JP4291685B2 - Toner production method - Google Patents

Toner production method Download PDF

Info

Publication number
JP4291685B2
JP4291685B2 JP2003420086A JP2003420086A JP4291685B2 JP 4291685 B2 JP4291685 B2 JP 4291685B2 JP 2003420086 A JP2003420086 A JP 2003420086A JP 2003420086 A JP2003420086 A JP 2003420086A JP 4291685 B2 JP4291685 B2 JP 4291685B2
Authority
JP
Japan
Prior art keywords
pulverization
powder
chamber
pulverizing
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003420086A
Other languages
Japanese (ja)
Other versions
JP2005177579A (en
Inventor
信康 牧野
哲也 田中
秀行 山東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003420086A priority Critical patent/JP4291685B2/en
Publication of JP2005177579A publication Critical patent/JP2005177579A/en
Application granted granted Critical
Publication of JP4291685B2 publication Critical patent/JP4291685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)

Description

本発明は、粉体材料、特に電子写真用トナー作製に用いられる粉体材料を粉砕・分級して、微粉体を製造するための流動層式粉砕装置に関するものである。   The present invention relates to a fluidized bed pulverizer for pulverizing and classifying a powder material, particularly a powder material used for producing an electrophotographic toner, to produce a fine powder.

従来から知られている流動層式粉砕装置は、例えば電子写真用トナーのように、所望のミクロンオーダーの微粉体を製造するための装置として用いられ、筒状側壁の内部に、少なくとも複数の粉砕ノズル、粉砕室、および粉砕室の上方に設けられた回転する分級ロータ(回転式分級機ともいう)が配置されてなるものが一般的である。
該流動層式粉砕装置を用いて微粉体を製造するには、粉砕の対象とする粉体材料、前記トナーの場合にはトナーを構成する樹脂及び着色剤等の材料からなる混練物を粗粉砕することによって作製されるトナー粉体材料(トナー原料と言う)を予め準備しておく。
次に、粉砕室内に該粉体材料を供給した後、複数の粉砕ノズルから圧縮空気を噴射して形成されるジェット気流によって、該粉体材料を加速して粉体材料同士を衝突させて粉砕し、その後粉砕された粉体材料は発生する上昇気流によって回転する分級ロータに導かれて該分級ロータによって分級され、所望の粒径以下の粉体材料は分級ロータの内側を通って排出し製品として回収され、所望の粒径になっていない粉体材料(粗粉)は遠心力によって分級ロータの外側に押出されて側壁伝いに再び粉砕室に戻されて繰り返し粉砕が行なわれ、こうして流動層式粉砕装置を用いた粉砕分級作業が行なわれる。
A conventionally known fluidized bed type pulverizer is used as an apparatus for producing a desired micron-order fine powder such as an electrophotographic toner, and at least a plurality of pulverizers are provided inside a cylindrical side wall. Generally, a nozzle, a crushing chamber, and a rotating classification rotor (also referred to as a rotary classifier) provided above the crushing chamber are arranged.
In order to produce a fine powder using the fluidized bed type pulverizer, a powder material to be pulverized, and in the case of the toner, a kneaded material made of a material such as a resin and a colorant constituting the toner is roughly pulverized. Thus, a toner powder material (referred to as toner raw material) prepared in advance is prepared in advance.
Next, after supplying the powder material into the pulverization chamber, the powder material is accelerated by a jet stream formed by injecting compressed air from a plurality of pulverization nozzles, and the powder materials collide with each other and pulverize. Then, the pulverized powder material is guided to a classifying rotor that is rotated by the generated rising airflow and classified by the classifying rotor, and the powder material having a desired particle size or less is discharged through the inside of the classifying rotor to be a product. The powder material (coarse powder) that is not collected in the desired particle size is extruded to the outside of the classifying rotor by centrifugal force, returned to the grinding chamber along the side wall, and repeatedly crushed. A pulverizing and classifying operation using a pulverizing apparatus is performed.

図1は、従来の流動層式粉砕装置の一例を示す概略断面図である。
図1において、粉砕装置本体全体が略円筒状の筐体からなり、符号(1)は粉砕室を、(2)は粉体材料が供給される供給管を、(3)は粉砕室(1)に送り込まれる圧縮空気を搬送する複数の粉砕ノズルを、(4)は粉砕された粉体材料を分級するロータ(分級ロータ)を、(5)は粉砕し所望粒径に分級されて完成された粉体をエアーと共に排出する排気管をそれぞれ示す。
図1の従来の流動層式粉砕装置においては、先ず、粉砕室(1)内部には一定量の粉体材料が充填され、次に相互に対向して設置される複数の粉砕ノズル(3)から排出される圧縮空気が、対向する各々の粉砕ノズル(3)の出口延長線が交わる付近、即ち粉砕室(1)の中心軸付近で衝突し、その際空気に導かれ加速された粉体材料も、粉砕室()の中心軸付近で衝突し、粉砕作用を受ける。
一方、排気管(5)と連通する吸引ファン等の吸引器(図示せず)によって吸引して、粉砕された粉体材料を排気管(5)に送流させる。この際、粉砕室(1)上部に設置されているロータ(4)が回転しているので、所望の粒径に粉砕された粉体材料は排気管(5)を通して排出され製品として回収されるが、所望の粒径よりも大きな粉体材料(粗粉)は分級ロータ(4)の遠心力によって分級ロータ(4)の外側に導かれ粉砕室(1)の壁面を沿って下方に導かれ、再び粉砕作用を受けることとなる。
FIG. 1 is a schematic cross-sectional view showing an example of a conventional fluidized bed pulverizer.
In FIG. 1, the entire pulverizing apparatus main body is composed of a substantially cylindrical casing, wherein reference numeral (1) denotes a pulverizing chamber, (2) denotes a supply pipe to which a powder material is supplied, and (3) denotes a pulverizing chamber (1 (4) is a rotor for classifying the pulverized powder material (classification rotor), (5) is pulverized and classified to a desired particle size and completed. Exhaust pipes for discharging the powder together with air are shown.
In the conventional fluidized bed type pulverizing apparatus of FIG. 1, first, a pulverizing chamber (1) is filled with a certain amount of powder material, and then a plurality of pulverizing nozzles (3) installed facing each other. Compressed air discharged from the cylinder collides near the exit extension line of each of the opposing pulverizing nozzles (3), that is, near the central axis of the pulverizing chamber (1). The material also collides near the central axis of the crushing chamber ( 1 ) and receives a crushing action.
On the other hand, the pulverized powder material is sent to the exhaust pipe (5) by suction with a suction device (not shown) such as a suction fan communicating with the exhaust pipe (5). At this time, since the rotor (4) installed at the upper part of the crushing chamber (1) is rotating, the powder material pulverized to a desired particle size is discharged through the exhaust pipe (5) and collected as a product. However, the powder material (coarse powder) larger than the desired particle size is guided to the outside of the classification rotor (4) by the centrifugal force of the classification rotor (4) and guided downward along the wall surface of the grinding chamber (1). Then, it will be crushed again.

また、所望の粒径に粉砕された粉体材料を排気管(5)から排出し製品として回収していくと、粉砕室(1)内部の粉体材料の量が減少するため、供給管(2)から新たに粉体材料を供給して、常に粉砕室(1)内の粉体材料の量が一定になるように設定して連続粉砕を行わせることができる。
しかしながら、従来の流動層式粉砕装置においては、所望の粒径を得るためにはこのような粉砕室内部での繰り返し粉砕が必要となるが、粉砕室内部に充填された一定量の粉体材料は、周囲に設置された複数の粉砕ノズルから噴出するジェット噴流に導かれ加速し対向衝突するため、体積粉砕される際、表面粉砕の割合も多くなって超微粉を発生させる過粉砕を起こし、これが粉砕効率あるいは生産能力を低下させる原因の一つになっている。
Further, when the powder material pulverized to a desired particle size is discharged from the exhaust pipe (5) and recovered as a product, the amount of the powder material inside the pulverization chamber (1) decreases, so the supply pipe ( The powder material can be newly supplied from 2), and the continuous pulverization can be performed by always setting the amount of the powder material in the pulverization chamber (1) to be constant.
However, in the conventional fluidized bed type pulverizer, in order to obtain a desired particle size, it is necessary to repeatedly pulverize in the pulverization chamber. However, a certain amount of powder material filled in the pulverization chamber. Is accelerated and collides oppositely by being guided by jet jets ejected from a plurality of pulverization nozzles installed in the surroundings, so when volume pulverization occurs, the ratio of surface pulverization increases and excessive pulverization that generates ultrafine powder occurs. This is one of the causes of reducing the grinding efficiency or production capacity.

流動層式粉砕装置を用いる場合、粗粉と超微粉が作製されて粉砕あるいは生産効率を低下させている問題があり、次に、従来からこの問題を解決することを目的として提案されている技術について説明する。
例えば、所望粒径の粉砕物を効率よく得る目的に、流動層式粉砕装置内の粉砕室に設けた底板上に堆積させた粉体材料の上面が常に粉砕ノズルからの気流噴出位置に保持されるように、底板を上下動させる底板位置調整装置を設置する機構が提案されている(例えば、特許文献1参照)。
しかしながら、特許文献1に開示されている流動層式粉砕装置によると、底板上に堆積した粉体材料の上面をノズルの気流噴出位置に保持はできるものの、従来の流動層式粉砕装置と比較して所望粒径の粉砕物を効率よく得ることは困難であると考えられる。
すなわち、特許文献1に開示されている流動層式粉砕装置では、装置底板上に堆積した粉体材料の上面を保持する方法として、例えば、装置底板上に堆積した粉体材料の重量を計測し、一定重量に保つことによって堆積する粉体材料の上面を保持し、これによって多少粉体効率の向上が期待できるものの、粉体材料が受ける粉砕作用自体は、従来の流動層式粉砕装置と変わらず、所望の粒径を得るために必要な粉砕室内部でのくり返し粉砕が不十分となって、粉砕効率を低下させる原因の一つになっているものと考えられる。
In the case of using a fluidized bed type pulverizer, there is a problem that coarse powder and ultrafine powder are produced and pulverized or the production efficiency is lowered. Next, technology that has been proposed for the purpose of solving this problem from the past. Will be described.
For example, for the purpose of efficiently obtaining a pulverized product having a desired particle size, the upper surface of the powder material deposited on the bottom plate provided in the pulverization chamber in the fluidized bed type pulverizer is always held at the position where the air flow is ejected from the pulverization nozzle. As described above, a mechanism for installing a bottom plate position adjusting device that moves the bottom plate up and down has been proposed (see, for example, Patent Document 1).
However, according to the fluidized bed crusher disclosed in Patent Document 1, although the upper surface of the powder material deposited on the bottom plate can be held at the airflow ejection position of the nozzle, compared with the conventional fluidized bed crusher. Thus, it is considered difficult to efficiently obtain a pulverized product having a desired particle size.
That is, in the fluidized bed pulverization apparatus disclosed in Patent Document 1, as a method for holding the upper surface of the powder material deposited on the apparatus bottom plate, for example, the weight of the powder material deposited on the apparatus bottom plate is measured. Although the upper surface of the powder material to be deposited is maintained by maintaining a constant weight and this can be expected to improve the powder efficiency to some extent, the pulverizing action itself received by the powder material is different from that of a conventional fluidized bed type pulverizer. However, it is considered that the repeated pulverization inside the pulverization chamber necessary for obtaining a desired particle size is insufficient, which is one of the causes for reducing the pulverization efficiency.

