JP3548192B2 - Method for producing toner for developing electrostatic images and impact-type pulverizer - Google Patents

Method for producing toner for developing electrostatic images and impact-type pulverizer Download PDF

Info

Publication number
JP3548192B2
JP3548192B2 JP09069693A JP9069693A JP3548192B2 JP 3548192 B2 JP3548192 B2 JP 3548192B2 JP 09069693 A JP09069693 A JP 09069693A JP 9069693 A JP9069693 A JP 9069693A JP 3548192 B2 JP3548192 B2 JP 3548192B2
Authority
JP
Japan
Prior art keywords
rotor
toner
stator
projections
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09069693A
Other languages
Japanese (ja)
Other versions
JPH06277545A (en
Inventor
慎吾 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP09069693A priority Critical patent/JP3548192B2/en
Publication of JPH06277545A publication Critical patent/JPH06277545A/en
Application granted granted Critical
Publication of JP3548192B2 publication Critical patent/JP3548192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、静電荷像現像用トナーの製造方法および粉砕装置に関するものであり、詳しくは、特に小粒径トナーの製造方法として好適な静電荷像現像用トナーの製造方法および効率的な微粉砕を行うことが出来るように改良された衝撃式粉砕機に関するものである。
【0002】
【従来の技術】
従来、静電荷像現像用トナーの製造方法においては、樹脂、着色剤などのトナー原料を混合、混練して冷却した後、例えば、ハンマー式粉砕機などで粗粉砕して平均1000〜100μmの粗粉砕物となし、その後、必要に応じて予備粉砕するか、または、直接粉砕して粉砕品にする方法が採用されている。そして、得られた粉砕品は、分級処理により所定の粒度分布を持つ粒子群に分離され、静電荷像現像用トナーとして使用される。
【0003】
従来、上記の粗粉砕物の粉砕には、主として、超音速ジェット気流を利用したジェット式粉砕機、急速度で回転する回転子と固定子との間に粉砕部を形成した衝撃式粉砕機などが使用されている。また、分級機としては、気流式分級機(日本ニューマチック社製 DS分級機)、多産物同時分級機(日鉄鉱業社製 エルボージェット)、ジグザグ分級機などが使用されている。
【0004】
【発明が解決しようとする課題】
ところで、従来、平均粒径として10数μm程度のトナーが主とし使用されていたが、近年、複写機やプリンター等の高速度化、画質の高品質化(高解像度、高階調度)等の要望により、より小粒径のトナー、例えば、平均粒径として3〜10μm程度のトナーが切望されている。
しかしながら、上記のような小粒径のトナーの製造においては、生産効率が著しく悪いと言う問題がある。すなわち、ジェット式粉砕機を使用し5μのトナーを製造する場合は、例えば、12μのトナーを製造する場合に比し、エネルギー効率は約1/10となる。しかも、5μのトナーの製造においては、過粉砕が起こり易く、その歩留りは50%前後に低下する。
【0005】
一方、従来の衝撃式粉砕機では、回転速度などに制限があるため、小粒径のトナーの製造効率が悪いという問題がある。しかも、粉砕部における粉砕刃の谷部を被粉砕物が通過して粉砕が十分に行なわれないため、粉砕物中に所望の粒径範囲より大きい粗粉が多く含まれる傾向にあり、それがために、トナー製品への粗粉の混入による品質の低下や粗粉の除去による製品歩留りの低下などが問題とされていた。
【0006】
本発明は、上記実情に鑑みなされたものであり、その目的は、粉砕工程におけるエネルギー効率が優れ、微粉および粗粉の発生が少なくて小粒径のトナーであっても歩留り良く製造し得るトナーの製造方法および改良された衝撃式粉砕機を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、上記目的を達成すべく種々検討を重ねた結果、特開昭59−127651号公報において、数10μmの粉砕に好適であるとして提案された衝撃式粉砕機を改良することにより、微粉砕能力に優れた斬新的な構造の衝撃式粉砕機の発明を完成した。そして、斯かる衝撃式粉砕機の使用により、小粒径トナーを容易に製造し得ることを見出し、本発明の完成に至った。
【0008】
すなわち、本発明は、静電荷像現像用トナーの製造方法および衝撃式粉砕機の2発明からなり、各発明の要旨は次の通りである。
本発明の第1の要旨は、粗粉砕したトナー粗粉砕物を粉砕して静電荷像現像用トナーを製造するに当たり、回転軸(2)に支持され且つ略三角形の波形状の突起(3)を外側表面の母線に沿って多数設けた回転子(1)と、当該回転子に嵌装され且つ略三角形の波形状の突起(5)を内側表面の母線に沿って多数設けた固定子(6)と、回転子(1)の外側表面と固定子(6)の内側表面との間に形成された粉砕部(4)と、固定子(6)を構成するケーシングの両端部にそれぞれ形成された供給口(7)と排出口(8)とから主として構成され、回転子(1)及び固定子(6)の少なくとも一方の表面において当該表面の一部の突起の繰り返し周期を異ならせた衝撃式粉砕機を使用し、回転子(1)によって起こる気流によりトナー粗粉砕物を粉砕部(4)に供給し、トナー粗粉砕物の粉砕を行うことを特徴とする静電荷像現像用トナーの製造方法に存する。
【0009】
本発明の第2の要旨は、回転軸(2)に支持され且つ略三角形の波形状の突起(3)を外側表面の母線に沿って多数設けた回転子(1)と、当該回転子に嵌装され且つ略三角形の波形状の突起(5)を内側表面の母線に沿って多数設けた固定子(6)と、回転子(1)の外側表面と固定子(6)の内側表面との間に形成された粉砕部(4)と、固定子(6)を構成するケーシングの両端部にそれぞれ形成された供給口(7)と排出口(8)とから主として構成され、回転子(1)及び固定子(6)の少なくとも一方の表面において当該表面の一部の突起の繰り返し周期を異ならせ、回転子(1)によって起こる気流によりトナー粗粉砕物を粉砕部(4)に供給する様にしたことを特徴とする衝撃式粉砕機に存する。
