003】
【発明が解決しようとする課題】
画像形成に使用するトナー粒子は、今後の更なる高画質化の要求から、小粒径化と球形化は必要不可欠であり、トナーを製造するときに従来よりも小粒径のトナー粒子と粒子形状の球形化が求められている。前記特開平5−269393号公報に示された機械式の粉砕装置は、ある程度小粒径化の粉砕が可能であり、トナー粉砕装置として知られている気流式ジェット粉砕装置に比べると、エネルギ効率も良く、トナー粒子の球形化にも優れているとされている。しかしながら、更なる高画質化の要求を満足させる為に、粉砕されたトナー粒子のより球形度の向上が要望されている。
【0004】
この発明は係る要望を満たすためになされたものであり、粉砕した粒子の小粒径化と球形度のより向上を図るとともに回転子及び固定子の壁面の摩耗防止を図り効率良く粉砕することができる粉砕装置とトナーの製造装置及びそれにより製造されたトナーを提供することを目的とするものである。
【0005】
【課題を解決するための手段】
この発明に係る粉砕装置は、回転軸に支持され、外側表面には回転方向上流側壁面を外表面に対して鈍角で形成し、回転方向下流側壁面を外表面に対して鋭角に形成した多数の凹凸部を母線と平行に周方向に連続させた回転子と、回転子の外側に微小な間隔をおいて配置され、内側表面に母線と平行な多数の凹凸部を周方向に連続させた固定子との間に被粉砕物を通して微粉砕すると共に球形化する粉砕装置であって、固定子の凹部の回転方向上流側壁面を内側表面に対して150度〜180度の角度で形成し、回転方向下流側壁面を内側表面に対して90度〜145度の角度で形成し、被粉砕物が前記回転方向上流側壁面に沿って移動し、前記回転方向の同一の下流側壁面に複数回衝突することを特徴とする。
【0006】
上記固定子を、ケーシングの被粉砕物を投入する投入口と排出口の間の軸心側に突出して設けた凸部からなる内周面に着脱自在に取り付けることが望ましい。
【0008】
さらに、回転子又は固定子に、固定子と回転子との間隙を流れる気流の抵抗となる堰を1又は複数個設ける良い。
【0010】
この発明に係るトナーの製造装置は、上記いずれかの粉砕装置を有することを特徴とする。
【0011】
また、粉砕装置のケーシングの排出口をトナーを形成する樹脂の軟化点温度以下にしたり、粉砕装置のケーシングの外周面に冷却用ジャケットを設けることが望ましい。
【0012】
この発明に係るトナーは上記トナーの製造装置で製造したことを特徴とする。
【0013】
【発明の実施の形態】
この発明のトナーの製造装置に設けられた粉砕装置は、ケーシングの両側壁に回転自在に取り付けられた回転軸に支持された回転子と、回転子との間に間隙を設けてケーシングに着脱自在に取り付けられた固定子を有する。ケーシングの一方の端部には投入口を有し、他方の端部にはブロワーで吸引されている排出口を有する。回転子には、外側表面の母線と平行な多数の凹凸が周方向に連続して形成され、固定子の回転子と対向する内側表面にも母線と平行な多数の凹凸を有する。固定子の内側表面に設けた凹部の回転方向上流側壁面は、内側表面とのなす角が150度から180度の範囲で平面状に形成され、回転方向下流側壁面は内側表面とのなす角が90度から145度の範囲で平面状に形成されている。
【0014】
この粉砕装置で回転軸に支持された回転子を高速で回転し、排出口からブロワーで吸引することにより、回転している回転子と固定子の間の間隙には投入口から排出口に流れる気流が発生している。この状態でフィーダーからトナーの原料となる被粉砕物を投入する。投入された被粉砕物は間隙を流れるときに粉砕作用を受けて粉砕され排出口から排出される。この被粉砕物を粉砕するときに、被粉砕物は間隙を流れる気流によって固定子の凹部の回転方向上流側壁面に沿って流れ回転方向下流側壁面に衝突する。この衝突により被粉砕物の角が丸くなる作用がある。また、回転方向下流側壁面に衝突した被粉砕物が衝突する回転方向下流側壁面は内側表面とのなす角が大きく内側表面に対して鋭く立っているため、被粉砕物が固定子の次の凹部に導かれるにくくなり、回転方向上流側壁面側に反射して再び同一の回転方向下流側壁面に衝突することがあり、被粉砕物の円形度を向上して円形度の高いトナーを製造することができる。
【0015】
【実施例】
図1はこの発明の一実施例の粉砕装置の構成図である。図に示すように、粉砕装置1は、ケーシング2の両側壁に回転自在に取り付けられた回転軸3に支持された回転子4と、回転子4との間に間隙5を設けてケーシング2に着脱自在に取り付けられた固定子6を有する。ケーシング2の一方の端部には投入口7を有し、他方の端部には図示しないブロワーで吸引されている排出口8を有し、投入口7と排出口8の間には固定子6を取り付ける凸部を有する。回転子4の外側表面には、図2の模式図に示すように、回転方向上流側壁面を外表面に対して鈍角で形成し、回転方向下流側壁面を外表面に対して鋭角に形成した多数の凹凸部を母線と平行に周方向に連続して形成され、固定子6の回転子4と対向する内側表面にも母線と平行な多数の凹凸を有する。固定子6の内側表面9に設けた凹部10の回転方向上流側壁面11は、内側表面9とのなす角αが150度から180度の範囲で平面状に形成され、回転方向下流側壁面12は内側表面9とのなす角βが90度から145度の範囲で平面状に形成されている。
【0016】
上記のように構成した粉砕装置1で回転軸に支持された回転子4を高速で回転し、排出口8からブロワーで吸引することにより、回転している回転子4と固定子6の間の間隙5には投入口7から排出口8に流れる気流が発生している。この状態で図示しないフィーダーから被粉砕物13を投入する。投入された被粉砕物13は間隙5を流れるときに粉砕作用を受けて粉砕され排出口8から排出される。この被粉砕物13を粉砕するときに、被粉砕物13は間隙5を流れる気流によって固定子6の凹部10の回転方向上流側壁面11に沿って流れ回転方向下流側壁面12に衝突する。この衝突により被粉砕物13の角が丸くなる作用がある。また、回転方向下流側壁面12に衝突した被粉砕物13が衝突する回転方向下流側壁面12は内側表面9とのなす角βが大きく内側表面9に対して鋭く立っているため、固定子6の次の凹部10に導かれるにくくなり、回転方向上流側壁面11側に反射して再び同一の回転方向下流側壁面12に衝突することがあるため、被粉砕物13の円形度を向上することができる。