また、別の粉砕効率を向上させるための装置として、衝突部材をその中心が粉砕室の中心軸上に位置するように設置し、該衝突部材に対して粉体材料と共に高速ガスを垂直に噴射させて、粉体材料を衝突部材に衝突させることによって粉砕し、所望粒径の粉砕物を得る技術が提案されている(例えば、特許文献2参照)。
しかしながら、特許文献2に開示されている流動層式粉砕装置においては、ノズルから噴射される高速ガスと粉砕室内部の粉体材料を衝突部材に衝突させる際に、粉砕ノズル圧力を上げなければならないという問題がある。
その理由は、図1によって先に示した従来の流動層式粉砕装置においては、対向し設置される複数のノズルから高速ガスが噴射されるので、粉体材料同士が高速ガスと共に加速された相対速度を持って衝突し粉砕作用を受けるのに対し、特許文献2の装置によれば、高速ガスと共に粉体材料同士の相対速度が加速されることがなく、より高い粉砕効果を得るには、粉砕ノズルの圧力を上げて、より高速で粉体材料を衝突部材に衝突させなければならなくなり、また、ノズルから噴射された高速ガスによって被粉砕物は衝突部材に衝突するものの、所望の粒径を得るための粉砕室内部でのくり返し粉砕ができないために、粉砕効率を低下させる原因の一つになるものと考えられる。
In addition, as another device for improving the pulverization efficiency, the collision member is installed so that the center thereof is located on the central axis of the pulverization chamber, and the high-speed gas is jetted vertically together with the powder material to the collision member. Thus, a technology has been proposed in which a powder material is pulverized by colliding with a collision member to obtain a pulverized product having a desired particle size (see, for example, Patent Document 2).
However, in the fluidized bed pulverizer disclosed in Patent Document 2, the pulverization nozzle pressure must be increased when the high-speed gas injected from the nozzle and the powder material in the pulverization chamber collide with the collision member. There is a problem.
The reason for this is that in the conventional fluidized bed type pulverization apparatus previously shown in FIG. 1, the high-speed gas is injected from a plurality of nozzles arranged opposite to each other, so that the powder materials are accelerated together with the high-speed gas. While colliding with speed and receiving a crushing action, according to the apparatus of Patent Document 2, the relative speed between the powder materials is not accelerated together with the high-speed gas, and in order to obtain a higher crushing effect, The pressure of the pulverizing nozzle must be increased to cause the powder material to collide with the collision member at a higher speed, and the object to be crushed collides with the collision member by the high-speed gas injected from the nozzle, but the desired particle size This is considered to be one of the causes for reducing the pulverization efficiency because it cannot be repeatedly pulverized in the pulverization chamber to obtain the slag.

また、特許文献1および特許文献2に記載の技術は、粉砕ノズル周辺の技術に関するものであるが、超微粉を抑制するために工夫については一切記載されていない。
さらに、近年の電子写真方式による画像の高画質化に伴い、電子写真用トナーについても小粒径化あるいは少量多品種の要求が高く、トナー生産の迅速化と効率化が望まれ、そのために流動層式粉砕装置についても従来の装置に比べて、品種の異なる粉体に粉砕分級作業を切り替える際にその切り替えが容易に時間が短かくできるものが望まれている。
Moreover, although the technique of patent document 1 and patent document 2 is related to the technique around a crushing nozzle, about the device for suppressing ultrafine powder is not described at all.
Furthermore, along with the recent improvement in image quality by electrophotography, there is a high demand for electrophotographic toners having a small particle size or a small quantity and a wide variety of products, and there is a demand for rapid and efficient toner production. As for the layer-type pulverizer, it is desired that when the pulverization and classification operation is switched to a powder of a different type, the switching can be easily performed in a shorter time than the conventional apparatus.

特開平11−226443号公報JP-A-11-226443 特開2000−5621号公報JP 2000-5621 A

本発明の第一の課題は、上記の実情に鑑み、粉体材料、特に電子写真用トナー作製に用いられる粉体材料を効率良く粉砕し、過粉砕を防止可能とする流動層式粉砕装置およびそれを用いた粉砕・分級方法を提供することである。
また、本発明の第二の課題は、流動層式粉砕装置の粉砕室内における衝突粉砕効率向上を達成し、高効率で粉砕して所望の粒径の粒子を得ることを可能とすることができる流動層式粉砕装置およびそれを用いた粉砕・分級方法を提供することである。
さらに、本発明の第三の課題は、品種切り替え時間を短縮することが可能な流動層式粉砕装置およびそれを用いた粉砕・分級方法を提供することである。
In view of the above circumstances, a first problem of the present invention is a fluidized bed type pulverizing apparatus capable of efficiently pulverizing a powder material, particularly a powder material used for producing an electrophotographic toner, and preventing over-pulverization. It is to provide a pulverization / classification method using the same.
In addition, the second problem of the present invention is that it is possible to achieve improved collision pulverization efficiency in the pulverization chamber of the fluidized bed pulverizer and to obtain particles having a desired particle size by pulverization with high efficiency. It is to provide a fluidized bed type pulverizing apparatus and a pulverizing / classifying method using the same.
Furthermore, the third object of the present invention is to provide a fluidized bed type pulverization apparatus capable of shortening the kind change time and a pulverization / classification method using the same.

記課題は、本発明の(1)「略円筒状の筐体からなり、粉砕室、圧縮空気を噴射する複数の粉砕ノズル、該粉砕室上部に設けられた分級ロータ、噴射される前の圧縮空気を加熱するための加熱手段、及び、粉砕室の側壁及び底部の温度を調節する手段を少なくとも具備し、粉体材料が供給された粉砕室内で、複数の粉砕ノズルから噴射される圧縮空気によって該粉体材料を粉砕し、粉砕された該粉体材料を該粉砕室から回転する該分級ロータ内部に流入させて微粉と粗粉とに遠心分級する流動層式粉砕装置を用い、粉体材料が供給された粉砕室内で、圧縮空気を複数の粉砕ノズルから噴射して粉体材料を粉砕し、粉砕された該粉体材料を該粉砕室から回転する該分級ロータ内部に流入させて微粉と粗粉とに遠心分級するトナーの製造方法であって、該粉体材料は、電子写真用トナーを構成する少なくとも樹脂と着色剤とからなる混練物を粗粉砕して得られるトナー原料であり、露点−50℃以上−10℃以下の圧縮空気を0℃以上50℃以下に加熱し、かつ前記粉砕室の側壁の温度を0〜40℃に調節することを特徴とするトナーの製造方法」、(2)「前記粉砕室の底部の温度が−5〜30℃であることを特徴とする前記第(1)項に記載のトナーの製造方法」、(3)「前記粉砕ノズルから噴出する圧縮空気の圧力を0.2〜1.0MPaに調節することを特徴とする前記第(1)項または第(2)項に記載のトナーの製造方法」、(4)「該分級ロータの周速を20〜50m/sに調節することを特徴とする前記第(1)項乃至第(3)項に記載の何れかに記載のトナーの製造方法」、(5)「表面が導電性離型剤で処理された複数の羽根を有する分級ロータが設けられた流動層式粉砕装置を用いることを特徴とする前記第(1)項乃至第(4)項の何れかに記載のトナーの製造方法」、(6)「該側壁内面が導電性離型剤で処理された粉砕室を有する流動層式粉砕装置用いることを特徴とする前記第(1)項乃至第(5)項の何れかに記載のトナーの製造方法」、(7)「2〜8個の粉砕ノズルを有する流動層式粉砕装置用いることを特徴とする前記第(1)項乃至第(6)項の何れかに記載のトナーの製造方法」、(8)「1〜5個の分級ロータを有する流動層式粉砕装置を用いることを特徴とする前記第(1)項乃至第(7)項の何れかに記載のトナーの製造方法」、(9)「対応設置される2つの粉砕ノズル間の距離Lと粉砕室の高さHとが、2L≦H≦5Lの関係を満たすように設置された流動層式粉砕装置を用いることを特徴とする前記第(1)項乃至第(8)項の何れかに記載のトナーの製造方法」、(10)「粉砕室の高さHを調整するスペーサが設けられた流動層式粉砕装置を用いることを特徴とする前記第(9)項に記載のトナーの製造方法」により達成される。
Upper Symbol challenge consists (1) "substantially cylindrical housing of the present invention, the grinding chamber, a plurality of grinding nozzles for injecting compressed air, said grinding chamber classifying rotor provided above, before being injected Compressed air sprayed from a plurality of pulverization nozzles in the pulverization chamber provided with at least a heating means for heating the compressed air and a means for adjusting the temperature of the side wall and bottom of the pulverization chamber. The powder material is pulverized by using a fluidized bed type pulverizing apparatus that pulverizes the pulverized powder material into the classification rotor rotating from the pulverization chamber and centrifugally classifies the powder material into fine powder and coarse powder. In the pulverization chamber to which the material is supplied, compressed air is sprayed from a plurality of pulverization nozzles to pulverize the powder material, and the pulverized powder material flows into the classification rotor rotating from the pulverization chamber to make fine powder. And a method of manufacturing toner that is centrifugally classified into coarse powder The powder material is a toner raw material obtained by coarsely pulverizing a kneaded material comprising at least a resin and a colorant constituting electrophotographic toner, and has a dew point of −50 ° C. to −10 ° C. in compressed air. The toner is heated to 0 ° C. or more and 50 ° C. or less, and the temperature of the side wall of the pulverization chamber is adjusted to 0 to 40 ° C. ”, (2)“ The temperature of the bottom of the pulverization chamber is The method for producing a toner according to (1) above, wherein the pressure is from -5 to 30 ° C., and (3) “the pressure of the compressed air ejected from the pulverizing nozzle is set to 0.2 to 1.0 MPa. (4) “Adjusting the peripheral speed of the classifying rotor to 20 to 50 m / s,” wherein the toner production method according to the above item (1) or (2) is characterized. The toner according to any one of (1) to (3) (Method), (5) The above-mentioned items (1) to (5), wherein a fluidized bed type pulverizer provided with a classification rotor having a plurality of blades whose surfaces are treated with a conductive release agent is used. (4) The method for producing a toner according to any one of Items 4) and (6), wherein the fluidized bed pulverizing apparatus having a pulverizing chamber whose inner wall is treated with a conductive release agent is used. (1) Item (1), wherein the method for producing a toner according to any one of Items (5) to (7) is a fluidized bed type pulverizer having 2 to 8 pulverizing nozzles. Item 1 to Item (6), wherein the method for producing a toner according to any one of Items (6) to (6) is used, and (8) a fluidized bed type pulverizer having 1 to 5 classification rotors is used. Thru | or the manufacturing method of the toner in any one of (7) ", (9)" Two crushing noses installed correspondingly (1) to (8), wherein a fluidized bed pulverizer is used such that the distance L between them and the height H of the pulverization chamber satisfy a relationship of 2L ≦ H ≦ 5L. The method for producing a toner according to any one of items 1) and (10), wherein the fluidized bed type pulverizer provided with a spacer for adjusting the height H of the pulverization chamber is used. The toner production method described in 1) is achieved.

