JPS6160546B2 - - Google Patents

Info

Publication number
JPS6160546B2
JPS6160546B2 JP59149956A JP14995684A JPS6160546B2 JP S6160546 B2 JPS6160546 B2 JP S6160546B2 JP 59149956 A JP59149956 A JP 59149956A JP 14995684 A JP14995684 A JP 14995684A JP S6160546 B2 JPS6160546 B2 JP S6160546B2
Authority
JP
Japan
Prior art keywords
matrix
electrolyte
gas
battery
liquid storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59149956A
Other languages
Japanese (ja)
Other versions
JPS6063876A (en
Inventor
Masahiro Ide
Hideo Hagino
Osamu Tajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59149956A priority Critical patent/JPS6063876A/en
Publication of JPS6063876A publication Critical patent/JPS6063876A/en
Publication of JPS6160546B2 publication Critical patent/JPS6160546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 本発明はマトリツクス型燃料電池、特に電解液
の補給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a matrix fuel cell, and more particularly to an electrolyte replenishment device.

この種電池において電池を長期間作動するため
には電解質マトリツクスを安定化する必要があ
る。ガス拡散性の正・負極間に介在するマトリツ
クスは高濃度のりん酸を含浸して用いられるが、
電池作動中の高温と反応ガスの流通によりマトリ
ツクスが乾燥して電池性能を損う。そのため電池
内に電解液の貯蔵部(リザーバー)を設けてこの
電解液をマトリツクスに補給するとか電池外部か
らマトリツクスに補液する方法をとつている。
In this type of battery, it is necessary to stabilize the electrolyte matrix in order to operate the battery for a long period of time. The matrix interposed between the gas-diffusive positive and negative electrodes is impregnated with highly concentrated phosphoric acid.
The high temperatures and flow of reactive gas during battery operation dry the matrix, impairing battery performance. For this reason, methods are used, such as providing an electrolyte reservoir in the battery and replenishing the matrix with the electrolyte, or replenishing the matrix from outside the battery.

従来のリザーバー層は電極背面に配設され、こ
の電極の開口を介してマトリツクスに連通してい
るため、リザーバー層の存在により供給ガスの反
応域への拡散を損うと共にリザーバー層背面に沿
つて供給されるガスによりリザーバー層自体の乾
燥ひいてはマトリツクス中の電解液量も減少する
という欠点があつた。
Since a conventional reservoir layer is placed on the back side of the electrode and communicates with the matrix through an opening in this electrode, the presence of the reservoir layer impairs the diffusion of the feed gas into the reaction zone and prevents the feed gas from flowing along the back side of the reservoir layer. There is a drawback that the supplied gas dries the reservoir layer itself and, in turn, reduces the amount of electrolyte in the matrix.

本発明は単位セルとガス分離板との積重体より
なる電池堆において前記ガス分離板の周辺部即ち
供給ガスと直接接触しない領域に、前記マトリツ
クスの側縁に接する電解液貯液溝と、これら互に
隣接する貯液溝を蛇行状に連通する電解液給液路
とを形成し、前記各貯液溝中を順次往つたり来た
りするやり方で流れる電解液が前記各マトリツク
スに含浸されるようにしたものである。
The present invention provides, in a battery stack consisting of a stack of unit cells and gas separation plates, an electrolyte storage groove in contact with the side edge of the matrix, in the peripheral area of the gas separation plate, that is, in an area that does not come into direct contact with the supply gas; An electrolytic solution supply path is formed that communicates the adjacent liquid storage grooves in a meandering manner, and each matrix is impregnated with an electrolytic solution that flows back and forth in each of the liquid storage grooves in sequence. This is how it was done.