【0017】
このように回転方向下流側壁面12に被粉砕物13を効率良く衝突させて円形度を高めるためには、凹部10の回転方向上流側壁面11と内側表面9とのなす角αを150度から180度の範囲とし、回転方向下流側壁面12と内側表面9とのなす角βを90度から145度の範囲にすることが好ましい。また、この回転方向上流側壁面11と回転方向下流側壁面12で形成される凹部10は特にその形状は問わないが、頂角はアーチ型の方が特に好ましい。
【0018】
また、被粉砕物13が衝突して破砕作用を行う固定子6と回転子4の磨耗を防止するために固定子6の表面と回転子4の表面にチタンによりライニング処理を施すと良い。このように、固定子6の表面と回転子4の表面にチタンによりライニング処理をすることにより、ライニング処理をしない場合と比べて磨耗に対する耐久性を2倍程度向上させることができた。
【0019】
さらに、この凹部10を有する固定子6をケーシング2の投入口7と排出口8の間の軸心側に突出して設けた凸部を有する内周面に取り付けることにより、ケーシング2に対する固定子6の着脱を容易にすることができ、粉砕する粒度に応じて角度αと角度βの異なる固定子6の切り替え作業を行うときの切り替え時間を短縮することができる。
【0020】
上記実施例はケーシング2に固定子6を直接取り付けた場合について説明したが、図3に示すように、ケーシング2と固定子6の間にスペーサ14を設け、粉砕する粒度に応じてスペーサ14を交換して回転子4と固定子6の間隙5を調節すると良い。このようにスペーサ14により被粉砕物13が流れる間隙5を調整して被粉砕物14の流速を可変することにより、小粒径化を図ることができるとともに効率よく粉砕することができる。
【0021】
また、図4に示すように、回転子4にリング状の堰15を1又は複数設けたり、図5に示すように、固定子6にリング状の堰16を設け、間隙5を流れる気流に対して抵抗を与えることにより、粗大粒子が排出口8側に飛び込むことを防ぐことができ、均一な粒径の小粒子を得ることができる。
【0022】
さらに、この粉砕装置1で電子写真方式の画像形成装置に使用するトナーを製造するとき、排出口8側を吸引するブロワーの風量を調整して排出口8の温度をトナーを形成する樹脂の軟化点温度以下に設定すると良い。このように排出口8の温度を樹脂軟化点温度以下に設定して粉砕装置1内部の温度を制御することにより、メルト対策を行うことができる。
【0023】
また、図6に示すように、ケーシング2の外面に冷却用ジャケット17を設け、粉砕装置1の内部を冷却することにより、粉砕効率をより向上することができるとともに粉砕装置1の内部におけるメルト対策を確実に行うことができ、円形度の高いトナーを均一な粒径で製造することができる。このトナーを使用して電子写真方式で形成された潜像を現像することにより、高画質の画像を安定して形成することができる。
【0024】
さらに、図7に示すように、粉砕装置1の排出口8と投入口7を分級機18と連結して粉砕装置1と分級機18で閉回路を構成することにより被粉砕物13を一定の粒径の微粒子に粉砕することができる。
【0025】
〔具体例〕 例えば下記組成の混合物を溶融混練して冷却した後、粗粉砕して、平均粒径400μm前後の粗粉砕物を得た。この粗粉砕物を粉砕装置1により粉砕処理した。
スチレンーアクリル共重合体 100重量部
カーボンブラッ ク 10重量部
ポリプロピレン 5重量部
サリチル酸亜鉛 2重量部
この粉砕処理した粉砕物の粒径をコールターカウンタにより測定し、円形度はフロー式粒子像分析装置を使用しテ測定した。
【0026】
〔具体例1〕 固定子6としては、回転方向上流側壁面11と内側表面9とのなす角αが160度で、回転方向下流側壁面12と内側表面9とのなす角βが110度の凹部10を有する固定子6を使用し、回転子4の周速を135m/s、回転子4と固定子6の間隙5を1.5mmに設定した粉砕装置1を使用して粉砕した。そのときの平均粒子径8.0μmの目標に対してフィード量は9.00kg/hであった。その結果、体積平均粒径は7.8μmであり、平均円形度は0.950であり円形度を向上することができた。また、ケーシング2に凸部を設けることにより、固定子6をケーシング2から取り外して清掃するときの切替時間をケーシング2に凸部を設けない場合と比べて約25%短縮することができた。
【0027】
〔具体例2〕 図3に示すように、スペーサ14を設け、回転子4と固定子6の間隙5を1.0mmに設定し、前記と同じ組成の粗粉砕物を具体例1と同一条件で粉砕処理した。そのときの平均粒子径8.0μmの目標に対しフィード量は8.80kg/hであった。この粉砕処理の結果、体積平均粒径は7.6μmであり、平均円形度は0.955であり、円形度をさらに向上することができた。
【0028】
〔具体例3〕 図4に示すように、回転子4に堰15を1個設け、他は具体例1と同一条件にして粉砕処理を行った。そのときの平均粒子径8.0μmの目標に対しフィード量は8.75kg/hであった。その結果、体積平均粒径は7.7μmで平均円形度は0.953であった。また、回転子4に堰15を2個設けて上記条件で粉砕処理した結果、体積平均粒径は7.6μmで平均円形度は0.955であり、粒径をより均一にして円形度をより向上することができた。
【0029】