本発明の流動層式粉砕装置を用いて、粉体材料、特に電子写真用トナー作製に用いられる粉体材料の粉砕を行なうと、該複数の粉砕ノズルから噴射される圧縮空気が加熱されたものであるため、粉体材料の過粉砕を起こしにくくなって微粉の発生量が少なくなり、高効率で粉砕でき、かつ分級ロータによる微粉と粗粉との遠心分級が効率的に行なうことができ、粉体製品、特に電子写真用トナーの生産性を向上させることができる。   When the powder material, especially the powder material used for producing the electrophotographic toner is pulverized using the fluidized bed pulverizer of the present invention, the compressed air injected from the pulverization nozzles is heated. Therefore, it is difficult to cause excessive pulverization of the powder material, the generation amount of fine powder is reduced, it can be pulverized with high efficiency, and the centrifugal classification of fine powder and coarse powder by the classification rotor can be performed efficiently, Productivity of powder products, particularly toner for electrophotography, can be improved.

以下に、本発明の流動層式粉砕装置およびそれを用いた粉砕・分級方法について詳細に説明する。
本発明の流動層式粉砕装置は、粉砕装置本体全体が略円筒状の筐体からなり、複数の粉砕ノズルと、外部から供給された粉体材料が充填されかつ粉砕ノズルからの圧縮空気によって該粉体原料が粉砕される粉砕室と、分級ロータとを少なくとも具備し、粉砕室内で粉砕材料を微粉と粗粉に粉砕し、さらに粉砕された微粉と粗粉を回転する分級ロータで遠心分級するものである点においては、従来からの図1に示されるような流動層式粉砕装置と変わりがないものである。
図2は、本発明の流動層式粉砕装置の一例を示す概略断面図である。
図2に示される流動層式粉砕装置は、該粉砕装置本体全体が略円筒状の筐体からなり、粉砕室(1)、粉体原料を供給する供給管(2)、粉砕室(1)に送り込まれる圧縮空気を送流する複数の粉砕ノズル(3)、粉砕された粉体原料(粉砕物とも言う)を分級する分級ロータ(4)、及び粉砕し所望粒径に分級された粉砕物を空気と共に排出する排気管(5)を少なくとも具備するものであるが、圧縮空気の加熱手段(7)が設けられたものであることが本発明の流動層式粉砕装置の特徴とするところである。
従来からある流動層式粉砕装置に、圧縮空気の加熱手段(7)を設けることにすれば、本発明の流動層式粉砕装置として適用可能である。従来からある流動層式粉砕装置には、商品として、ホソカワミクロン(株)製のものとしては、商品名がカウンタージェットミルAFGがあり、電子写真等トナーの作製には型式100〜630AFGのものを用いることができ、三井鉱山(株)製のものとしては、商品名がコンダックスミルCGSがあり、電子写真等トナーの作製に型式CGS32〜100を用いることができ、また、栗本鐵工(株)製のものとしては、商品名がクロスジェットミルKJがあり、電子写真等トナーの作製に用いることができる。
Hereinafter, the fluidized bed type pulverizing apparatus and the pulverizing / classifying method using the same will be described in detail.
The fluidized bed type pulverization apparatus of the present invention comprises a substantially cylindrical casing as a whole, and is filled with a plurality of pulverization nozzles, powder material supplied from the outside, and compressed air from the pulverization nozzles. At least a pulverizing chamber in which the powder raw material is pulverized and a classification rotor are provided. In the pulverizing chamber, the pulverized material is pulverized into fine powder and coarse powder, and further, the pulverized fine powder and coarse powder are centrifuged and classified with a classification rotor. In that respect, it is the same as the conventional fluidized bed type pulverizer as shown in FIG.
FIG. 2 is a schematic cross-sectional view showing an example of the fluidized bed type pulverizer of the present invention.
The fluidized bed type pulverizer shown in FIG. 2 has a pulverizer main body consisting of a substantially cylindrical casing, a pulverization chamber (1), a supply pipe (2) for supplying powder raw materials, and a pulverization chamber (1). A plurality of pulverizing nozzles (3) for sending compressed air fed to the slab, a classification rotor (4) for classifying the pulverized powder raw material (also referred to as pulverized product), and a pulverized product that has been pulverized and classified to a desired particle size Is provided with at least an exhaust pipe (5) that discharges the air together with air, but is characterized in that it is provided with heating means (7) for compressed air. .
If a heating means (7) for compressed air is provided in a conventional fluidized bed grinder, the fluidized bed grinder of the present invention can be applied. In the conventional fluidized bed type pulverizer, as a product manufactured by Hosokawa Micron Co., Ltd., the product name is Counterjet Mill AFG, and a toner of type 100 to 630 AFG is used for production of toner such as electrophotography. As a product manufactured by Mitsui Mining Co., Ltd., there is a trade name “Condax Mill CGS”, model CGS32-100 can be used for the production of toner such as electrophotography, and Kurimoto Steel Works Co., Ltd. The product manufactured by the company is the cross jet mill KJ, which can be used to produce toner such as electrophotography.

流動層式粉砕装置に設けられるこの加熱手段は、粉体原料の過粉砕による超微粉の発生を抑制するためのものであり、そのために加熱手段を必ずしも常時稼働させる必要はなく、必要に応じて稼働させるようにしても良い。
空気は、通常、圧縮されると発熱する特性を持っているため、従来から、トナーの粉砕等に用いる圧縮空気の温度制御は、冷却機を通して行なうのが一般的であり、従って、本発明においても、加熱手段を稼働させないで、粉砕状況によっては圧縮空気をそのまま使用することができる。
圧縮空気の温度制御は、過粉砕を低減させ超微粉の発生を抑制させるのに重要であり、温度が低過ぎると、粉体原料の過粉砕が起こりやすく、一方、温度が高いと粉体原料の表面が暖められ軟化して粉砕しにくくなり、すなわち、粉砕原料の軟化点に近づく程割れなくなる性質を応用して、粉砕原料の熱特性に応じた温度制御をすることによって表面過粉砕を抑制するのが好ましい。
また、該加熱手段としては特に限定されるものではないが、例えば、ラジエターの様に幾重にも配管をくぐらせて表面から電気ヒーターで加熱する方法や冷却機を通さずコンプレッサーを使用する方法等が用いられる。
This heating means provided in the fluidized bed type pulverizer is for suppressing the generation of ultrafine powder due to excessive pulverization of the powder raw material. For this reason, the heating means does not necessarily have to be operated at all times. You may make it operate.
Since air normally has a characteristic of generating heat when compressed, conventionally, temperature control of compressed air used for toner pulverization or the like is generally performed through a cooler. However, the compressed air can be used as it is depending on the pulverization condition without operating the heating means.
Controlling the temperature of the compressed air is important for reducing over-pulverization and suppressing the generation of ultrafine powder. If the temperature is too low, over-pulverization of the powder raw material tends to occur, whereas if the temperature is high, the powder raw material is The surface of the material is warmed and softened, making it difficult to grind. It is preferable to do this.
Further, the heating means is not particularly limited. For example, a method of heating a surface with an electric heater through multiple pipes like a radiator, a method of using a compressor without passing through a cooler, etc. Is used.