以下本発明の実施例を図について説明するに電
池堆1は、正・負ガス電極3,2と電解液保持マ
トリツクス4よりなる単位セルと、その両面に
夫々水素供給溝5及び空気供給溝6とを配列した
カーボン製ガス分離板7とを上下方向に多数積重
し、図示しない上下端板間で締付けて構成され
る。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. A battery stack 1 includes a unit cell consisting of positive and negative gas electrodes 3, 2 and an electrolyte holding matrix 4, and a hydrogen supply groove 5 and an air supply groove 6 on both sides of the unit cell, respectively. It is constructed by stacking a large number of carbon gas separation plates 7 arranged in the vertical direction and tightening them between upper and lower end plates (not shown).

各ガス分離板7の片面周辺部にはマトリツクス
4の側縁に接する電解液貯液溝8を有し、これら
互に隣接する貯液溝8を第2図に示すように電解
液給液路9によつて蛇行状に連通している。この
第2図は貯液溝8に沿つて電池堆1の一部を縦に
断面した図である。
Each gas separation plate 7 has an electrolyte storage groove 8 in contact with the side edge of the matrix 4 in the periphery of one side thereof, and these adjacent liquid storage grooves 8 are connected to an electrolyte supply channel as shown in FIG. 9 in a meandering manner. FIG. 2 is a longitudinal cross-sectional view of a part of the battery stack 1 along the liquid storage groove 8. As shown in FIG.

電池の長期間作動によりマトリツクス4が乾燥
したとき、電池堆1下方の注液口(図示せず)よ
り燐酸などの電解液を注入すれば、電解液は各給
液路9と各貯液溝8によつて構成された蛇行状の
補液経路を下方より上方へ流れて、上方の溢液口
(図示せず)より出る。この蛇行状に流れる電解
液が各貯液溝8を順次満して、これら貯液溝8に
対応するマトリツクス4に含浸されることにな
る。
When the matrix 4 becomes dry due to long-term operation of the battery, if an electrolytic solution such as phosphoric acid is injected from the injection port (not shown) at the bottom of the battery stack 1, the electrolyte will flow through each liquid supply path 9 and each liquid storage groove. The fluid flows from the bottom to the top through the meandering fluid replacement path constituted by 8, and exits from the upper overflow port (not shown). The electrolytic solution flowing in a meandering manner sequentially fills each liquid storage groove 8 and impregnates the matrix 4 corresponding to these liquid storage grooves 8.

上述の如く本発明によれば単位セルと共に電池
堆を構成する各ガス分離板の周辺部には、マトリ
ツクスの側縁に接する電解液貯液溝とこれら貯液
溝を蛇行状に連通する電解液給液路を形成したの
で、補給された電解液は、蛇行状に流れる間に各
貯液溝を均一に満して対応するマトリツクスへの
含浸液量が均一化されると共に貯液溝が反応ガス
と隔離された区域にあるため、従来のように反応
ガス流の影響を受けることなく補液周期を延長す
ることも可能となるなどの特長がある。
As described above, according to the present invention, in the periphery of each gas separation plate that constitutes the battery stack together with the unit cells, there are electrolytic solution storage grooves that contact the side edges of the matrix and electrolytic solution that communicates with these storage grooves in a meandering manner. Since the liquid supply path is formed, the replenished electrolyte uniformly fills each liquid storage groove while flowing in a meandering pattern, and the amount of liquid impregnated into the corresponding matrix becomes uniform, and the liquid storage grooves react. Since it is located in an area isolated from the gas, it has the advantage of being able to extend the fluid replacement cycle without being affected by the flow of the reactant gas, unlike conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電池堆の一部を破断して
示す要部斜面図、第2図は同上の電池堆の一部を
貯液溝に沿つて断面した図である。 1:電池堆、3,2:正・負ガス電極、4:マ
トリツクス、5:水素供給溝、6:空気供給溝、
7:ガス分離板、8:貯液溝、9:給液路。
FIG. 1 is a partially cutaway perspective view of a main part of a battery stack according to the present invention, and FIG. 2 is a cross-sectional view of a part of the same battery stack along a liquid storage groove. 1: Battery stack, 3, 2: Positive and negative gas electrodes, 4: Matrix, 5: Hydrogen supply groove, 6: Air supply groove,
7: Gas separation plate, 8: Liquid storage groove, 9: Liquid supply path.