【0010】
以下、本発明を詳細に説明する。
先ず、説明の便宜上、第2の要旨に係る発明について説明する。
図1は、本の衝撃式粉砕機の一例の断面図であり、図2は、図1におけるA−A線断面図であり、図3は、回転子の表面の部分斜視図、図4は、回転子の表面の平面図、図5は、回転子の表面の要部の拡大説明図である。
【0011】
回転子(1)は、水平な回転軸(2)に支持され、軸線に直角に切断した断面形状が波形状である波形状突起(3)を外側表面の母線に沿って多数設けている。ここで、母線とは、軸線と平行な線を言い、従って、多数の波形状突起(3)は、その稜線が軸線と平行で且つ軸線に直角に切断した断面形状が波形状に形成されていることとなる。回転子(1)の左側面と右側面には、それぞれ、回転子(1)と一体に高速回転する攪拌羽根(9)、(10)が固設されていてもよい。
【0012】
固定子(6)は、ケーシングにて構成され、軸線に直角に切断した断面形状が波形状である波形状突起(5)を内側表面の母線に沿って多数設けている。固定子(6)は、回転子(1)に嵌装され、当該回転子との間には微小間隙が設けられて粉砕部(4)が形成されている。回転子(1)の嵌装は、固定子(6)を構成するケーシングの両端部に回転軸(2)の両端部を回転可能に支持して行われる。また、上記のケーシングの左側上部と右側上部には、それぞれ、供給口(7)及び排出口(8)が設けられている。
【0013】
回転子(1)の波形状突起(3)は、略三角形の凹部(3a)と凸部(3b)とを連続して形成することにより構成することが出来る。また、同様に、固定子(6)の波形状突起(5)は、略三角形の凹部(5a)と凸部(5b)とを連続して形成することにより構成することが出来る。そして、波形状の詳細は、特に限定されない。
【0014】
回転子(1)の回転方向は、図2中において矢示した方向、すなわち、回転子(1)の波形状突起(3)と固定子(6)の波形状突起(5)との各波形が衝突しない方向、換言すれば、固定子(6)の波形状突起(5)に対して、回転子(1)の波形状突起(3)がなめるように回転する方向が好ましい。また、回転子(1)と固定子(6)との間に設けられる微小間隙、すなわち、回転子(1)の波形状突起(3)の山部と固定子(6)の波形状突起(5)の山部との距離(t)は、通常、数mm以下とされるが、2mm前後の範囲が好ましい。
【0015】
本発明の衝撃式粉砕機の最大の特徴は、回転子(1)及び固定子(6)の少なくとも一方の突起の繰り返し周期(位相)が異なる点にある。例えば、回転子(1)の波形状突起(3)の位相を異ならせる場合、図4に示すように、1個の回転子(1)の表面を2つに区分して左右対照に異ならせてもよく、3つ以上に区分して適宜の間隔で異ならせることも出来る。また、2個以上の回転子を使用し、波形状突起(3)の位相が異なるように連結してもよい。各波形状突起(3)の位相差の程度は、特に制限されず、例えば、図5に示すように、1の波形状突起(3)を構成する略三角形の凹部(3a)に他の波形状突起(3)を構成する略三角形の凸部(3b)が位置していればよい。
【0016】
回転子(1)の波形状突起(3)の位相を異ならせたことにより、本発明の衝撃式粉砕機においては、粉砕部(4)における被粉砕物のショートパスが効果的に阻止される。すなわち、略三角形の凹部(3a)を移動する被粉砕物は、略三角形の凸部(3b)に衝突させられ、凹部(3a)と凹部(3a)との間のショートパスが効果的に阻止される。その結果、被粉砕物は、繰り返し粉砕されて微粉砕される。また、斯かる作用により、シャープな粒径分布の粉砕物が期待される。
【0017】
上記の位相差は、回転子(1)の波形状突起(3)の代わりに、固定子(6)の波形状突起(5)に設けることも出来、更には、波形状突起(3)と波形状突起(5)の両者について設けることも出来る。そして、斯かる位相の組み合わせや位相差の程度は、回転子(1)と固定子(6)との間に設けられる微小間隙(t)、目的とする微粉砕の程度などを考慮して適宜決定することが出来る。なお、本発明の衝撃式粉砕機は、前述の構成要件を充足する限り、縦型または横型の何れであってもよい。
【0018】
上記の説明において、回転子(1)突起(3)及び固定子(6)の突起(5)は、共に波形状突起としているが、これらの突起の形状は、必ずしも波形状に限定されず、例えば、突起(3)を波形状、突起(5)を凹凸状、または、突起(3)、(6)を共に凹凸状、または、突起(5)を凹凸状、突起(3)を平板の埋め込みにしてもよく、更には、何れか一方の突起を波形状、他方の突起を逆台形状としてもよい。そして、これらの突起は、上記と同様に、回転子(1)及び固定子(6)の少なくとも一方の表面において、当該表面の一部の突起の繰り返し周期が異なるように設けられる。
【0019】
次に、本発明の静電荷像現像用トナーの製造方法について説明する。
本発明のトナー製造方法においては、粉砕工程以外は、通常の製造方法を採用することが出来る。すなわち、本発明においては、先ず、トナー原料を混合し、溶融押し出し機などで混練して板状に押し出して冷却固化したペレットを得る。トナー原料としては、バインダー樹脂と着色剤とが必須成分として使用されるが、必要に応じて例えば帯電制御剤やその他のトナー特性付与剤を使用することが出来る。
【0020】
バインダー樹脂としては、例えば、トナーに適した公知の各種の樹脂を使用することが出来る。例えば、スチレン系樹脂、塩化ビニル樹脂、ロジン変成マレイン酸樹脂、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アイオノマー樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン樹脂、エチレン−エチルアクリレート樹脂、キシレン樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂などが挙げられる。これらの樹脂は2種以上を併用することも出来る。特に、スチレン系樹脂、飽和または不飽和ポリエステル樹脂およびエポキシ樹脂は、主樹脂として好適に使用される。
【0021】
バインダー樹脂のガラス転移温度は、熱分析法(示唆熱分析装置、示唆走査熱量分析装置など)で測定した際の転移開始温度(変曲点)が50℃以上であることが好ましい。ガラス転移温度が50℃未満の場合には、40℃以上の高温で長時間にトナーを放置した場合、トナーの凝集や固着を招き使用上支障を来すことがある。
【0022】
トナー用着色剤としては、公知の各種の着色剤を使用することが出来、例えばカーボンブラック、ニグロシン、ベンジジンイエロー、キナクリドン、ローダミンB、フタロシアニンブルー等が好適に使用される。着色剤は、樹脂100重量部当たり、通常0.1〜30重量部、好ましくは3〜15重量部の割合で使用される。
【0023】