各粉砕ノズル(3)から噴射される圧縮空気は、粉砕ノズル(3)まで送流管を通して送流されるが、圧縮空気の加熱手段(7)はその送流管の上流側に設けられ、露点温度が−10℃〜−50℃で供給される圧縮空気を加熱し、加熱された圧縮空気が各粉砕ノズル(3)から噴射されて粉体原料の粉砕に供される。この加熱手段としては、電気ヒータあるいは蒸気による直接加熱又は熱媒を介する方法等があるが、特に限定されるものではない。
すなわち、圧縮空気の加熱手段としては、具体的には、例えば、コンプレッサーと粉砕機を結ぶ配管途上に螺旋配管内が設けられ、内部を通過する圧縮空気を螺旋配管の表面から、電気ヒーターバンド、蒸気、オイル等の熱媒体を用いて加熱置換する。温度調整手段が電気ヒーターの場合、電流調整が行なわれ、また、蒸気の場合には、圧力調整、オイルは水冷ジャケットにて内部に冷却水またはチラー水を通過させ循環する水または冷却水量とか温度で調整が行なわれる。
粉砕とは、衝撃、圧縮、せん断、摩擦などの力学的作用によって固体粒子を破壊し、その物質構造を変えることなく細分化することであるが、本発明においては加熱された圧縮空気によって、加温された粉体原料表面は内部に比べ弾性が高くなって、その結果、粉体原料同士が衝突しても、表面が粉砕されるいわゆる過粉砕が低減される状態となり、微粉の発生量が抑制され、微粉と粗粉とに遠心分級することができるものと考えられる。
Compressed air injected from each pulverizing nozzle (3) is sent through a feed pipe to the pulverizing nozzle (3), and a heating means (7) for the compressed air is provided on the upstream side of the feed pipe and has a dew point. The compressed air supplied at a temperature of −10 ° C. to −50 ° C. is heated, and the compressed air thus heated is sprayed from each of the crushing nozzles (3) to be used for crushing the powder raw material. Examples of the heating means include an electric heater, a direct heating method using steam or a method using a heating medium, but are not particularly limited.
That is, as the compressed air heating means, specifically, for example, a spiral pipe is provided in the pipeline connecting the compressor and the pulverizer, and the compressed air passing through the interior is supplied from the surface of the spiral pipe to the electric heater band, Heat replacement using a heat medium such as steam or oil. When the temperature adjusting means is an electric heater, current adjustment is performed. When the temperature is adjusted, the pressure is adjusted. In the case of steam, the oil or water is circulated by passing cooling water or chiller water through a water cooling jacket. Adjustments are made at.
Grinding is to break up solid particles by mechanical action such as impact, compression, shear, friction, etc., and to subdivide them without changing their material structure. The heated powder raw material surface has higher elasticity than the inside, and as a result, even if the powder raw materials collide with each other, so-called over-grinding is reduced, and the amount of fine powder generated is reduced. It is considered that it is suppressed and can be classified into fine powder and coarse powder by centrifugation.

特に、粉砕ノズルから噴出されるジェット噴流温度、すなわち圧縮空気の温度が0〜50℃の範囲になるように、圧縮空気の加熱を調節すると、多量の粉体原料を効率的に粉砕できるという観点から望ましい。
ジェット噴流温度が0℃未満の場合は粉体原料の表面が冷やされ塑性し易く表面粉砕が発生し易くなる。またジェット噴流温度が50℃を超える場合は粉体原料の表面が軟化あるいは融解し易くなり、粉砕性の低下さらには粉体原料中の混練材料が劣化し、品質低下となる場合があるので、好ましくない。
仮に、温度制御しないで圧縮空気を放出するような場合には、断熱膨張によって温度が
0℃未満となって好ましくない。
In particular, a viewpoint that a large amount of powder raw material can be efficiently pulverized by adjusting the heating of the compressed air so that the jet jet temperature ejected from the pulverizing nozzle, that is, the temperature of the compressed air is in the range of 0 to 50 ° C. Is desirable.
When the jet jet temperature is less than 0 ° C., the surface of the powder raw material is cooled and easily plasticized, and surface pulverization is likely to occur. If the jet jet temperature exceeds 50 ° C., the surface of the powder raw material becomes easy to soften or melt, and the pulverizability is deteriorated. Further, the kneaded material in the powder raw material is deteriorated, and the quality may be reduced. It is not preferable.
If compressed air is discharged without temperature control, the temperature is less than 0 ° C. due to adiabatic expansion, which is not preferable.

図3は、本発明の流動層式粉砕装置の他の例を示す概略断面図である。
図3に示される流動層式粉砕装置は、前記のように加熱手段によって得られた粉体原料表面の弾性状態を維持するために、粉砕室(1)の側壁(8)の温度を0〜40℃の範囲に調節できるような機構を設けたことを特徴とするものであり、このような機構によって表面粉砕による超微粉の発生量を一層抑制することができ、より高効率の粉砕・分級が可能となり、粉体の生産性を向上することができるので望ましい。
粉砕室の側壁冷却手段(10)としては、例えば、その周囲をジャケット化しチラー水やクーリングタワー水を循環させる方法等が用いられる。
粉砕室の側壁の温度が0℃未満の場合には、ジェット噴流による加熱効果が低下して粉体材料の表面が冷やされ塑性し易く表面粉砕が発生し易くなる。また粉砕室の側壁の温度が40℃を超える場合には、衝突粉砕された粉体原料の冷却速度が低下し表面が軟化あるいは融解し易くなり、粉砕室の表面に固着あるいは融着し、粉砕性の低下さらには粉体原料中の混練材料が劣化して品質が低下することがある。
FIG. 3 is a schematic cross-sectional view showing another example of the fluidized bed pulverizer of the present invention.
In order to maintain the elastic state of the powder raw material surface obtained by the heating means as described above, the fluidized bed type pulverizer shown in FIG. 3 has a temperature of the side wall (8) of the pulverization chamber (1) of 0 to 0. It is characterized by the provision of a mechanism that can be adjusted within the range of 40 ° C. By such a mechanism, the amount of ultrafine powder generated by surface grinding can be further suppressed, and more efficient grinding and classification can be achieved. This is desirable because it can improve the productivity of the powder.
As the side wall cooling means (10) of the pulverization chamber, for example, a method of circulating the chiller water or the cooling tower water by using a jacket around the periphery is used.
When the temperature of the side wall of the pulverization chamber is less than 0 ° C., the heating effect by the jet jet is lowered, the surface of the powder material is cooled and plasticized easily, and surface pulverization easily occurs. When the temperature of the side wall of the crushing chamber exceeds 40 ° C., the cooling rate of the impact-pulverized powder raw material is lowered, the surface is softened or melted easily, and is fixed or fused to the surface of the crushing chamber. In addition, the kneading material in the powder raw material may deteriorate and the quality may deteriorate.

また、図3において、本発明の流動層式粉砕装置の粉砕室(1)には、粉砕ノズル(3)から噴出される加熱ジェット噴流が対流され、その結果粉砕室(1)の底部(9)が蓄熱作用を受け易くなって粉砕に悪影響をもたらすことがあり、この蓄熱を回避する方法として、粉砕ノズル(5)より下部に位置する粉砕室の底部(9)を−5〜30℃の範囲で温度調節するようにすると、粉砕される粉体原料表面の弾性を維持し、表面粉砕による微粉の発生量を抑制し、分級ロータによって微粉と粗粉に遠心分級することができるため、高効率で粉砕することができ、多量の粉体原料を効率的に粉砕でき、生産性を向上することができて望ましい。
粉砕室の底部(9)の冷却手段(11)としてはその周囲をジャケット化しチラー水やクーリングタワー水を循環させる方法等があるが上記に限定されるものではない。
粉砕室の底部(9)の温度が−5℃未満の場合はジェット噴流の過熱効果が低下し粉体材料の表面が冷やされ塑性し易く表面粉砕が発生し易くなる。
また粉砕室の底部(9)の温度が30℃を超える場合は、衝突粉砕された粉体原料の冷却速度が低下する傾向があり、その結果、表面が軟化あるいは融解し易くなって粉砕室底部の表面に固着あるいは融着し、粉砕性の低下さらには粉体材料中の混練材料が劣化し、品質の低下となり望ましくない。
圧縮空気の温度が上昇すると、粉砕物の固着が発生しやすくなるため、以上説明した粉砕室の側壁あるいは粉砕室の底部の温度調節は、例えば、壁部または底部を螺旋配管で覆い内部に冷却水またはチラー水を通過させ、循環する水または冷却水量の制御による冷却によって行なわれ、水冷クーリングユニット、チラーユニット等が用いられる。該冷却温度は、圧縮空気の温度によって適宜選択される。
すなわち、本発明の流動層式粉砕装置においては、圧縮空気は過粉砕を防止するために加熱されるが、さらに粉砕物の固着を防止するために、必要に応じて圧縮空気を冷却することができる。
Further, in FIG. 3, the heated jet jet ejected from the pulverization nozzle (3) is convected into the pulverization chamber (1) of the fluidized bed pulverizer of the present invention. As a result, the bottom (9 ) May be susceptible to heat storage and adversely affect the pulverization. As a method of avoiding this heat storage, the bottom (9) of the pulverization chamber located below the pulverization nozzle (5) is set to −5 to 30 ° C. If the temperature is adjusted within the range, the elasticity of the powder raw material surface to be crushed can be maintained, the amount of fine powder generated by the surface pulverization can be suppressed, and the classification rotor can be centrifugally classified into fine powder and coarse powder. It is desirable that it can be efficiently pulverized, a large amount of powder raw material can be efficiently pulverized, and productivity can be improved.
As a cooling means (11) for the bottom (9) of the crushing chamber, there is a method of circulating the chiller water or the cooling tower water by using a jacket around it, but is not limited to the above.
When the temperature of the bottom (9) of the pulverization chamber is less than −5 ° C., the superheat effect of the jet jet is lowered, the surface of the powder material is cooled and plasticized easily, and surface pulverization easily occurs.
When the temperature of the bottom (9) of the pulverization chamber exceeds 30 ° C., the cooling rate of the collisionally pulverized powder raw material tends to decrease. As a result, the surface is easily softened or melted, and the bottom of the pulverization chamber It is not desirable because it is fixed or fused to the surface of the material, and the pulverizability is deteriorated, and the kneaded material in the powder material is deteriorated to deteriorate the quality.
When the temperature of the compressed air rises, the crushed material is likely to be fixed. Therefore, the temperature control of the side wall of the pulverization chamber or the bottom of the pulverization chamber described above is performed by, for example, covering the wall or bottom with a spiral pipe and cooling the inside. Water or chiller water is allowed to pass through and cooling is performed by controlling the amount of circulating water or cooling water, and a water cooling cooling unit, a chiller unit, or the like is used. The cooling temperature is appropriately selected depending on the temperature of the compressed air.
That is, in the fluidized bed pulverizer of the present invention, the compressed air is heated to prevent over-pulverization, but the compressed air can be cooled as necessary to prevent the pulverized material from sticking. it can.