Claims (1)

【特許請求の範囲】[Claims] 1 正・負ガス電極間に電解質マトリツクスを介
在させた単位セルと、両面に夫々正・負各反応ガ
ス供給溝を配列したガス分離板とを上下方向に多
数積重してなり、前記ガス分離板の周辺部に前記
マトリツクスの側縁に接する電解液貯液溝とこれ
ら上下互に隣接する貯液溝を蛇行状に連通する電
解液給液路とを形成したことを特徴とするマトリ
ツクス型燃料電池。
1 A unit cell in which an electrolyte matrix is interposed between positive and negative gas electrodes, and gas separation plates each having positive and negative reaction gas supply grooves arranged on both sides, are stacked vertically, and the gas separation A matrix type fuel characterized in that an electrolyte storage groove in contact with the side edge of the matrix and an electrolyte supply path that communicates the upper and lower adjacent liquid storage grooves in a meandering manner are formed in the peripheral part of the plate. battery.
JP59149956A 1984-07-19 1984-07-19 Llquid supplement equipment for matrix type fuel cell Granted JPS6063876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59149956A JPS6063876A (en) 1984-07-19 1984-07-19 Llquid supplement equipment for matrix type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59149956A JPS6063876A (en) 1984-07-19 1984-07-19 Llquid supplement equipment for matrix type fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56109579A Division JPS5810373A (en) 1981-07-13 1981-07-13 Liquid supply device of matrix type fuel cell

Publications (2)

Publication Number Publication Date
JPS6063876A JPS6063876A (en) 1985-04-12
JPS6160546B2 true JPS6160546B2 (en) 1986-12-22

Family

ID=15486271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59149956A Granted JPS6063876A (en) 1984-07-19 1984-07-19 Llquid supplement equipment for matrix type fuel cell

Country Status (1)

Country Link
JP (1) JPS6063876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191528A (en) * 1988-01-27 1989-08-01 Seiko Keiyo Kogyo Kk Radio call system with waiting number display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191528A (en) * 1988-01-27 1989-08-01 Seiko Keiyo Kogyo Kk Radio call system with waiting number display

Also Published As

Publication number Publication date
JPS6063876A (en) 1985-04-12

Similar Documents

Publication Publication Date Title
EP0274003B1 (en) Improved internal electrolyte supply system for reliable transport throughout fuel cell stack
JPS61227370A (en) Fuel battery assembly
JPH0238377Y2 (en)
US4596749A (en) Method and apparatus for adding electrolyte to a fuel cell stack
JPS6160546B2 (en)
JPS6489150A (en) Molten carbonate fuel cell
JPS6147074A (en) Electrolyte supplying process to fuel battery stack
JPH06338332A (en) Gas separator for solid high molecular electrolytic fuel cell
JPS59217955A (en) Phosphoric-acid-type fuel cell
JPH039590B2 (en)
JPS58161267A (en) Matrix type fuel cell
JPS58165263A (en) Matrix type fuel cell
JPH0145096Y2 (en)
JPH06101338B2 (en) Fuel cell
JPS6029809Y2 (en) Matrix fuel cell
US3356535A (en) Fluid distribution means in a fuel cell
JPS6358768A (en) Fuel cell
JPS58161266A (en) Matrix type fuel cell
JPS6243071A (en) Electrolyte supplement device for fuel cell
JPH06105625B2 (en) Molten carbonate fuel cell
JPH0287478A (en) Phosphoric acid type fuel cell
JPS6160542B2 (en)
JPS607350B2 (en) Fuel supply method for liquid fuel cells
JPS6314816B2 (en)
JPS6362158A (en) Device for replenishing electric solution for fuel cell