帯電制御剤としては、やはり、公知の各種の帯電制御剤を使用することが出来る。例えば、4級アンモニウム塩、ニグロシン染料、トリフェニルメタン染料、スチレン−アミノアクリレート共重合体、ポリアミン樹脂などの正帯電制御剤や、モノアゾ系金属錯塩などの負帯電制御剤が挙げられる。帯電制御剤は、樹脂100重量部当たり、通常0.1〜10重量部の割合で使用される。
【0024】
また、トナー特性付与剤としては、例えば、オフセット防止のため、ポリエチレンワックス、ポリプロピレンワックス等のポリアルキレンワックスを使用することが出来る。また、流動性および耐凝集性の向上のために、チタニア、アルミナ、シリカ等の無機微粒子を使用することが出来る。これらのトナー特性付与剤は、樹脂100重量部当たり、通常0.1〜10重量部の割合で使用される。
【0025】
更に、トナーが磁性トナーである場合には、フェライト、マグネタイトを始め、鉄、コバルト、ニッケル等の強磁性元素を含む合金または化合物などの磁性粒子を含有することが出来る。磁性粒子は、バインダー樹脂100重量部当たり、通常、20〜70重量部の割合で使用される。
【0026】
次に、冷却固化されたペレット状トナーは、ハンマー式粉砕機などの粗粉砕機により、重量平均粒径が約100μ〜3000μ、好ましくは約300μ前後の範囲になるように粗粉砕される。ここに、重量平均粒径とは、粒径−重量分布のメジアン値粒径であり、例えば、コールターエレクトロニクス社製コールカウンタで測定することが出来る。
【0027】
次に、上記のようにして得られたトナー粗粉砕物は、前述した本発明の衝撃式粉砕機を使用して更に粉砕される。
トナー粗粉砕物は、供給口(7)から供給され、回転子(1)によって起こる気流によって粉砕部(4)に送り込まれて粉砕された後、回転子(1)によって起こる気流によって排出口(8)から排出される。この際、トナー粗粉砕物は、回転子(1)及び固定子(6)の少なくとも一方の波形状突起の位相が異なるため、粉砕部(4)において繰り返し粉砕されて微粉砕される。衝撃式粉砕機の運転条件は適宜選択されるが、雰囲気温度は30〜50℃、回転子(1)の周速は100〜200m/secの範囲から選択するのがよい。
【0028】
次に、排出口(8)から排出されたトナーは、通常、分級処理される。そして、平均粒径として、約3〜20μ、好ましくは3〜10μのトナーを回収する。分級機としては、各種の分級機、例えば、気流式分級機(日本ニューマチック社製「DS分級機」)、コアンダ効果を利用した多産物同時分級機(日鉄鉱業社製「エルボージェット」)、ジグザグ分級機などを採用することが出来る。特に、粗粉、中粉、微粉を同時に精度良く分割することの出来る多産物同時分級機が好適に使用される。
【0029】
そして、得られた所定粒径以外の粗粉および微粉は、製造工程に循環して再利用することが出来る。例えば、粗粉は、粉砕工程に循環して再粉砕し、微粉は、原料粉と一緒に混合工程や溶融混練工程に循環して使用することが出来る。一方、回収されたトナーは、更に、種々の公知の外添剤を添加した後、所定の容器に充填されて出荷される。
【0030】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により何ら制限されるものではない。
実施例1
以下の表1に記載のトナー原料を配合し、混合、混練、粗粉砕して平均粒径300μm前後のトナー粗粉砕物を得た。
【0031】
【表1】
スチレンアクリレート共重合樹脂 100部
(軟化点145℃、ガラス転移点64℃)
着色剤:カーボンブラック「MA100」 6部
(三菱化成(株)製)
低分子量ポリプロピレン:「ビスコール550P」 1部
(三洋化成(株)製)
帯電制御剤:4級アンモニウム塩「ボントロンP−51」 2部
(オリエント化学(株)製)
【0032】
次に、ターボ工業(株)製:T−400RS型を改良し、図4及び図5に示すように回転子の波形状突起の位相を異ならせた図1に示す本発明の衝撃式粉砕機(回転子と固定子との間の微小間隙が約2mm)に、上記のトナー粗粉砕物を20kg/hの速度で供給し、雰囲気温度50℃以下、回転子の周速140m/secの運転条件で粉砕した。その後、得られた粉砕品をエルボージェット分級機(EJ−45−3S型)で分級し、平均粒子径5.0μmの製品トナー粒子群を得た。このときの微粉の発生率は30%であり、後述する従来のジェット式粉砕機による場合の約1/2であった。また、粗粉の発生率は0.3%であった。また、粉砕分級に要する消費する電力量は、トナー1kg当たり5KWHであり、後述する従来のジェット式粉砕機による場合の約1/6であった。
【0033】
上記のトナー4重量部とフェライト粉末をコア材とするキャリアー100重量部とを混合して現像剤となし、有機光導電体を感光体とする複写機を使用して実写テストを行った。なお、実写テストに使用した補給用トナーは、上記現像剤に使用したのと同一のトナーを使用した。実写テストの結果、高解像度、高階調性の画像が得られ、その他使用上の不具合な点もなかった。
【0034】
比較例1
実施例1において、本発明の衝撃式粉砕機の代わりにジェット式粉砕機(ジェットミル日本ニューマチック工業社製「I−10」)を使用した以外は、実施例1と同様にして、平均粒径約5.0μmのトナー製品の製造を試みた。その結果、微粉の発生率は55%となり、製品の歩留りが悪く、また、トナー1kg当たりの必要電力量が30KWH程度と大きく、エネルギー効率が悪かった。
【0035】
比較例2
実施例1において、回転子の波形状突起の位相を異ならせていない以外は同一構造の衝撃式粉砕機を使用し、実施例1と同様にして、平均粒径約5.0μmのトナー製品の製造を試みた。その結果、粗粉の発生率は1.3%であった。
【0036】
【発明の効果】
以上説明した本発明によれば、エネルギー効率が良く、過粉砕が少なくて歩留りが良好であり、しかも、粗粉の発生量が少ない小粒径トナーの製造方法が提供される。
【図面の簡単な説明】
【図1】本発明の衝撃式粉砕機の一例の断面図である。
【図2】図1におけるA−A線断面図である。
【図3】回転子の表面の部分斜視図である。
【図4】回転子の表面の平面図である。
【図5】回転子の表面の要部の拡大説明図である。
【符号の説明】
1:回転子
2:回転軸
3:突起
4:粉砕部
5:突起
6:固定子
7:供給口
8:排出口
9:攪拌羽根
10:攪拌羽根
[0001]
[Industrial applications]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a toner for developing an electrostatic image, and a pulverizing apparatus. And to an impact-type pulverizer improved so as to be able to carry out.
[0002]
[Prior art]