〔具体例4〕 図5に示すように、固定子6に堰16を1個設け、他は具体例1と同一条件にして粉砕処理を行った。そのときの平均粒子径8.0μmの目標に対しフィード量は8.00kg/hであった。その結果、体積平均粒径は7.7μmで平均円形度は0.953であった。また固定子6に堰16を2個設けて、上記条件で粉砕処理を行った結果、体積平均粒径は7.6μmで平均円形度は0.955であり、粒径をより均一にして円形度をより向上することができた。
【0030】
〔具体例5〕 排出口8側を吸引するブロワーの風量を調整して排出口8の温度をトナーを形成する樹脂の軟化点温度以下に設定し、他は具体例1と同一条件にして粉砕処理を行った。そのときの平均粒子径8.0μmの目標に対しフィード量は8.00kg/hであった。その結果、体積平均粒径は7.8μmで平均円形度は0.950であった。また、図6に示すように、ケーシング2の外面に冷却用ジャケット17を設け、粉砕装置1の内部を冷却しながら上記条件で粉砕処理を行った結果、上記と同様な結果を得ることができた。
【0031】
〔具体例6〕 図7に示すように、粉砕装置1と分級機18で閉回路を構成し、具体例1と同一条件で粉砕処理を行った。そのときの平均粒子径8.0μmの狙いに対しフィード量は8.00kg/hであった。その結果、体積平均粒径は7.8μmで平均円形度は0.950であった。また、16μm以上の粗粉含有率(重量%)は0重量%と狭分布な粒度分布を得ることができた。
【0032】
〔比較例〕 具体例1と同じ組成の粗粉砕物を、図9に示すように、回転子4と固定子6の凹部が円弧で形成されている機械式粉砕装置を用い、回転子4の周速を135m/s、回転子4と固定子6の間隙5を1.5mmに設定して粉砕処理を行った。そのときの平均粒子径8.0μmの目標に対しフィード量は9.00kg/hであった。その結果、体積平均粒径は7.8μmで平均円形度は0.940であった。
【0033】
【発明の効果】
この発明は以上説明したように、回転子の外側表面には回転方向上流側壁面を外表面に対して鈍角で形成し、回転方向下流側壁面を外表面に対して鋭角に形成した多数の凹凸部を母線と平行に周方向に連続して形成し、固定子の凹部の回転方向上流側壁面を内側表面に対して150度〜180度で形成し、回転方向下流側壁面を内側表面に対して90度〜145度で形成することにより、被粉砕物を回転方向上流側壁面に沿って流しながら回転方向下流側壁面に複数回衝突させることができ、被粉砕物の角を丸くして被粉砕物の円形度を向上することができる。
【0034】
また、固定子を、ケーシングの被粉砕物を投入する投入口と排出口の間の軸心側に突出して設けた凸部を有する内周面に着脱自在に取り付けることにより、固定子をケーシングに対して容易に着脱でき、固定子をケーシングから取り外して清掃するときの切替時間を短縮して作業効率を向上することができる。
【0035】
さらに、ケーシングと固定子の間に、固定子と回転子との間隙を調節するスペーサを設け、粒度によって間隙を調節して間隙を流れる気流の速度を可変することにより、形成する粉砕物の小粒径化を図ることができるとともに効率の良い粉砕を行うことができる。
【0036】
また、回転子又は固定子に、固定子と回転子との間隙を流れる気流の抵抗となる堰を1又は複数個設けることにより、粉砕装置の出口側への粗大粒子の飛び込みを防止することができ、小粒径と均一な粒径化を図ることができる。
【0038】
また、この粉砕装置をトナーの製造装置に使用することにより、均一な粒径で円形度の高いトナーを製造することができる。
【0039】
さらに、粉砕装置のケーシングの排出口をトナーを形成する樹脂の軟化点温度以下にしたり、粉砕装置のケーシングの外周面に冷却用ジャケットを設けて、粉砕装置の内部を冷却することにより、粉砕効率をより向上することができるとともに粉砕装置の内部におけるメルト対策を確実に行うことができ、円形度の高いトナーを均一な粒径で製造することができる。
【0040】
また、このトナーを使用して電子写真方式で形成された潜像を現像することにより、高画質の画像を安定して形成することができる。
【図面の簡単な説明】
【図1】この発明の実施例の粉砕装置の構成図である。
【図2】上記実施例の回転子の外表面と固定子の内表面の形状を示す模式図である。
【図3】第2の実施例の構成図である。
【図4】第3の実施例の構成図である。
【図5】第4の実施例の構成図である。
【図6】第5の実施例の構成図である。
【図7】第6の実施例の構成図である。
【図8】従来例の回転子と固定子の構成図である。
【図9】従来例の回転子の外表面と固定子の内表面の形状を示す模式図である。
【符号の説明】
1;粉砕装置、2;ケーシング、3;回転軸、4;回転子、5;間隙、
6;固定子、7;投入口、8;排出口、9;固定子の内側表面、
10;凹部、11;回転方向上流側壁面、12;回転方向下流側壁面。
[0001]
BACKGROUND OF THE INVENTION
The present invention includes, for example, a pulverizing apparatus that produces fine powder such as dry toner that develops an electrostatic charge image in an electrophotographic system, an electrostatic recording system, an electrostatic printing system, and the like, a toner manufacturing apparatus, and a toner manufactured thereby, In particular, it relates to an improvement in the circularity of the crushed particles.