さらに、本発明の流動層式粉砕装置においては、長時間にわたり粉砕分級を行なうと、未粉砕及び粉砕済の粉砕物が該分級ロータに付着して粉砕分級の効率を低下させる場合があるので、その解決策として、該分級ロータ(4)を構成する複数の羽根の表面が導電性離型剤、特に導電性テフロン(登録商標)あるいは耐磨耗特性を考慮したニッケルテフロン(登録商標)複合メッキ等の表面処理を施すことが望ましい。
ニッケルテフロン(登録商標)複合メッキとしては、例えば、日本カニゼン(株)製の無電解ニッケルテフロン(登録商標)複合メッキ、日本カニゼン(株)製の(株)コダマ製のコダスケートテフロン(登録商標)メッキ、ハ幡鍍金工業(株)製の無電解テフロン(登録商標)メッキあるいは三和メッキ工業(株)製のテフロン(登録商標)無電解ニッケルなどを用いることができる。
本発明においては、加熱した圧縮空気のジェット気流によって粒子材料の粉砕が行なわれるが、その結果、粉砕室内の温度は従来の粉砕装置の場合に比べて上昇して粉砕された粉体粒子が該分級ロータに付着し易くなり、その解決策として、該分級ロータを構成する複数の羽根の表面を離型剤処理することによって、0.15〜0.25程度の動摩擦係数を0.05〜0.13程度に変化させておくと、分級された粉砕粒子の該分級ロータ上への付着を防止し粉体材料を効率的に粉砕分級するのに有効である。
Furthermore, in the fluidized bed type pulverizing apparatus of the present invention, if pulverization and classification are performed for a long time, unground and pulverized pulverized matter may adhere to the classification rotor and reduce the efficiency of pulverization and classification. As a solution to this problem, the surface of the plurality of blades constituting the classifying rotor (4) is a conductive mold release agent, in particular, conductive Teflon (registered trademark) or nickel-Teflon (registered trademark) composite plating considering wear resistance. It is desirable to perform surface treatment such as.
Examples of nickel Teflon (registered trademark) composite plating include electroless nickel Teflon (registered trademark) composite plating manufactured by Nippon Kanisen Co., Ltd., and Koda Skate Teflon (registered trademark) manufactured by Kodama Co., Ltd. manufactured by Nippon Kanisen Co., Ltd. ) Plating, electroless Teflon (registered trademark) plating manufactured by Hazuki Kogyo Co., Ltd., or Teflon (registered trademark) electroless nickel manufactured by Sanwa Plating Industry Co., Ltd. can be used.
In the present invention, the particulate material is pulverized by a jet stream of heated compressed air. As a result, the temperature in the pulverization chamber rises as compared with the conventional pulverizer, and the pulverized powder particles are contained in the pulverized powder particles. As a solution to this problem, the surface of the plurality of blades constituting the classifying rotor is treated with a release agent, so that the dynamic friction coefficient of about 0.15 to 0.25 is 0.05 to 0. .About.13 is effective for preventing the classified pulverized particles from adhering to the classification rotor and efficiently pulverizing and classifying the powder material.

同様の理由によって、本発明の流動層式粉砕装置においては、未粉砕及び粉砕済の粒子材料が該粉砕室の側壁に付着しやすいために、該粉砕室の側壁の表面を導電性離型剤で処理することが望ましく、また導電性テフロン(登録商標)あるいは耐磨耗特性を考慮したニッケルテフロン(登録商標)複合メッキ等の表面処理を施すことが望ましい。
本発明においては、加熱した圧縮空気のジェット気流によって粒子原料の粉砕が行なわれるが、その結果、粉砕室内の温度は従来の粉砕装置の場合に比べて上昇して粉砕された粉体粒子が該粉砕室の側壁に付着し易くなり、その解決策として、該粉砕室の側壁の表面を離型剤処理することによって、0.15〜0.25程度であった動摩擦係数を0.05〜0.13程度に変化させておくと、分級された粉砕粒子の側壁上への付着を防止し粉体原料を効率的に粉砕分級するのに有効である。
For the same reason, in the fluidized bed type pulverizing apparatus of the present invention, since the unpulverized and pulverized particulate material is likely to adhere to the side wall of the pulverization chamber, the surface of the side wall of the pulverization chamber is electrically conductive release agent. In addition, it is preferable to perform a surface treatment such as conductive Teflon (registered trademark) or nickel-Teflon (registered trademark) composite plating in consideration of wear resistance.
In the present invention, the particle raw material is pulverized by a jet stream of heated compressed air. As a result, the temperature in the pulverization chamber rises compared to the case of a conventional pulverizer, and the pulverized powder particles It becomes easy to adhere to the side wall of the crushing chamber, and as a solution to this, by treating the surface of the side wall of the crushing chamber with a release agent, the dynamic friction coefficient, which was about 0.15 to 0.25, is 0.05 to 0. .About.13 is effective in preventing the classified pulverized particles from adhering to the side wall and efficiently pulverizing and classifying the powder raw material.

本発明の流動層式粉砕装置を用いた粉体原料の粉砕方法においては、粉砕ノズルに供給する圧縮空気の元圧力を0.2〜1.0MPaに設定して行なうことが、所望の粉砕効率を得るのに好ましく、本発明の加温粉砕において生産量や目的粒度に応じて品質生産性をより一層高め、長期にわたり粉体原料を効率的に粉砕分級することができる。
該元圧力が0.2MPa未満の場合は、圧縮空気の圧力が低すぎて、粉体原料を伴って粉砕できない虞があり、一方、1.0MPaを超える場合は、粉体原料が所望の粒子径よりも小さくなる割合が多くなるという過粉砕状態になることや、粉砕ノズル内部の流れに衝撃波が発生し、速度ロスを生じる場合があり、好ましくない。
In the method of pulverizing the powder raw material using the fluidized bed pulverizer of the present invention, the desired pulverization efficiency is performed by setting the original pressure of the compressed air supplied to the pulverization nozzle to 0.2 to 1.0 MPa. In the warming pulverization of the present invention, the quality productivity can be further improved according to the production amount and the target particle size, and the powder raw material can be efficiently pulverized and classified over a long period of time.
If the original pressure is less than 0.2 MPa, the pressure of the compressed air is too low and may not be pulverized with the powder raw material. On the other hand, if it exceeds 1.0 MPa, the powder raw material is a desired particle. This is not preferable because it may be in an excessively pulverized state in which the ratio smaller than the diameter increases, or a shock wave may be generated in the flow inside the pulverizing nozzle, resulting in a speed loss.

本発明の流動層式粉砕装置においては、各粉砕ノズルから噴射される圧縮空気どうしが粉体材料を伴って一次衝突するように、複数の粉砕ノズルを設置する必要があり、この一次衝突によって供給された粉体原料は最初の粉砕作用を受けることになり、本発明の加温粉砕において生産量や目的粒度に応じて品質生産性をより一層高め、長期にわたり粉体材料を効率的に粉砕分級することができる。
粉砕ノズルの数に制限はないが、2〜8個の粉砕ノズルを用いることが好ましく、2〜6個の粉砕ノズルを用いることがより好ましく、3〜4個の粉砕ノズルを用いることがさらに好ましい。
一つの粉砕ノズルを設けるだけでは、当然のことながら、圧縮空気どうしを粉体原料を伴って一次衝突させることができない。一方、粉砕ノズルの数が多すぎると、装置の製作が煩雑となり、破砕効率がかえって低下する虞がある。
In the fluidized bed type pulverizing apparatus of the present invention, it is necessary to install a plurality of pulverizing nozzles so that the compressed air injected from each pulverizing nozzle collides with the powder material. The resulting powder raw material is subjected to the first crushing action, and in the heated crushing of the present invention, the quality productivity is further improved according to the production amount and the target particle size, and the powder material is efficiently crushed and classified over a long period of time. can do.
The number of pulverizing nozzles is not limited, but 2 to 8 pulverizing nozzles are preferably used, 2 to 6 pulverizing nozzles are more preferably used, and 3 to 4 pulverizing nozzles are further preferably used. .
Of course, if only one crushing nozzle is provided, the compressed air cannot be primarily collided with the powder raw material. On the other hand, if there are too many crushing nozzles, the production of the apparatus becomes complicated, and the crushing efficiency may be lowered.

また、本発明の流動層式粉砕装置においては、単数あるいは複数の分級ロータを粉砕室上部に設けたものとすると、粉砕された微粉と粗粉を粉砕室(4)から直接分級ロータ内部に流入させて、微粉と粗粉とに遠心分級することを効率的にできるので、好ましい。
この分級ロータの数としては、少量の粉体を生産する場合には1個で十分機能するが、多量の粉体を生産する目的の場合には、粉砕能力を高める必要から、2〜5個が好ましく、特に、3又は4個を用いることが好ましい。
本発明のような加温された圧縮空気を用いて粉砕する方式の場合においては、このように単数あるいは複数の分級ロータを設けて、生産量や目的粒度に応じて品質生産性をより一層高め、長期にわたり粉体原料を効率的に粉砕分級することができる。
一つの分級ロータを設けるだけでは粉砕処理能力が低くなるので、望ましくない。すなわち、圧縮空気の供給量が15m/hr未満の条件で粉砕・分級する場合には、径の小さい分級ロータを用いても、粉砕・分級精度を維持することが可能であるが、圧縮空気の供給量が15m/hrより多くなると、必然的に分級ロータの径も大きなものを用いるざるを得ないことになって粉砕・分級精度を維持することが難しくなるため、分級ロータとして特に小径ロータを複数設けることが好ましい。
Further, in the fluidized bed type pulverizer of the present invention, if one or more classification rotors are provided at the upper part of the pulverization chamber, the pulverized fine powder and coarse powder flow directly into the classification rotor from the pulverization chamber (4). Therefore, centrifugal classification into fine powder and coarse powder can be efficiently performed, which is preferable.
As for the number of classifying rotors, one piece works well when producing a small amount of powder, but for the purpose of producing a large amount of powder, it is necessary to increase the crushing capacity. It is preferable to use 3 or 4 in particular.
In the case of the pulverization method using heated compressed air as in the present invention, a single or a plurality of classification rotors are provided in this way to further improve the quality productivity according to the production amount and the target particle size. The powder raw material can be pulverized and classified efficiently over a long period of time.
If only one classifying rotor is provided, the pulverizing capacity is lowered, which is not desirable. That is, when pulverization / classification is performed under a condition where the supply amount of compressed air is less than 15 m 3 / hr, the pulverization / classification accuracy can be maintained even if a classification rotor having a small diameter is used. If the supply amount exceeds 15 m 3 / hr, it is inevitably necessary to use a classifying rotor with a large diameter, and it becomes difficult to maintain the accuracy of pulverization and classification. It is preferable to provide a plurality of rotors.