Conventionally, in a method of producing a toner for developing an electrostatic image, after mixing, kneading and cooling toner materials such as a resin and a colorant, for example, coarsely pulverizing with a hammer-type pulverizer or the like to obtain an average coarseness of 1000 to 100 μm A method of pulverizing the product, followed by preliminary pulverization as necessary, or direct pulverization to obtain a pulverized product is employed. Then, the obtained pulverized product is separated into particles having a predetermined particle size distribution by a classification process, and is used as a toner for developing an electrostatic image.
[0003]
Conventionally, the above-mentioned coarse pulverization is mainly performed by a jet pulverizer using a supersonic jet stream, an impact pulverizer in which a pulverizing portion is formed between a rotor rotating at a high speed and a stator, and the like. Is used. As the classifier, an airflow classifier (DS classifier manufactured by Nippon Pneumatic), a multi-product simultaneous classifier (Elbow Jet manufactured by Nippon Mining Co., Ltd.), a zigzag classifier, and the like are used.
[0004]
[Problems to be solved by the invention]
Conventionally, toners having an average particle diameter of about several tens of μm have been mainly used. In recent years, however, there has been a demand for higher speed and higher image quality (high resolution, high gradation) of copiers and printers. Accordingly, a toner having a smaller particle size, for example, a toner having an average particle size of about 3 to 10 μm has been desired.
However, in the production of a toner having a small particle size as described above, there is a problem that production efficiency is extremely poor. That is, when a 5 μm toner is manufactured using a jet pulverizer, the energy efficiency is reduced to about 1/10 compared to, for example, a case of manufacturing a 12 μm toner. In addition, in the production of a 5 μ toner, excessive pulverization is liable to occur, and the yield is reduced to about 50%.
[0005]
On the other hand, in the conventional impact-type pulverizer, there is a problem that the production efficiency of the toner having a small particle diameter is poor because the rotation speed and the like are limited. Moreover, since the material to be pulverized does not sufficiently pass through the valley of the pulverizing blade in the pulverizing portion, the pulverized material tends to contain a large amount of coarse powder larger than a desired particle size range. For this reason, there has been a problem that the quality is deteriorated due to the mixing of the coarse powder into the toner product, and the product yield is lowered due to the removal of the coarse powder.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a toner which is excellent in energy efficiency in a pulverizing step, has a small generation of fine powder and coarse powder, and can be produced with a high yield even if the toner has a small particle size And to provide an improved impact-type pulverizer.