[0002]
[Prior art]
For example, a mechanical pulverizer that performs micron-order pulverization in order to produce toner for developing a latent image formed on a photoreceptor in an electrophotographic image forming apparatus is supported by a rotating shaft and has an outer surface. A rotor having a large number of irregularities along the generatrix, and a stator having a gap between the rotor and a plurality of irregularities along the generatrix on the inner surface. Then, while rotating the rotor, a solid object to be crushed is supplied from a supply port provided at one end of the outer surface of the stator, and the object to be crushed is predetermined between the rotating rotor and the stator. Grind to size. In order to efficiently pulverize the object to be crushed, for example, a mechanical pulverizer shown in Japanese Patent Laid-Open No. 5-269393 has an arched inner surface of a stator 61 facing the rotor 41 as shown in FIG. A recess 62 having a cross section is formed, and a swirl flow 63 having a rotation direction opposite to the rotation direction of the rotor 4 is generated inside the recess 62. As shown in the schematic diagram of FIG. 9, the object to be crushed supplied to the crushing apparatus collides with the downstream side wall surface 64 in the rotational direction of the concave portion 62 formed in the circular shape of the stator 61 and then led to the next concave portion 62. It is crushed by repeated collisions. After repeatedly receiving this crushing action, it enters into the air swirling flow that flows toward the outlet while swirling at high speed inside the recess 62 of the stator 61, and swirling motion around the center of curvature of the recess 62. Thus, the centrifugal classification action is performed, and coarse particles are thrown out from the concave portion 62, and fine particles are carried out from the concave portion 62 toward the discharge port to prevent over-pulverization.
[0003]
[Problems to be solved by the invention]
Toner particles used for image formation are indispensable to reduce the particle size and sphere due to the demand for further higher image quality in the future. There is a need for a spherical shape. The mechanical pulverizer disclosed in Japanese Patent Application Laid-Open No. 5-269393 is capable of pulverizing to a certain degree of particle size, and is more energy efficient than an airflow jet pulverizer known as a toner pulverizer. It is said that the toner particles are excellent in spheroidization. However, in order to satisfy the demand for higher image quality, there is a demand for improved sphericity of the pulverized toner particles.
[0004]
The present invention has been made to satisfy such a demand, and it is possible to reduce the particle size of the pulverized particles and improve the sphericity, and to prevent the wear of the wall surfaces of the rotor and the stator, thereby efficiently pulverizing. An object of the present invention is to provide a pulverizing apparatus, a toner manufacturing apparatus, and a toner manufactured thereby.
[0005]
[Means for Solving the Problems]
The pulverizing apparatus according to the present invention is supported by a rotating shaft, and on the outer surface, the upstream side wall surface in the rotational direction is formed at an obtuse angle with respect to the outer surface, and the downstream side wall surface in the rotational direction is formed at an acute angle with respect to the outer surface. The rotor is made continuous in the circumferential direction parallel to the busbars, and the outer surface of the rotor is arranged at a minute interval, and a number of unevenness portions parallel to the busbars are made continuous in the circumferential direction on the inner surface. A pulverizing apparatus that finely pulverizes and spheroidizes a material to be pulverized with a stator, and forms an upstream side wall surface in a rotation direction of a concave portion of the stator at an angle of 150 to 180 degrees with respect to an inner surface, The downstream wall surface in the rotation direction is formed at an angle of 90 to 145 degrees with respect to the inner surface, and the object to be crushed moves along the upstream wall surface in the rotation direction, and is moved a plurality of times on the same downstream wall surface in the rotation direction. It is characterized by a collision.
[0006]
It is desirable that the stator is detachably attached to an inner peripheral surface composed of a convex portion provided so as to protrude toward the axial center between the inlet and the outlet into which the object to be crushed is introduced.
[0008]
Further, one or a plurality of weirs may be provided on the rotor or the stator to serve as a resistance to the airflow flowing through the gap between the stator and the rotor.
[0010]
A toner manufacturing apparatus according to the present invention includes any one of the above-described pulverizing apparatuses.
[0011]
In addition, it is desirable that the discharge port of the casing of the pulverizer is set to be equal to or lower than the softening point temperature of the resin forming the toner, or a cooling jacket is provided on the outer peripheral surface of the casing of the pulverizer.