本発明の流動層式粉砕装置を用いた粉体原料の粉砕方法においては、分級ロータの回転周速度を20〜70m/sにして行なうことが、所望する分級効率が得られ、生産量や目的粒度に応じて品質生産性をより一層高め、長期にわたり粉体原料を効率的に粉砕分級することができるので好ましい。
分級ロータの回転周速度が20m/s未満の場合には分級効率が低下する虞があり、一方、70m/sを越える場合は、分級ロータによる遠心力が大きくなりすぎ、吸引ファン等の吸引器により排出されるべき粉体原料が再び粉砕室に戻り、粉砕作用を受けることとなり、粉体原料が所望の粒子径よりも小さくる割合が多くなるという過粉砕状態になる虞がある。
In the powder raw material pulverization method using the fluidized bed type pulverization apparatus of the present invention, it is possible to obtain the desired classification efficiency, and to achieve the production amount and the purpose by setting the rotational peripheral speed of the classification rotor to 20 to 70 m / s. It is preferable because quality productivity can be further improved according to the particle size, and the powder raw material can be pulverized and classified efficiently over a long period of time.
If the rotational speed of the classifying rotor is less than 20 m / s, the classifying efficiency may decrease. On the other hand, if the classifying rotor exceeds 70 m / s, the centrifugal force of the classifying rotor becomes too large, and a suction device such as a suction fan. Therefore, the powder raw material to be discharged again returns to the pulverization chamber and is subjected to a pulverization action, so that there is a possibility that the powder raw material is in an over-pulverized state in which the proportion of the powder raw material is smaller than the desired particle size.

図4は、図3に示される流動層式粉砕装置の概略断面図内に、粉砕ノズル間距離Lと粉砕室高さHを表示したものである。
本発明の流動層式粉砕装置において、粉体原料の処理量、平均粒径等の条件変更に対して容易に対応できて、切り替え時間の短縮化を可能とするために、粉砕室高さを目的粒度にあわせて規定するまたは規定を調節可能とすることが効果的であり、特に、対向設置される2つの粉砕ノズル間の距離Lに対する粉砕室の高さHの関係が、加温粉砕による粉砕された粉砕原料の冷却と粉砕原料特性および粉砕目標粒径を考慮し、2L≦H≦5Lであることが望ましい。
粉砕室高さHが2L未満の場合、粉砕された粉体原料中の粗大粒子が分級ロータ中に飛込みことが多くなる傾向があって、分級精度の低下が発生しやすくなり、また粉砕された粉体材料が分級ロータ表面に付着する傾向になって、収率の低下や分級精度の低下が発生する。
また、粉砕室高さHが5Lより大きい場合には、分級ロータまでの到達距離が長いために、結果的に分級ロータ内の粉体濃度が上昇する傾向になって、分級精度の低下が発生する。
FIG. 4 shows the distance L between the crushing nozzles and the height H of the crushing chamber in the schematic sectional view of the fluidized bed type crushing apparatus shown in FIG.
In the fluidized bed type pulverization apparatus of the present invention, the height of the pulverization chamber is set to be able to easily cope with the change in conditions such as the processing amount of the powder raw material and the average particle size and to shorten the switching time. It is effective to define or adjust the regulation according to the target particle size. In particular, the relationship of the height H of the crushing chamber to the distance L between the two crushing nozzles installed opposite to each other is due to the heated crushing. In consideration of cooling of the pulverized raw material, characteristics of the pulverized raw material, and target particle size, it is desirable that 2L ≦ H ≦ 5L.
When the pulverizing chamber height H is less than 2 L, coarse particles in the pulverized powder raw material tend to jump into the classifying rotor, so that the classification accuracy is likely to be lowered, and the pulverized particles are pulverized. The powder material tends to adhere to the surface of the classification rotor, resulting in a decrease in yield and classification accuracy.
In addition, when the grinding chamber height H is larger than 5 L, the distance to the classification rotor is long, and as a result, the powder concentration in the classification rotor tends to increase, resulting in a decrease in classification accuracy. To do.

本発明の流動層式粉砕装置においては、図4内に表示されるような、前記の粉砕室の中の粉砕ノズルから分級ローター下部までの高さHを、粉砕室の円筒形状壁と同径のフランジ配管を接続してなるスペーサー(12)を設けて、調整することが望ましい。
該スペーサーによって、粉砕の対象となる粉体原料の冷却および粉体原料の特性と粉砕目標粒径に応じて任意に粉砕高さの調節が可能となり、分級ロータによる粗大粒子の過剰吸引を防止することが可能になり、分級ロータによる分級精度を向上させることができる。
また、ノズル間の距離Lについては、従来からあるジェットミル(サークルダイヤ)によるノズルスペーサーを用いて調整することができる。
In the fluidized bed crusher of the present invention, the height H from the crushing nozzle in the crushing chamber to the lower part of the classification rotor as shown in FIG. 4 is the same as the cylindrical wall of the crushing chamber. It is desirable to provide and adjust a spacer (12) formed by connecting the flange pipe.
By this spacer, it becomes possible to cool the powder raw material to be pulverized and arbitrarily adjust the pulverization height according to the characteristics of the powder raw material and the target particle size of the pulverization, and prevent excessive suction of coarse particles by the classification rotor. Therefore, the classification accuracy by the classification rotor can be improved.
The distance L between the nozzles can be adjusted by using a conventional nozzle spacer by a jet mill (circle diamond).

次に、本実施例に基づき本発明を詳細に説明する。
なお、粒径測定は、全てコールターカウンター社のマルチサイザーを用いた。
Next, this invention is demonstrated in detail based on a present Example.
The particle size was measured using a multisizer manufactured by Coulter Counter.

(実施例1)
流動層式粉砕装置として、ホソカワミクロン(株)製のカウンタージェットミル200AFGに、図2に示されるように圧縮空気加熱装置(7)を設けたものを用いた。
先ず、ポリエステル樹脂75重量%とスチレンアクリル共重合樹脂10重量%とカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後ハンマーミルで粗粉砕して、電子写真用トナー作製に用いられる粉体原料(トナー原料という)を作製した。
次に、上記の流動層式粉砕装置の粉砕室(1)内に供給管(2)を通して前記トナー原料5kgを供給した後、粉砕用圧縮空気の圧力0.6Mpa、粉砕ノズル(3)の圧縮空気出口温度40℃、分級ロータ(4)の周速45m/sの条件で粉砕・分級作業を行なった。
こうして、重量平均粒径が6.5μm、4μm以下の微粉含有率が個数平均で45POP.%、16μm以上の粗粉含有率が重量平均で1.0Vol.%のトナー粉体が、13kg/hr得ることができた。
Example 1
As the fluidized bed type pulverizer, a counter jet mill 200AFG manufactured by Hosokawa Micron Corporation provided with a compressed air heating device (7) as shown in FIG. 2 was used.
First, a mixture of 75% by weight of a polyester resin, 10% by weight of a styrene acrylic copolymer resin and 15% by weight of carbon black is melt-kneaded by a roll mill, cooled and solidified, and then coarsely pulverized by a hammer mill to prepare an electrophotographic toner. A powder raw material to be used (referred to as toner raw material) was prepared.
Next, after supplying 5 kg of the toner raw material into the pulverization chamber (1) of the fluidized bed pulverizer through the supply pipe (2), the pressure of the compressed air for pulverization is 0.6 Mpa, and the pulverization nozzle (3) is compressed. Grinding and classification were performed under conditions of an air outlet temperature of 40 ° C. and a circumferential speed of the classification rotor (4) of 45 m / s.
Thus, the content of fine powder having a weight average particle size of 6.5 μm and 4 μm or less is 45 POP. %, The coarse powder content of 16 μm or more is 1.0 Vol. % Of toner powder could be obtained at 13 kg / hr.

(実施例2)
流動層式粉砕装置として、ホソカワミクロン(株)製のカウンタージェットミル200AFGを図3に示されるように改造したものを用いて、実施例1に記載のトナー原料5kgを、粉砕室(1)内に供給管(2)を通して供給した後、粉砕用圧縮空気の圧力0.6Mpa、粉砕ノズル(3)の圧縮空気の出口温度40℃、分級ロータ(4)の周速45m/sの条件で、かつ粉砕室側壁を20℃に調節して、粉砕・分級作業を行なった。
こうして、重量平均粒径が6.5μm、4μm以下の微粉含有率が個数平均で44POP.%、16μm以上の粗粉含有率が重量平均で0.8Vol.%のトナー粉体を、14kg/hr得ることができた。
(Example 2)
As a fluidized bed type pulverizer, a counter jet mill 200AFG manufactured by Hosokawa Micron Co., Ltd., modified as shown in FIG. 3 was used, and 5 kg of the toner raw material described in Example 1 was placed in the pulverization chamber (1). After supplying through the supply pipe (2), the pressure of the compressed air for crushing is 0.6 Mpa, the outlet temperature of the compressed air of the crushing nozzle (3) is 40 ° C., the peripheral speed of the classification rotor (4) is 45 m / s, and The pulverization chamber side wall was adjusted to 20 ° C., and pulverization / classification work was performed.
Thus, the content of fine powder having a weight average particle diameter of 6.5 μm and 4 μm or less is 44 POP. %, A coarse powder content of 16 μm or more is 0.8 Vol. % Toner powder could be obtained at 14 kg / hr.