[0007]
[Means for Solving the Problems]
The present inventors have made various studies in order to achieve the above object, and as a result, by improving an impact-type pulverizer proposed in JP-A-59-127651 as being suitable for pulverization of several tens of μm. We have completed the invention of an impact-type pulverizer having a novel structure with excellent fine-pulverization ability. Then, they have found that a small particle size toner can be easily produced by using such an impact type pulverizer, and have completed the present invention.
[0008]
That is, the present invention comprises two inventions of a method for producing a toner for developing an electrostatic charge image and an impact-type pulverizer. The gist of each invention is as follows.
A first gist of the present invention is to produce a toner for developing an electrostatic image by crushing a coarsely crushed toner coarsely pulverized product, and a substantially triangular wavy projection (3) supported on a rotating shaft (2). (1) provided along the generatrix on the outer surface, and a stator (5) fitted on the rotor and provided with a number of substantially triangular wavy projections (5) along the generatrix on the inner surface. 6), a crushing portion (4) formed between the outer surface of the rotor (1) and the inner surface of the stator (6), and formed at both ends of a casing constituting the stator (6). Mainly composed of a supply port (7) and a discharge port (8) provided, and at least one of the surfaces of the rotor (1) and the stator (6) has a different repetition period of some of the projections on the surface. Using an impact-type pulverizer, coarse toner pulverization is performed by the air current generated by the rotor (1). Was supplied to the grinding zone (4), it consists in producing a toner for developing electrostatic images which is characterized in that the grinding of the toner coarse pulverized material.
[0009]
A second gist of the present invention is a rotor (1) supported by a rotating shaft (2) and provided with a large number of substantially triangular wavy projections (3) along a generatrix on an outer surface; A stator (6) fitted with a large number of substantially triangular wavy protrusions (5) along the generatrix of the inner surface, an outer surface of the rotor (1) and an inner surface of the stator (6); And a supply port (7) and a discharge port (8) formed at both ends of a casing constituting the stator (6), respectively. At least one of the surfaces of the stator (1) and the stator (6) has a different repetition period of a part of the projections, and the coarsely pulverized toner is supplied to the pulverizing unit (4) by an air current generated by the rotor (1). The present invention resides in an impact-type pulverizer characterized in that:
[0010]
Hereinafter, the present invention will be described in detail.
First, for convenience of description, the invention according to the second aspect will be described.
FIG. 1 is a cross-sectional view of an example of the present impact-type pulverizer, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, FIG. 3 is a partial perspective view of the surface of a rotor, and FIG. , A plan view of the surface of the rotor, and FIG. 5 is an enlarged explanatory view of a main part of the surface of the rotor.
[0011]
The rotor (1) is supported by a horizontal rotating shaft (2), and has a large number of wavy projections (3) along a generatrix on the outer surface, the wavy projections (3) having a cross-sectional shape cut at a right angle to the axis. Here, the generatrix refers to a line parallel to the axis. Therefore, many wavy projections (3) have a ridge line parallel to the axis and a cross-sectional shape cut at a right angle to the axis to form a wavy shape. Will be. Stirring blades (9) and (10) that rotate at high speed integrally with the rotor (1) may be fixed to the left side and the right side of the rotor (1), respectively.
[0012]
The stator (6) is formed of a casing, and has a large number of wavy projections (5) having a wavy cross-section cut perpendicular to the axis along the generatrix on the inner surface. The stator (6) is fitted on the rotor (1), and a minute gap is provided between the stator (6) and the rotor to form a pulverizing portion (4). The rotor (1) is fitted by rotatably supporting both ends of the rotating shaft (2) on both ends of a casing constituting the stator (6). A supply port (7) and a discharge port (8) are provided at the upper left and upper right portions of the casing, respectively.
[0013]
The wave-shaped projection (3) of the rotor (1) can be formed by forming a substantially triangular concave portion (3a) and a convex portion (3b) continuously. Similarly, the corrugated projections (5) of the stator (6) can be formed by continuously forming substantially triangular concave portions (5a) and convex portions (5b). The details of the wave shape are not particularly limited.
[0014]
The rotation direction of the rotor (1) is the direction indicated by the arrow in FIG. 2, that is, each waveform of the wave-shaped protrusion (3) of the rotor (1) and the wave-shaped protrusion (5) of the stator (6). Is preferable, in other words, the direction in which the wave-shaped projections (3) of the rotor (1) rotate relative to the wave-shaped projections (5) of the stator (6). Further, a minute gap provided between the rotor (1) and the stator (6), that is, a peak portion of the wave-shaped protrusion (3) of the rotor (1) and a wave-shaped protrusion of the stator (6) ( The distance (t) to the crest in 5) is usually set to several mm or less, but is preferably in a range of about 2 mm.
[0015]
The greatest feature of the impact-type pulverizer of the present invention is that at least one of the rotor (1) and the stator (6) has a different repetition period (phase). For example, when the phases of the wave-shaped projections (3) of the rotor (1) are made different, as shown in FIG. 4, the surface of one rotor (1) is divided into two and made different from each other in a left-right contrast. Alternatively, it may be divided into three or more and may be changed at appropriate intervals. Alternatively, two or more rotors may be used and connected so that the phases of the wave-shaped projections (3) are different. The degree of the phase difference between the respective wave-shaped protrusions (3) is not particularly limited. For example, as shown in FIG. 5, another wave-shaped protrusion (3) is formed into a substantially triangular concave portion (3a) constituting one wave-shaped protrusion (3). It is sufficient that the substantially triangular projection (3b) constituting the shape projection (3) is located.