[0012]
The toner according to the present invention is manufactured by the toner manufacturing apparatus.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The pulverizing apparatus provided in the toner manufacturing apparatus of the present invention is detachable from the casing with a gap between the rotor supported by a rotating shaft rotatably attached to both side walls of the casing and the rotor. Having a stator attached to. One end of the casing has an inlet, and the other end has an outlet that is sucked by a blower. In the rotor, a large number of irregularities parallel to the generatrix on the outer surface are continuously formed in the circumferential direction, and the inner surface facing the rotor of the stator also has a large number of irregularities parallel to the generatrix. The upstream side wall surface in the rotational direction of the recess provided on the inner surface of the stator is formed in a planar shape with an angle between the inner surface and 150 ° to 180 °, and the downstream side wall surface in the rotational direction is an angle formed with the inner surface. Is formed in a planar shape in the range of 90 to 145 degrees.
[0014]
By rotating the rotor supported by the rotating shaft at high speed in this crusher and sucking it from the discharge port with a blower, the gap between the rotating rotor and the stator flows from the input port to the discharge port. Airflow is generated. In this state, a material to be crushed as a raw material for the toner is fed from the feeder. The charged material to be pulverized is pulverized and discharged from the discharge port when flowing through the gap. When the object to be pulverized is pulverized, the object to be pulverized flows along the upstream side wall surface in the rotation direction of the concave portion of the stator and collides with the downstream side wall surface in the rotation direction by the airflow flowing through the gap. This collision has the effect of rounding the corners of the object to be crushed. In addition, the downstream side wall surface in the rotational direction where the object colliding with the downstream wall surface in the rotation direction collides with the inner surface is large and stands sharply with respect to the inner surface. It becomes difficult to be guided to the concave portion, and may be reflected on the upstream side wall surface side in the rotational direction and collide with the same downstream side wall surface in the rotational direction again, thereby improving the circularity of the object to be crushed and producing toner with high circularity. be able to.
[0015]
【Example】
FIG. 1 is a block diagram of a pulverizing apparatus according to an embodiment of the present invention. As shown in the figure, the crushing device 1 is provided in the casing 2 by providing a gap 5 between the rotor 4 supported by a rotating shaft 3 rotatably attached to both side walls of the casing 2 and the rotor 4. The stator 6 is detachably attached. The casing 2 has an inlet 7 at one end, and an outlet 8 that is sucked by a blower (not shown) at the other end. A stator is disposed between the inlet 7 and the outlet 8. 6 has a convex portion to which 6 is attached. On the outer surface of the rotor 4, as shown in the schematic view of FIG. 2, the upstream wall surface in the rotational direction is formed at an obtuse angle with respect to the outer surface, and the downstream wall surface in the rotational direction is formed at an acute angle with respect to the outer surface. A large number of uneven portions are continuously formed in the circumferential direction in parallel with the bus bar, and the inner surface of the stator 6 facing the rotor 4 has a large number of uneven portions parallel to the bus line . The rotation direction upstream side wall surface 11 of the recess 10 provided on the inner surface 9 of the stator 6 is formed in a planar shape with an angle α formed with the inner surface 9 in the range of 150 degrees to 180 degrees, and the rotation direction downstream side wall surface 12. Is formed in a planar shape with an angle β formed with the inner surface 9 in the range of 90 to 145 degrees.
[0016]
By rotating the rotor 4 supported on the rotating shaft at a high speed by the crushing apparatus 1 configured as described above and sucking it from the discharge port 8 with a blower, the rotor 4 is rotated between the rotating rotor 4 and the stator 6. In the gap 5, an airflow flowing from the inlet 7 to the outlet 8 is generated. In this state, the material 13 to be crushed is fed from a feeder (not shown). The charged object 13 is pulverized and discharged from the outlet 8 when it flows through the gap 5. When this object 13 is pulverized, the object 13 flows along the upstream side wall surface 11 in the rotational direction of the recess 10 of the stator 6 by the airflow flowing through the gap 5 and collides with the downstream side wall surface 12 in the rotational direction. This collision has the effect of rounding the corners of the object 13 to be crushed. Further, the rotation direction downstream side wall surface 12 on which the object 13 colliding with the rotation direction downstream side wall surface 12 collides has a large angle β with the inner surface 9 and stands sharply with respect to the inner surface 9. To the next concave portion 10, and may be reflected to the upstream side wall surface 11 side in the rotational direction and collide with the same downstream side wall surface 12 in the rotational direction again, thereby improving the circularity of the object 13 to be crushed. Can do.
[0017]
In this way, in order to efficiently collide the object 13 with the downstream side wall surface 12 in the rotational direction and increase the circularity, the angle α formed between the upstream side wall surface 11 in the rotational direction of the recess 10 and the inner surface 9 is set to 150 degrees. It is preferable that the range is 180 degrees, and the angle β formed between the downstream side wall surface 12 in the rotation direction and the inner surface 9 is in the range of 90 degrees to 145 degrees. The shape of the recess 10 formed by the upstream wall surface 11 in the rotational direction and the downstream wall surface 12 in the rotational direction is not particularly limited, but an apex angle is particularly preferable.
[0018]
In addition, in order to prevent wear of the stator 6 and the rotor 4 that collide with the object 13 to be crushed, the surface of the stator 6 and the surface of the rotor 4 may be lined with titanium. Thus, by lining the surface of the stator 6 and the surface of the rotor 4 with titanium, it was possible to improve the durability against wear by about twice as compared with the case where the lining treatment was not performed.
[0019]
Furthermore, the stator 6 having the recess 10 is attached to an inner peripheral surface having a convex portion provided so as to protrude toward the axial center between the input port 7 and the discharge port 8 of the casing 2. Can be easily attached and detached, and the switching time when switching the stator 6 having different angles α and β according to the particle size to be crushed can be shortened.