(実施例3)
流動層式粉砕装置として、ホソカワミクロン(株)製のカウンタージェットミル200AFGを図3に示されるように改造したものを用いて、実施例1に記載のトナー原料5kgを、粉砕室(1)内に供給管(2)を通して供給した後、粉砕用圧縮空気の圧力0.6Mpa、粉砕ノズル(3)の圧縮空気の出口温度40℃、分級ロータ(4)の周速45m/sの条件で、かつ粉砕室側壁を20℃に及び粉砕室底部を10℃にそれぞれ調節して、粉砕・分級作業を行なった。
こうして、重量平均粒径が6.4μm、4μm以下の微粉含有率が個数平均で42POP.%、16μm以上の粗粉含有率が重量平均で0.2Vol.%のトナー粉体を、14kg/hr得ることができた。
(Example 3)
As a fluidized bed type pulverizer, a counter jet mill 200AFG manufactured by Hosokawa Micron Co., Ltd., modified as shown in FIG. 3 was used, and 5 kg of the toner raw material described in Example 1 was placed in the pulverization chamber (1). After supplying through the supply pipe (2), the pressure of the compressed air for crushing is 0.6 Mpa, the outlet temperature of the compressed air of the crushing nozzle (3) is 40 ° C., the peripheral speed of the classification rotor (4) is 45 m / s, and The crushing and classification operations were performed by adjusting the side walls of the crushing chamber to 20 ° C. and the bottom of the crushing chamber to 10 ° C., respectively.
Thus, the fine powder content with a weight average particle size of 6.4 μm and 4 μm or less is 42 POP. %, A coarse powder content of 16 μm or more is 0.2 Vol. % Toner powder could be obtained at 14 kg / hr.

(実施例4)
無電解ニッケルテフロン(登録商標)複合メッキ処理を施された羽根を複数設けられた分級ロータ(4)を具備する、ホソカワミクロン(株)製のカウンタージェットミル200AFGを図3に示されるように改造した流動層式粉砕装置を用いて、粉砕・分級作業を行なった。
実施例1に記載のトナー原料5kgを、粉砕室(1)内に供給管(2)を通して供給した後、粉砕用圧縮空気の圧力0.6Mpa、粉砕ノズル(3)の圧縮空気の出口温度40℃、分級ロータ(4)の周速45m/sの条件で、かつ粉砕室側壁を20℃に及び粉砕室底部を10℃にそれぞれ調節して、粉砕・分級作業を行なった。
こうして、重量平均粒径が6.5μm、4μm以下の微粉含有率が個数平均で44POP.%、16μm以上の粗粉含有率が重量平均で0.8Vol.%のトナー粉体を、14kg/hr得ることができた。
上記の粉砕・分級作業を連続100時間行なっても処理能力に変化はなく、安定した粒径のトナー粉体を得ることができた。
なお、無電解ニッケルテフロン(登録商標)複合メッキ処理には、日本カニゼン(株)製の静摩擦係数0.11、動摩擦係数0.09、硬度Hv500のものを用いた。下記実施例5及び6の場合も同様である。
(Example 4)
A counter jet mill 200AFG manufactured by Hosokawa Micron Co., Ltd. having a classification rotor (4) provided with a plurality of blades subjected to electroless nickel Teflon (registered trademark) composite plating treatment was modified as shown in FIG. The pulverization and classification work was performed using a fluidized bed pulverizer.
After supplying 5 kg of the toner raw material described in Example 1 into the pulverization chamber (1) through the supply pipe (2), the pressure of the compressed air for pulverization is 0.6 Mpa, and the outlet temperature of the compressed air from the pulverization nozzle (3) is 40. The pulverization / classification operation was performed under the conditions of ℃, the peripheral speed of the classification rotor (4) of 45 m / s, the pulverization chamber side wall adjusted to 20 ° C, and the pulverization chamber bottom to 10 ° C.
Thus, the content of fine powder having a weight average particle diameter of 6.5 μm and 4 μm or less is 44 POP. %, A coarse powder content of 16 μm or more is 0.8 Vol. % Toner powder could be obtained at 14 kg / hr.
Even if the above pulverization / classification operations were carried out continuously for 100 hours, the processing capacity was not changed, and a toner powder having a stable particle diameter could be obtained.
In the electroless nickel Teflon (registered trademark) composite plating treatment, a product having a static friction coefficient of 0.11, a dynamic friction coefficient of 0.09, and a hardness of Hv500 manufactured by Nippon Kanisen Co., Ltd. was used. The same applies to Examples 5 and 6 below.

(実施例5)
無電解ニッケルテフロン(登録商標)複合メッキ処理を施された羽根を複数設けられた分級ロータ(4)を具備し、かつ粉砕室の側壁も同様にメッキ処理が施された、ホソカワミクロン(株)製のカウンタージェットミル200AFGを図3に示されるように改造した流動層式粉砕装置を用いて、粉砕・分級作業を行なった。
実施例1に記載のトナー原料5kgを粉砕室(1)内に供給管(2)を通して供給した後、粉砕用圧縮空気の圧力0.6Mpa、粉砕ノズル(3)の圧縮空気の出口温度40℃、分級ロータ(4)の周速45m/sの条件で、かつ粉砕室側壁を20℃に及び粉砕室底部を10℃にそれぞれ調節して、粉砕・分級作業を行なった。
こうして、重量平均粒径が6.5μm、4μm以下の微粉含有率が個数平均で43POP.%、16μm以上の粗粉含有率が重量平均で0.3Vol.%のトナー粉体を、15kg/hr得ることができた。
上記の粉砕・分級作業を連続100時間行なっても処理能力に変化はなく、安定した粒径のトナー粉体を得ることができた。
(Example 5)
Made by Hosokawa Micron Co., Ltd., equipped with a classification rotor (4) provided with a plurality of blades subjected to electroless nickel Teflon (registered trademark) composite plating treatment, and the side walls of the crushing chamber were similarly plated. The counter jet mill 200AFG was pulverized and classified using a fluidized bed pulverizer modified as shown in FIG.
After supplying 5 kg of the toner raw material described in Example 1 into the pulverization chamber (1) through the supply pipe (2), the pressure of compressed air for pulverization is 0.6 Mpa, and the outlet temperature of compressed air of the pulverization nozzle (3) is 40 ° C. The pulverization / classification operation was performed under the condition that the classification rotor (4) had a peripheral speed of 45 m / s, the side wall of the pulverization chamber was adjusted to 20 ° C., and the bottom of the pulverization chamber was adjusted to 10 ° C.
Thus, the fine powder content with a weight average particle size of 6.5 μm and 4 μm or less has a number average of 43 POP. %, The coarse powder content of 16 μm or more is 0.3 Vol. % Toner powder could be obtained at 15 kg / hr.
Even if the above pulverization / classification operations were carried out continuously for 100 hours, the processing capacity was not changed, and a toner powder having a stable particle diameter could be obtained.

(実施例6)
無電解ニッケルテフロン(登録商標)複合メッキ処理を施された羽根を複数設けられた分級ロータ(4)を具備し、かつ粉砕室の側壁も同様にメッキ処理が施されたホソカワミクロン(株)製のカウンタージェットミル200AFGを図3に示されるように改造した流動層式粉砕装置を用いて、さらに、粉砕・分級作業を行なった。
実施例1に記載のトナー原料5kgを、流動層式粉砕装置の粉砕室(1)内に供給管(2)を通して供給した後、粉砕用圧縮空気の圧力0.6Mpa、粉砕ノズル(3)の圧縮空気の出口温度40℃、分級ロータ(4)の周速45m/sの条件で、かつ粉砕室側壁を20℃に及び粉砕室底部を10℃にそれぞれ調節し、さらに、粉砕高さHを粉砕ノズル間距離Lに対して4Lに設定して、粉砕・分級作業を行なった。
こうして、重量平均粒径が6.5μm、4μm以下の微粉含有率が個数平均で43POP.%、16μm以上の粗粉含有率が重量平均で0.0Vol.%のトナー粉体を、15.5kg/hr得ることができた。
上記の粉砕・分級作業を連続100時間行なっても処理能力に変化はなく、安定した粒径のトナー粉体を得ることができた。
(Example 6)
Made by Hosokawa Micron Co., Ltd., which has a classifying rotor (4) provided with a plurality of blades subjected to electroless nickel Teflon (registered trademark) composite plating treatment, and the side walls of the crushing chamber are similarly plated. The counter jet mill 200AFG was further pulverized and classified using a fluidized bed pulverizer modified as shown in FIG.
After supplying 5 kg of the toner raw material described in Example 1 through the supply pipe (2) into the pulverization chamber (1) of the fluidized bed pulverizer, the pressure of the compressed air for pulverization is 0.6 Mpa, and the pulverization nozzle (3) is used. Adjust the outlet temperature of compressed air to 40 ° C, the circumferential speed of the classification rotor (4) to 45 m / s, adjust the side wall of the crushing chamber to 20 ° C and the bottom of the crushing chamber to 10 ° C, and further adjust the crushing height H to The pulverization / classification operation was performed with the distance L between the pulverization nozzles set to 4L.
Thus, the fine powder content with a weight average particle size of 6.5 μm and 4 μm or less has a number average of 43 POP. %, The coarse powder content of 16 μm or more is 0.0 Vol. % Toner powder could be obtained at 15.5 kg / hr.
Even if the above pulverization / classification operations were carried out continuously for 100 hours, the processing capacity was not changed, and a toner powder having a stable particle diameter could be obtained.

(比較例1)
実施例1に記載のトナー原料5kgを、ホソカワミクロン(株)製の流動層式粉砕装置(カウンタージェットミル200AFG)の粉砕室(1)内に供給管(2)を通して供給した後、粉砕用圧縮空気の圧力0.6Mpa、分級ロータ(4)の周速45m/sの条件で、粉砕・分級作業を行なった。
こうして、重量平均粒径が6.5μm、4μm以下微粉含有率が個数平均で48POP.%、16μm以下粗粉含有率が重量平均で1.0Vol.%のトナー粉体が、13kg/hr得られた。
(Comparative Example 1)
After supplying 5 kg of the toner raw material described in Example 1 through the supply pipe (2) into the pulverization chamber (1) of a fluidized bed pulverizer (Counter Jet Mill 200AFG) manufactured by Hosokawa Micron Corporation, the compressed compressed air for pulverization is used. The pulverization and classification were performed under the conditions of a pressure of 0.6 Mpa and a peripheral speed of the classification rotor (4) of 45 m / s.
Thus, the weight average particle size is 6.5 μm, 4 μm or less, and the fine powder content is 48 POP. %, 16 μm or less coarse powder content is 1.0 Vol. % Of toner powder was obtained at 13 kg / hr.