[0016]
By making the phases of the wave-shaped projections (3) of the rotor (1) different, in the impact-type pulverizer of the present invention, a short path of the object to be pulverized in the pulverization unit (4) is effectively prevented. . That is, the object to be crushed moving in the substantially triangular concave portion (3a) is caused to collide with the substantially triangular convex portion (3b), and a short path between the concave portion (3a) and the concave portion (3a) is effectively prevented. Is done. As a result, the object to be ground is repeatedly ground and finely ground. In addition, a pulverized product having a sharp particle size distribution is expected by such an action.
[0017]
The above-mentioned phase difference can be provided on the wave-shaped protrusion (5) of the stator (6) instead of the wave-shaped protrusion (3) of the rotor (1). It can also be provided for both of the wavy projections (5). The combination of the phases and the degree of the phase difference are appropriately determined in consideration of the minute gap (t) provided between the rotor (1) and the stator (6), the desired degree of pulverization, and the like. Can be determined. In addition, the impact-type pulverizer of the present invention may be either a vertical type or a horizontal type as long as the above configuration requirements are satisfied.
[0018]
In the above description, the rotor (1) protrusion (3) and the protrusion (5) of the stator (6) are both wave-shaped protrusions, but the shapes of these protrusions are not necessarily limited to wave shapes. For example, the projection (3) is corrugated, the projection (5) is irregular, the projections (3) and (6) are both irregular, the projection (5) is irregular, and the projection (3) is flat. The protrusion may be embedded, and one of the protrusions may have a wavy shape, and the other protrusion may have an inverted trapezoidal shape. These projections are provided on at least one of the surfaces of the rotor (1) and the stator (6) in a manner similar to the above, so that the repetition period of some of the projections on the surface is different.
[0019]
Next, a method for producing the electrostatic image developing toner of the present invention will be described.
In the toner manufacturing method of the present invention, a normal manufacturing method can be adopted except for the pulverizing step. That is, in the present invention, first, toner raw materials are mixed, kneaded by a melt extruder or the like, extruded into a plate shape, and cooled and solidified to obtain pellets. As a toner raw material, a binder resin and a colorant are used as essential components. For example, a charge control agent or another toner property imparting agent can be used as necessary.
[0020]
As the binder resin, for example, various known resins suitable for toner can be used. For example, styrene resin, vinyl chloride resin, rosin-modified maleic resin, phenol resin, epoxy resin, polyester resin, polyethylene resin, polypropylene resin, ionomer resin, polyurethane resin, silicone resin, ketone resin, ethylene-ethyl acrylate resin, xylene Resin, polyvinyl butyral resin, polycarbonate resin and the like. These resins may be used in combination of two or more. In particular, styrene resins, saturated or unsaturated polyester resins and epoxy resins are suitably used as the main resin.
[0021]
Regarding the glass transition temperature of the binder resin, the transition start temperature (inflection point) when measured by a thermal analysis method (indicative thermal analyzer, indicative scanning calorimeter, or the like) is preferably 50 ° C. or more. When the glass transition temperature is lower than 50 ° C., if the toner is left at a high temperature of 40 ° C. or higher for a long period of time, the toner may be aggregated or fixed, which may hinder use.
[0022]
As the colorant for the toner, various known colorants can be used. For example, carbon black, nigrosine, benzidine yellow, quinacridone, rhodamine B, phthalocyanine blue and the like are preferably used. The colorant is used in an amount of usually 0.1 to 30 parts by weight, preferably 3 to 15 parts by weight, per 100 parts by weight of the resin.
[0023]
As the charge control agent, again, various known charge control agents can be used. For example, a positive charge control agent such as a quaternary ammonium salt, a nigrosine dye, a triphenylmethane dye, a styrene-aminoacrylate copolymer, and a polyamine resin, and a negative charge control agent such as a monoazo metal complex salt are exemplified. The charge control agent is used usually in a ratio of 0.1 to 10 parts by weight per 100 parts by weight of the resin.
[0024]
As the toner property imparting agent, for example, polyalkylene wax such as polyethylene wax and polypropylene wax can be used to prevent offset. In addition, inorganic particles such as titania, alumina, and silica can be used to improve fluidity and coagulation resistance. These toner property imparting agents are generally used in a ratio of 0.1 to 10 parts by weight per 100 parts by weight of the resin.
[0025]
Further, when the toner is a magnetic toner, it can contain magnetic particles such as ferrite, magnetite, and alloys or compounds containing ferromagnetic elements such as iron, cobalt, and nickel. The magnetic particles are generally used in a proportion of 20 to 70 parts by weight per 100 parts by weight of the binder resin.
[0026]
Next, the pelletized toner solidified by cooling is coarsely pulverized by a coarse pulverizer such as a hammer type pulverizer so that the weight average particle diameter is in a range of about 100 μm to 3000 μm, preferably about 300 μm. Here, the weight average particle size is a median value particle size of a particle size-weight distribution, which can be measured by, for example, a Coulter Electronics Co., Ltd. call counter.
[0027]
Next, the coarsely pulverized toner obtained as described above is further pulverized by using the above-described impact pulverizer of the present invention.
The coarsely pulverized toner is supplied from a supply port (7), is fed into a pulverizing unit (4) by an air current generated by a rotor (1), is pulverized, and is then discharged by an air current generated by the rotor (1). 8). At this time, the coarsely pulverized toner product is repeatedly pulverized and finely pulverized in the pulverizing section (4) because at least one of the rotor (1) and the stator (6) has a different phase of the wave-shaped projections. The operating conditions of the impact-type pulverizer are appropriately selected, but it is preferable that the ambient temperature is 30 to 50 ° C. and the peripheral speed of the rotor (1) is 100 to 200 m / sec.