[0020]
Although the said Example demonstrated the case where the stator 6 was directly attached to the casing 2, as shown in FIG. 3, the spacer 14 was provided between the casing 2 and the stator 6, and the spacer 14 was changed according to the particle size to grind | pulverize. It is preferable to adjust the gap 5 between the rotor 4 and the stator 6 by exchanging them. Thus, by adjusting the gap 5 through which the object to be pulverized 13 flows by the spacer 14 and changing the flow rate of the object to be pulverized 14, the particle size can be reduced and the pulverization can be efficiently performed.
[0021]
Also, as shown in FIG. 4, one or more ring-shaped weirs 15 are provided on the rotor 4, or as shown in FIG. 5, a ring-shaped weir 16 is provided on the stator 6, so that the airflow flowing through the gap 5 By giving resistance to the coarse particles, it is possible to prevent coarse particles from jumping to the discharge port 8 side, and small particles having a uniform particle diameter can be obtained.
[0022]
Further, when the toner used in the electrophotographic image forming apparatus is manufactured by the pulverizing apparatus 1, the air volume of the blower that sucks the discharge port 8 side is adjusted, and the temperature of the discharge port 8 is adjusted to soften the resin that forms the toner. It is good to set below the point temperature. Thus, the melt countermeasure can be taken by setting the temperature of the discharge port 8 to be equal to or lower than the resin softening point temperature and controlling the temperature inside the pulverizer 1.
[0023]
In addition, as shown in FIG. 6, by providing a cooling jacket 17 on the outer surface of the casing 2 and cooling the inside of the pulverizing apparatus 1, the pulverization efficiency can be further improved and measures against melt in the pulverizing apparatus 1 are provided. Thus, a toner having a high circularity can be produced with a uniform particle size. By developing a latent image formed by electrophotography using this toner, a high-quality image can be stably formed.
[0024]
Further, as shown in FIG. 7, the discharge port 8 and the input port 7 of the pulverizing apparatus 1 are connected to a classifier 18, and the pulverizing apparatus 1 and the classifier 18 constitute a closed circuit so that the object to be crushed 13 is fixed. It can be pulverized into fine particles having a particle size.
[0025]
[Specific Example] For example, a mixture having the following composition was melt-kneaded and cooled, and then coarsely pulverized to obtain a coarsely pulverized product having an average particle size of around 400 μm. This coarsely pulverized product was pulverized by the pulverizer 1.
Styrene-acrylic copolymer 100 parts by weight Carbon black 10 parts by weight Polypropylene 5 parts by weight Zinc salicylate 2 parts by weight The particle size of the pulverized pulverized product was measured with a Coulter counter, and the circularity was determined by using a flow particle image analyzer. Used and measured.
[0026]
[Specific Example 1] As the stator 6, the angle α formed between the upstream wall surface 11 in the rotation direction and the inner surface 9 is 160 degrees, and the angle β formed between the downstream wall surface 12 in the rotation direction and the inner surface 9 is 110 degrees. The stator 6 having the recess 10 was used, and the grinding was performed using the grinding device 1 in which the circumferential speed of the rotor 4 was set to 135 m / s and the gap 5 between the rotor 4 and the stator 6 was set to 1.5 mm. The feed rate was 9.00 kg / h with respect to the target having an average particle diameter of 8.0 μm. As a result, the volume average particle diameter was 7.8 μm, the average circularity was 0.950, and the circularity could be improved. In addition, by providing the casing 2 with the convex portion, the switching time when the stator 6 is removed from the casing 2 for cleaning can be shortened by about 25% compared to the case where the casing 2 is not provided with the convex portion.
[0027]
[Specific Example 2] As shown in FIG. 3, a spacer 14 is provided, the gap 5 between the rotor 4 and the stator 6 is set to 1.0 mm, and a coarsely pulverized product having the same composition as that described above is the same as in Specific Example 1. And crushed with. The feed rate was 8.80 kg / h with respect to the target having an average particle diameter of 8.0 μm. As a result of this pulverization treatment, the volume average particle diameter was 7.6 μm, the average circularity was 0.955, and the circularity could be further improved.
[0028]
[Specific Example 3] As shown in FIG. 4, the rotor 4 was provided with one weir 15, and the pulverization was performed under the same conditions as in Specific Example 1. The feed rate was 8.75 kg / h with respect to the target having an average particle diameter of 8.0 μm. As a result, the volume average particle size was 7.7 μm and the average circularity was 0.953. In addition, as a result of providing two weirs 15 on the rotor 4 and pulverizing under the above conditions, the volume average particle size is 7.6 μm and the average circularity is 0.955. It was possible to improve more.
[0029]
[Specific Example 4] As shown in FIG. 5, the stator 6 was provided with one weir 16, and the others were pulverized under the same conditions as in Specific Example 1. The feed rate was 8.00 kg / h with respect to the target having an average particle diameter of 8.0 μm. As a result, the volume average particle size was 7.7 μm and the average circularity was 0.953. Further, two weirs 16 were provided on the stator 6 and pulverization was performed under the above conditions. As a result, the volume average particle size was 7.6 μm and the average circularity was 0.955. The degree could be improved more.