従来の流動層式粉砕装置の構成を示す概念断面図である。It is a conceptual sectional view showing the composition of the conventional fluidized bed type crusher. 本発明の流動層式粉砕装置の一例を示す概念断面図である。It is a conceptual sectional view showing an example of a fluidized bed type crusher of the present invention. 本発明の流動層式粉砕装置の他の例を示す概念断面図である。It is a conceptual sectional view showing other examples of a fluid bed type crusher of the present invention. 本発明の流動層式粉砕装置の更に他の例を示す概念断面図である。It is a conceptual sectional view showing still another example of the fluidized bed type pulverizer of the present invention.

符号の説明Explanation of symbols

1 粉砕室
2 供給管
3 粉砕ノズル
4 分級ロータ
5 排気管
6 圧縮空気
7 圧縮空気加熱装置
8 側壁
9 粉砕室底部
10 粉砕室側面の冷却装置
11 粉砕室底部の冷却装置
12 スペーサー
DESCRIPTION OF SYMBOLS 1 Crushing chamber 2 Supply pipe 3 Crushing nozzle 4 Classification rotor 5 Exhaust pipe 6 Compressed air 7 Compressed air heating device 8 Side wall 9 Crushing chamber bottom 10 Cooling device 11 on the side of the crushing chamber 11 Cooling device 12 on the bottom of the crushing chamber 12 Spacer

Claims (10)

略円筒状の筐体からなり、粉砕室、圧縮空気を噴射する複数の粉砕ノズル、該粉砕室上部に設けられた分級ロータ、噴射される前の圧縮空気を加熱するための加熱手段、及び、粉砕室の側壁及び底部の温度を調節する手段を少なくとも具備し、粉体材料が供給された粉砕室内で、複数の粉砕ノズルから噴射される圧縮空気によって該粉体材料を粉砕し、粉砕された該粉体材料を該粉砕室から回転する該分級ロータ内部に流入させて微粉と粗粉とに遠心分級する流動層式粉砕装置を用い、粉体材料が供給された粉砕室内で、圧縮空気を複数の粉砕ノズルから噴射して粉体材料を粉砕し、粉砕された該粉体材料を該粉砕室から回転する該分級ロータ内部に流入させて微粉と粗粉とに遠心分級するトナーの製造方法であって、該粉体材料は、電子写真用トナーを構成する少なくとも樹脂と着色剤とからなる混練物を粗粉砕して得られるトナー原料であり、露点−50℃以上−10℃以下の圧縮空気を0℃以上50℃以下に加熱し、かつ前記粉砕室の側壁の温度を0〜40℃に調節することを特徴とするトナーの製造方法。 Composed of a substantially cylindrical casing, a pulverization chamber, a plurality of pulverization nozzles for injecting compressed air, a classification rotor provided in the upper portion of the pulverization chamber, a heating means for heating the compressed air before being injected, and At least means for adjusting the temperature of the side wall and bottom of the crushing chamber was provided, and the powder material was pulverized and compressed by compressed air injected from a plurality of crushing nozzles in the crushing chamber supplied with the powder material. Using a fluidized bed type pulverizer for flowing the powder material into the classification rotor rotating from the pulverization chamber and centrifugally classifying the powder material into fine powder and coarse powder, compressed air is supplied in the pulverization chamber supplied with the powder material. A method for producing toner in which a powder material is pulverized by being sprayed from a plurality of pulverizing nozzles, and the pulverized powder material is flown into the classification rotor rotating from the pulverization chamber and centrifugally classified into fine powder and coarse powder The powder material is an electronic copy. A toner raw material obtained by coarsely pulverizing a kneaded material comprising at least a resin and a colorant constituting the toner for heating, heating compressed air having a dew point of −50 ° C. to −10 ° C. to 0 ° C. to 50 ° C., And a temperature of the side wall of the pulverization chamber is adjusted to 0 to 40 ° C. 前記粉砕室の底部の温度−5〜30℃であることを特徴とする請求項1に記載のトナーの製造方法The toner manufacturing method according to claim 1, wherein the temperature of the bottom of the pulverization chamber is −5 to 30 ° C. 前記粉砕ノズルから噴出する圧縮空気の圧力を0.2〜1.0MPaに調節することを特徴とする請求項1または2に記載のトナーの製造方法 Method for producing a toner according to claim 1 or 2, characterized in that adjusting the pressure of the compressed air ejected from the grinding nozzles 0.2 to 1.0 MPa. 該分級ロータの周速を20〜50m/sに調節することを特徴とする請求項1乃至3の何れかに記載のトナーの製造方法 Method for producing a toner according to any one of claims 1 to 3, characterized in that adjusting the circumferential speed of the該分classifying rotor in 20 to 50 m / s. 表面が導電性離型剤で処理された複数の羽根を有する分級ロータが設けられた流動層式粉砕装置を用いることを特徴とする請求項1乃至4何れかに記載のトナーの製造方法The method for producing toner according to any one of claims 1 to 4, wherein a fluidized bed type pulverizing apparatus provided with a classification rotor having a plurality of blades whose surfaces are treated with a conductive release agent is used . 側壁内面が導電性離型剤で処理された粉砕室を有する流動層式粉砕装置用いることを特徴とする請求項1乃至の何れかに記載のトナーの製造方法 Method for producing a toner according to any one of claims 1 to 5, characterized in that use fluidized-bed pulverizer having a pulverizing chamber inner surface of the side wall is processed with a conductive release agent. 2〜8個の粉砕ノズルを有する流動層式粉砕装置用いることを特徴とする請求項1乃至の何れかに記載のトナーの製造方法 Method for producing a toner according to any one of claims 1 to 6, characterized by using fluidized-bed pulverizer having 2-8 grinding nozzles. 1〜5個の分級ロータを有する流動層式粉砕装置を用いることを特徴とする請求項1乃至の何れかに記載のトナーの製造方法 Method for producing a toner according to any one of claims 1 to 7, characterized by using a fluidized-bed pulverizer having 1-5 classification rotor. 対応設置される2つの粉砕ノズル間の距離Lと粉砕室の高さHとが、2L≦H≦5Lの関係を満たすように設置された流動層式粉砕装置を用いることを特徴とする請求項1乃至の何れかに記載のトナーの製造方法The fluidized bed type pulverizing apparatus is used so that the distance L between two pulverizing nozzles installed correspondingly and the height H of the pulverizing chamber satisfy a relationship of 2L ≦ H ≦ 5L. The method for producing a toner according to any one of 1 to 8 . 粉砕室の高さHを調整するスペーサが設けられた流動層式粉砕装置を用いることを特徴とする請求項に記載のトナーの製造方法The method for producing toner according to claim 9 , wherein a fluidized bed type pulverizing apparatus provided with a spacer for adjusting the height H of the pulverizing chamber is used .
JP2003420086A 2003-12-17 2003-12-17 Toner production method Expired - Lifetime JP4291685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420086A JP4291685B2 (en) 2003-12-17 2003-12-17 Toner production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420086A JP4291685B2 (en) 2003-12-17 2003-12-17 Toner production method

Publications (2)

Publication Number Publication Date
JP2005177579A JP2005177579A (en) 2005-07-07
JP4291685B2 true JP4291685B2 (en) 2009-07-08

Family

ID=34781761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420086A Expired - Lifetime JP4291685B2 (en) 2003-12-17 2003-12-17 Toner production method

Country Status (1)

Country Link
JP (1) JP4291685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029216B (en) * 2009-09-25 2013-03-20 株式会社理光 Method for producing powder and fluidized bed pulverizing apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209924A (en) * 2006-02-10 2007-08-23 Nippon Pneumatic Mfg Co Ltd Crushing equipment and conglobation treatment method of powder
JP5145816B2 (en) 2006-09-15 2013-02-20 株式会社リコー Electrophotographic toner pulverizer and electrophotographic toner pulverizing method
CN105107594A (en) * 2015-07-20 2015-12-02 太仓市友联干燥粉碎设备有限公司 Fluidized-bed airflow pulverizing system
CN105107595B (en) * 2015-09-10 2017-12-05 中国工程物理研究院化工材料研究所 Fluidized bed opposed jet mill reforming system and its application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029216B (en) * 2009-09-25 2013-03-20 株式会社理光 Method for producing powder and fluidized bed pulverizing apparatus
US8540174B2 (en) 2009-09-25 2013-09-24 Ricoh Company, Ltd. Method for producing powder and fluidized bed pulverizing apparatus

Also Published As

Publication number Publication date
JP2005177579A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP3139721B2 (en) Fluidized bed jet mill
JP4891574B2 (en) Crusher and powder manufacturing method using the crusher
JP2006061902A (en) Pulverizing apparatus and method for pulverizing
CN203355824U (en) Rotor mill
JP4291685B2 (en) Toner production method
JP3133100B2 (en) Collision type supersonic jet crusher
JP4805473B2 (en) Fine grinding device and powder product manufacturing system
JP5272302B2 (en) Crushing device, pulverizing method, toner production method using the same, and toner obtained thereby
CN217016906U (en) A fluid energy mill for hormone class bulk drug
JPS62502953A (en) Airjut grinder for fine grinding and/or cryogenic grinding and preferably for surface treatment of hard, elastic and/or thermoplastic materials
JP4738770B2 (en) Grinding device and grinding method
JP4025179B2 (en) Grinding device and grinding method
JP4732794B2 (en) Grinding device and grinding method
JP2004113841A (en) Fluidized bed type grinding classifier
JP5472612B2 (en) Toner manufacturing method
CN210474149U (en) Fluidized bed fluid energy mill
JP2006297305A (en) Crusher and crushing method method
JP4183388B2 (en) Grinding device, toner manufacturing device and toner
JP2004358365A (en) Pulverizer and pulverizing method
JP3102902B2 (en) Collision type supersonic jet crusher
JPH07289933A (en) Grinder
JP2008149271A (en) Grinder
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JPH0910623A (en) Lumpy material pulverizer and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Ref document number: 4291685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

EXPY Cancellation because of completion of term