[0028]
Next, the toner discharged from the discharge port (8) is usually subjected to classification processing. Then, a toner having an average particle diameter of about 3 to 20 μ, preferably 3 to 10 μ is collected. Examples of the classifier include various classifiers, for example, an airflow classifier ("DS Classifier" manufactured by Nippon Pneumatic Co., Ltd.), and a multi-product simultaneous classifier utilizing the Coanda effect ("Elbow Jet" manufactured by Nippon Steel Mining Co., Ltd.) , A zigzag classifier or the like can be adopted. In particular, a multi-product simultaneous classifier that can simultaneously separate coarse, medium, and fine powders with high accuracy is preferably used.
[0029]
Then, the obtained coarse powder and fine powder other than the predetermined particle size can be circulated and reused in the production process. For example, the coarse powder can be circulated to the pulverizing step and re-pulverized, and the fine powder can be circulated and used together with the raw material powder in the mixing step and the melt kneading step. On the other hand, the collected toner is further added with various known external additives and then filled in a predetermined container before being shipped.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.
Example 1
The toner raw materials shown in Table 1 below were blended, mixed, kneaded, and coarsely pulverized to obtain a coarsely pulverized toner having an average particle size of about 300 μm.
[0031]
[Table 1]
100 parts of styrene acrylate copolymer resin (softening point 145 ° C, glass transition point 64 ° C)
Coloring agent: 6 parts of carbon black "MA100" (manufactured by Mitsubishi Kasei Corporation)
Low molecular weight polypropylene: 1 part of "VISCOL 550P" (manufactured by Sanyo Chemical Co., Ltd.)
Charge control agent: Quaternary ammonium salt "Bontron P-51" 2 parts (Orient Chemical Co., Ltd.)
[0032]
Next, the T-400RS type manufactured by Turbo Kogyo Co., Ltd. was improved and the phase of the wave-shaped projections of the rotor was changed as shown in FIGS. (The fine gap between the rotor and the stator is about 2 mm), and the above coarsely pulverized toner is supplied at a speed of 20 kg / h, and the operation is performed at an ambient temperature of 50 ° C. or less and a peripheral speed of the rotor of 140 m / sec. Crushed under the conditions. Thereafter, the obtained pulverized product was classified by an elbow jet classifier (EJ-45-3S type) to obtain a group of product toner particles having an average particle size of 5.0 μm. At this time, the generation rate of the fine powder was 30%, which was about の of that of a conventional jet pulverizer described later. The generation rate of coarse powder was 0.3%. The amount of power required for the pulverization and classification was 5 KWH per kg of toner, which was about 1/6 that of a conventional jet pulverizer described later.
[0033]
4 parts by weight of the toner described above and 100 parts by weight of a carrier containing ferrite powder as a core material were mixed to form a developer, and a real copying test was carried out using a copying machine using an organic photoconductor as a photosensitive member. The same toner used for the developer was used as the replenishing toner used in the actual test. As a result of the actual shooting test, a high-resolution and high-gradation image was obtained, and there were no other problems in use.
[0034]
Comparative Example 1
In Example 1, the average particle size was changed in the same manner as in Example 1 except that a jet pulverizer ("I-10" manufactured by Jet Mill Nippon Pneumatic Industries, Ltd.) was used instead of the impact pulverizer of the present invention. An attempt was made to produce a toner product having a diameter of about 5.0 μm. As a result, the generation rate of fine powder was 55%, the yield of the product was poor, and the required power per 1 kg of toner was as large as about 30 KWH, and the energy efficiency was poor.
[0035]
Comparative Example 2
In Example 1, an impact-type pulverizer having the same structure was used except that the phases of the wave-shaped projections of the rotor were not different, and a toner product having an average particle size of about 5.0 μm was obtained in the same manner as in Example 1. Tried manufacturing. As a result, the generation rate of coarse powder was 1.3%.
[0036]
【The invention's effect】
According to the present invention described above, there is provided a method for producing a small particle size toner having good energy efficiency, low over-pulverization, good yield, and low generation of coarse powder.
[Brief description of the drawings]
FIG. 1 is a sectional view of an example of an impact-type pulverizer of the present invention.
FIG. 2 is a sectional view taken along line AA in FIG.
FIG. 3 is a partial perspective view of a surface of a rotor.
FIG. 4 is a plan view of a surface of a rotor.
FIG. 5 is an enlarged explanatory view of a main part of a surface of a rotor.