[0030]
[Specific Example 5] The flow rate of the blower that sucks the discharge port 8 side is adjusted so that the temperature of the discharge port 8 is set to be equal to or lower than the softening point temperature of the resin forming the toner. Processed. The feed rate was 8.00 kg / h with respect to the target having an average particle diameter of 8.0 μm. As a result, the volume average particle size was 7.8 μm and the average circularity was 0.950. Further, as shown in FIG. 6, a cooling jacket 17 is provided on the outer surface of the casing 2, and the pulverization process is performed under the above conditions while cooling the inside of the pulverizer 1, so that the same result as above can be obtained. It was.
[0031]
[Specific Example 6] As shown in FIG. 7, the pulverization apparatus 1 and the classifier 18 constitute a closed circuit, and the pulverization process was performed under the same conditions as in Specific Example 1. At that time, the feed rate was 8.00 kg / h with the aim of an average particle diameter of 8.0 μm. As a result, the volume average particle size was 7.8 μm and the average circularity was 0.950. A coarse particle size distribution with a coarse powder content (wt%) of 16 μm or more was 0 wt% could be obtained.
[0032]
[Comparative Example] As shown in FIG. 9, a coarsely pulverized product having the same composition as that of Example 1 was used, and a mechanical pulverizer in which concave portions of the rotor 4 and the stator 6 were formed by arcs was used. Grinding was performed with the peripheral speed set to 135 m / s and the gap 5 between the rotor 4 and the stator 6 set to 1.5 mm. The feed rate was 9.00 kg / h with respect to the target having an average particle size of 8.0 μm. As a result, the volume average particle diameter was 7.8 μm and the average circularity was 0.940.
[0033]
【The invention's effect】
As described above, according to the present invention, the outer surface of the rotor has an upstream side wall surface in the rotational direction formed at an obtuse angle with respect to the outer surface, and a number of irregularities in which the downstream side wall surface in the rotational direction is formed at an acute angle with respect to the outer surface. Are formed continuously in the circumferential direction in parallel with the generatrix, the upstream side wall surface in the rotational direction of the concave portion of the stator is formed at 150 to 180 degrees with respect to the inner surface, and the downstream side wall surface in the rotational direction is formed with respect to the inner surface. 90 to 145 degrees, the object to be pulverized can collide with the downstream side wall surface in the rotational direction multiple times while flowing along the upstream side wall surface in the rotational direction. The circularity of the pulverized product can be improved.
[0034]
In addition, the stator can be attached to the casing by detachably attaching the stator to an inner peripheral surface having a convex portion provided so as to protrude from the inlet and outlet of the casing to which the object to be crushed is charged. On the other hand, it can be easily attached and detached, and the switching time when the stator is removed from the casing for cleaning can be shortened to improve work efficiency.
[0035]
Furthermore, a spacer for adjusting the gap between the stator and the rotor is provided between the casing and the stator, and the speed of the airflow flowing through the gap is varied by adjusting the gap according to the particle size, thereby reducing the size of the pulverized material to be formed. The particle size can be reduced and efficient grinding can be performed.
[0036]
In addition, by providing one or more weirs that provide resistance to the airflow flowing through the gap between the stator and the rotor on the rotor or the stator, it is possible to prevent the coarse particles from entering the outlet side of the pulverizer. It is possible to achieve a small particle size and uniform particle size.
[0038]
Further, by using this pulverizing apparatus in a toner manufacturing apparatus, a toner having a uniform particle diameter and a high circularity can be manufactured.
[0039]
Furthermore, the crushing efficiency of the crusher can be reduced by lowering the discharge port of the crusher casing below the softening point of the resin forming the toner, or by providing a cooling jacket on the outer peripheral surface of the crusher casing to cool the inside of the crusher. As a result, it is possible to reliably take measures against melting in the pulverizing apparatus, and to manufacture a toner having a high circularity with a uniform particle size.
[0040]
Further, by developing a latent image formed by electrophotography using this toner, a high-quality image can be stably formed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a pulverizing apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing the shapes of the outer surface of the rotor and the inner surface of the stator in the above embodiment.
FIG. 3 is a configuration diagram of a second embodiment.
FIG. 4 is a configuration diagram of a third embodiment.
FIG. 5 is a configuration diagram of a fourth embodiment.
FIG. 6 is a configuration diagram of a fifth embodiment.
FIG. 7 is a configuration diagram of a sixth embodiment.
FIG. 8 is a configuration diagram of a rotor and a stator of a conventional example.
FIG. 9 is a schematic diagram showing the shapes of the outer surface of the rotor and the inner surface of the stator in the conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1; Grinding device, 2; Casing, 3; Rotating shaft, 4; Rotor, 5;
6; stator, 7; inlet, 8; outlet, 9; inner surface of stator,
10; concave portion, 11; upstream side wall surface in the rotational direction, 12; downstream side wall surface in the rotational direction.