[Explanation of symbols]
1: rotor 2: rotating shaft 3: protrusion 4: crushing unit 5: protrusion 6: stator 7: supply port 8: discharge port 9: stirring blade 10: stirring blade

Claims (2)

粗粉砕したトナー粗粉砕物を粉砕して静電荷像現像用トナーを製造するに当たり、回転軸(2)に支持され且つ略三角形の波形状の突起(3)を外側表面の母線に沿って多数設けた回転子(1)と、当該回転子に嵌装され且つ略三角形の波形状の突起(5)を内側表面の母線に沿って多数設けた固定子(6)と、回転子(1)の外側表面と固定子(6)の内側表面との間に形成された粉砕部(4)と、固定子(6)を構成するケーシングの両端部にそれぞれ形成された供給口(7)と排出口(8)とから主として構成され、回転子(1)及び固定子(6)の少なくとも一方の表面において当該表面の一部の突起の繰り返し周期を異ならせた衝撃式粉砕機を使用し、回転子(1)によって起こる気流によりトナー粗粉砕物を粉砕部(4)に供給し、トナー粗粉砕物の粉砕を行うことを特徴とする静電荷像現像用トナーの製造方法。When the coarsely pulverized toner is pulverized to produce a toner for developing an electrostatic charge image, a large number of substantially triangular wavy projections (3) supported by the rotating shaft (2) are formed along the generatrix on the outer surface. A rotor (1) provided; a stator (6) fitted to the rotor and provided with a large number of substantially triangular wavy projections (5) along a generatrix on the inner surface; and a rotor (1). A crushing section (4) formed between the outer surface of the stator and the inner surface of the stator (6), and supply ports (7) formed at both ends of a casing constituting the stator (6), and a discharge port. An impact-type pulverizer mainly composed of an outlet (8) and having a repetition period of at least one of the surfaces of the rotor (1) and the stator (6) with different repetition periods of projections on a part of the surface. The coarsely pulverized toner is supplied to the pulverizing unit (4) by the air current generated by the child (1) , Method for producing a toner for developing electrostatic images which is characterized in that the grinding of the toner coarse pulverized material. 回転軸(2)に支持され且つ略三角形の波形状の突起(3)を外側表面の母線に沿って多数設けた回転子(1)と、当該回転子に嵌装され且つ略三角形の波形状の突起(5)を内側表面の母線に沿って多数設けた固定子(6)と、回転子(1)の外側表面と固定子(6)の内側表面との間に形成された粉砕部(4)と、固定子(6)を構成するケーシングの両端部にそれぞれ形成された供給口(7)と排出口(8)とから主として構成され、回転子(1)及び固定子(6)の少なくとも一方の表面において当該表面の一部の突起の繰り返し周期を異ならせ、回転子(1)によって起こる気流によりトナー粗粉砕物を粉砕部(4)に供給する様にしたことを特徴とする衝撃式粉砕機。A rotor (1) supported by a rotating shaft (2) and provided with a large number of substantially triangular wavy projections (3) along a generatrix on the outer surface; a substantially triangular wavy shape fitted to the rotor; A stator (6) provided with a large number of protrusions (5) along the generatrix of the inner surface, and a crushing portion (5) formed between the outer surface of the rotor (1) and the inner surface of the stator (6). 4) and a supply port (7) and a discharge port (8) formed at both ends of a casing constituting the stator (6), respectively. An impact wherein at least one of the surfaces has a different repetition period of projections on a part of the surface to supply a coarsely pulverized toner to a pulverizing section (4) by an air current generated by a rotor (1). Type crusher.
JP09069693A 1993-03-25 1993-03-25 Method for producing toner for developing electrostatic images and impact-type pulverizer Expired - Lifetime JP3548192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09069693A JP3548192B2 (en) 1993-03-25 1993-03-25 Method for producing toner for developing electrostatic images and impact-type pulverizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09069693A JP3548192B2 (en) 1993-03-25 1993-03-25 Method for producing toner for developing electrostatic images and impact-type pulverizer

Publications (2)

Publication Number Publication Date
JPH06277545A JPH06277545A (en) 1994-10-04
JP3548192B2 true JP3548192B2 (en) 2004-07-28

Family

ID=14005700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09069693A Expired - Lifetime JP3548192B2 (en) 1993-03-25 1993-03-25 Method for producing toner for developing electrostatic images and impact-type pulverizer

Country Status (1)

Country Link
JP (1) JP3548192B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689016B2 (en) * 2000-09-12 2011-05-25 株式会社日清製粉グループ本社 Mechanical crusher
JP2009262003A (en) * 2008-04-22 2009-11-12 Canon Inc Grinding machine and equipment for manufacturing toner
JP5527942B2 (en) * 2008-04-22 2014-06-25 キヤノン株式会社 Crusher and toner manufacturing apparatus

Also Published As

Publication number Publication date
JPH06277545A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
JPH1094734A (en) Device and method for treating surface of solid particle, and production of toner
JP4491328B2 (en) Toner production method
JP4290107B2 (en) Toner production method
JP3548192B2 (en) Method for producing toner for developing electrostatic images and impact-type pulverizer
US5637434A (en) Method for producing toner for electrostatic development
JP2008225317A (en) Electrostatic charge image developing toner
EP0605169B1 (en) Method for producing toner for electrostatic development
JP3693683B2 (en) Toner manufacturing method for developing electrostatic image
JPH10211438A (en) Mechanical type grinder and production of toner for electrophotography using said grinder
JP2006308640A (en) Method for manufacturing toner
JPH09187732A (en) Preparation of toner
JP3779975B2 (en) Method for producing toner for developing electrostatic image and pulverizing and classifying device for toner
JP2007148077A (en) Method for manufacturing toner
JPH06289657A (en) Production of electrostatic charge image developing toner
JP3726026B2 (en) Method for producing toner for developing electrostatic image
JPH0749583A (en) Production of electrophotographic toner
JPH07244399A (en) Production of electrostatic charge image developing toner
JPH06277544A (en) Production of electrostatic charge image developing toner and impact pulverizer
JPH06262095A (en) Preparation of toner for static charge image development and grinding device
JPH11216381A (en) Apparatus for surface treatment of solid particle and surface treatment of toner particle
JPH06262096A (en) Preparation of toner for static charge image development and grinding device
JP3726409B2 (en) Mechanical pulverizer and toner production method using the same
JPH06289655A (en) Production of electrostatic charge image developing toner
JPH10319634A (en) Method for washing toner producing apparatus
JPH06186776A (en) Production of electrostatic charge image developing toner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9