Claims (7)

回転軸に支持され、外側表面には回転方向上流側壁面を外表面に対して鈍角で形成し、回転方向下流側壁面を外表面に対して鋭角に形成した多数の凹凸部を母線と平行に周方向に連続させた回転子と、回転子の外側に微小な間隔をおいて配置され、内側表面に母線と平行な多数の凹凸部を周方向に連続させた固定子との間に被粉砕物を通して微粉砕すると共に球形化する粉砕装置であって、
固定子の凹部の回転方向上流側壁面を内側表面に対して150度〜180度の角度で形成し、回転方向下流側壁面を内側表面に対して90度〜145度の角度で形成し、被粉砕物が前記回転方向上流側壁面に沿って移動し、前記回転方向の同一の下流側壁面に複数回衝突することを特徴とする粉砕装置。
Supported by the rotating shaft, on the outer surface, the upstream side wall surface in the rotational direction is formed at an obtuse angle with respect to the outer surface, and a number of concave and convex portions formed with the downstream side wall surface in the rotational direction at an acute angle with respect to the outer surface are parallel to the generatrix. Grinding between a rotor that is continuous in the circumferential direction and a stator that is arranged on the outer surface of the rotor with a small interval and that has a large number of irregularities parallel to the generatrix on the inner surface. A pulverizing device that pulverizes and spheroidizes through an object,
The rotation direction upstream side wall surface of the concave portion of the stator is formed at an angle of 150 ° to 180 ° with respect to the inner surface, and the rotation direction downstream side wall surface is formed at an angle of 90 ° to 145 ° with respect to the inner surface. The pulverized apparatus moves along the upstream side wall surface in the rotational direction and collides with the same downstream side wall surface in the rotational direction a plurality of times.
上記固定子を、ケーシングの被粉砕物を投入する投入口と排出口の間の軸心側に突出して設けた凸部からなる内周面に着脱自在に取り付けた請求項1記載の粉砕装置。  2. The pulverizing apparatus according to claim 1, wherein the stator is detachably attached to an inner peripheral surface formed of a convex portion provided so as to protrude toward an axial center between an inlet and an outlet into which an object to be crushed is input. 上記回転子又は固定子に、固定子と回転子との間隙を流れる気流の抵抗となる堰を1又は複数個設けた請求項1又は2記載の粉砕装置。The crushing apparatus according to claim 1 or 2, wherein the rotor or the stator is provided with one or a plurality of weirs which serve as resistance of the airflow flowing through the gap between the stator and the rotor. 請求項1乃至3のいずれかの粉砕装置を有することを特徴とするトナーの製造装置。A toner manufacturing apparatus comprising the pulverizing apparatus according to claim 1. 上記粉砕装置のケーシングの排出口をトナーを形成する樹脂の軟化点温度以下にする請求項4記載のトナーの製造装置。The toner manufacturing apparatus according to claim 4, wherein a discharge port of a casing of the pulverizing apparatus is set to be equal to or lower than a softening point temperature of a resin forming the toner. 上記粉砕装置のケーシングの外周面に冷却用ジャケットを設けた請求項4記載のトナーの製造装置。The toner manufacturing apparatus according to claim 4, wherein a cooling jacket is provided on an outer peripheral surface of a casing of the pulverizer. 請求項4乃至6のいずれかに記載のトナーの製造装置で製造したことを特徴とするトナー。A toner manufactured by the toner manufacturing apparatus according to claim 4.
JP2001002068A 2001-01-10 2001-01-10 Grinding device, toner manufacturing device and toner Expired - Fee Related JP4183388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002068A JP4183388B2 (en) 2001-01-10 2001-01-10 Grinding device, toner manufacturing device and toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002068A JP4183388B2 (en) 2001-01-10 2001-01-10 Grinding device, toner manufacturing device and toner

Publications (2)

Publication Number Publication Date
JP2002204966A JP2002204966A (en) 2002-07-23
JP4183388B2 true JP4183388B2 (en) 2008-11-19

Family

ID=18870626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002068A Expired - Fee Related JP4183388B2 (en) 2001-01-10 2001-01-10 Grinding device, toner manufacturing device and toner

Country Status (1)

Country Link
JP (1) JP4183388B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956214B2 (en) * 2007-02-09 2012-06-20 キヤノン株式会社 Toner particle manufacturing apparatus and manufacturing method
JP7065580B2 (en) * 2017-09-29 2022-05-12 株式会社明治 Atomizer

Also Published As

Publication number Publication date
JP2002204966A (en) 2002-07-23

Similar Documents

Publication Publication Date Title
JP3992224B2 (en) Fluidized tank type pulverizing and classifying machine for producing electrophotographic toner and toner production method using the same
JP3139721B2 (en) Fluidized bed jet mill
US20100170973A1 (en) Pulverizing and coarse powder classifying apparatus and fine powder classifying apparatus
JP4205888B2 (en) Powder processing apparatus and powder processing method
JP4183388B2 (en) Grinding device, toner manufacturing device and toner
JP2001259451A (en) Pulverizing device and powdery product manufacturing system
JP2005195762A (en) Method for manufacturing toner
EP1616624B1 (en) Milling and classifying apparatus, pneumatic impact pulverizer, air classifier and method for producing toner
JP3900311B2 (en) Mechanical crusher
JPH09187732A (en) Preparation of toner
JP3890240B2 (en) Toner production method
JPS6161627A (en) Method for sphering toner
JPH10211438A (en) Mechanical type grinder and production of toner for electrophotography using said grinder
JP4291685B2 (en) Toner production method
JP3753894B2 (en) Crusher
JP4738770B2 (en) Grinding device and grinding method
JP2004160371A (en) Crusher and crushing method
JP3748171B2 (en) Pulverizer
JP3740202B2 (en) Toner production method
JP2006314946A (en) Crushing device and crushing method
JP3548192B2 (en) Method for producing toner for developing electrostatic images and impact-type pulverizer
JP4870885B2 (en) Grinding device and toner manufacturing method using the same
JP3693683B2 (en) Toner manufacturing method for developing electrostatic image
JP3102902B2 (en) Collision type supersonic jet crusher
JPH11197527A (en) Mechanical pulverizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees