JPS6160542B2 - - Google Patents

Info

Publication number
JPS6160542B2
JPS6160542B2 JP56109579A JP10957981A JPS6160542B2 JP S6160542 B2 JPS6160542 B2 JP S6160542B2 JP 56109579 A JP56109579 A JP 56109579A JP 10957981 A JP10957981 A JP 10957981A JP S6160542 B2 JPS6160542 B2 JP S6160542B2
Authority
JP
Japan
Prior art keywords
liquid
electrolyte
matrix
cooling plate
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56109579A
Other languages
Japanese (ja)
Other versions
JPS5810373A (en
Inventor
Masahiro Ide
Hideo Hagino
Osamu Tajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56109579A priority Critical patent/JPS5810373A/en
Publication of JPS5810373A publication Critical patent/JPS5810373A/en
Publication of JPS6160542B2 publication Critical patent/JPS6160542B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明はマトリツクス型燃料電池、特に電解液
の補給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a matrix fuel cell, and more particularly to an electrolyte replenishment device.

この種電池は多数の単位セルとガス分離板とを
交互に積層して電池堆に構成されるが、大型化を
図る上で上下方向の積層による縦長形態が有利で
ある。しかし縦長形態の電池堆の場合には定期的
に電解液を補給して電池寿命の長期化を図る際、
電解液の液圧がセル下部程高くなるため、ガス分
離板に形成した貯液溝及びそれら溝間の給液路よ
り液漏れが生じたり、この高圧が貯液溝と対向す
る弱い構成部材であるマトリツクスを破損した
り、電極表面にまで電解液が浸透し、極板の濡れ
を引き起して電池性能を劣化させるという問題が
あつた。
This type of battery is constructed by stacking a large number of unit cells and gas separation plates alternately to form a battery stack, but in order to increase the size of the battery, it is advantageous to use a vertically elongated configuration with vertical stacking. However, in the case of a vertical battery stack, when periodically replenishing the electrolyte to extend the battery life,
Since the liquid pressure of the electrolyte increases toward the bottom of the cell, liquid leakage may occur from the liquid storage grooves formed in the gas separation plate and the liquid supply path between these grooves, or this high pressure may occur in weak structural members facing the liquid storage grooves. There were problems in that some matrices were damaged, and the electrolyte penetrated to the electrode surface, causing wetting of the electrode plates and deteriorating battery performance.

本発明はかゝる問題点を解決するために、単位
セルとガス分離板の積層体よりなる電池堆を冷却
板により数ブロツクに分割し、冷却板に形設した
注液口及び溢液口より各ブロツク毎に電解液を下
方から上方へ供給し、積層体の下部にかゝる電解
液の圧力を減少させ、電池寿命の長期化を図ろう
とするものである。
In order to solve these problems, the present invention divides a battery stack consisting of a stack of unit cells and gas separation plates into several blocks using a cooling plate, and provides a liquid injection port and a liquid overflow port formed in the cooling plate. The electrolytic solution is supplied to each block from the bottom to the top, thereby reducing the pressure of the electrolytic solution at the bottom of the stack, thereby prolonging the battery life.

以下その実施例について説明する。 Examples thereof will be described below.

第1図に示す電池堆1は、その詳細が第2図に
示されるように、正・負ガス電極3,2と電解液
保持マトリツクス4よりなる単位セルと、その両
面に互に交錯する方向に夫々水素供給溝5及び空
気供給溝6とを配列したカーボン製ガス分離板7
とを上下方向に多数積層し、この積層体を冷却用
空気孔8を有するカーボン製冷却板9により数ブ
ロツク10に分割して構成される。電池堆の上下
端板11,11は、対向押圧板と連杆(いづれも
図示せず)で締付けるための補強板として働く。
As the details of the battery stack 1 shown in FIG. 1 are shown in FIG. a carbon gas separation plate 7 with hydrogen supply grooves 5 and air supply grooves 6 arranged therein;
A large number of blocks are stacked vertically, and this stack is divided into several blocks 10 by carbon cooling plates 9 having cooling air holes 8. The upper and lower end plates 11, 11 of the battery stack function as reinforcing plates for tightening with the opposing pressing plate and connecting rods (none of which are shown).

各ガス分離板7の片面周辺にはマトリツクス4
に当接する電解液貯液溝12を有し、第3図に示
すように各ブロツク10毎に、これら貯液溝12
を互に連通する電解液通路13が形成されてい
る。この第3図は貯液溝12に沿つてブロツク1
0を縦に断面した図である。
A matrix 4 is arranged around one side of each gas separation plate 7.
As shown in FIG.
An electrolyte passageway 13 is formed that communicates with each other. This figure 3 shows the block 1 along the liquid storage groove 12.
0 is a vertical cross-sectional view of FIG.

各ブロツク10間に介在する冷却板9は、下面
に空気供給溝6上面に水素供給溝5を有し、ガス
分離板としての機能も兼用している。
The cooling plate 9 interposed between each block 10 has an air supply groove 6 on the lower surface and a hydrogen supply groove 5 on the upper surface, and also functions as a gas separation plate.

又冷却板9の周辺両側には、冷却板上方ブロツ
ク10の電解液通路13と連通する注液口14及
び冷却板下方ブロツク10の電解液通路13と連
通する溢液口15とが夫々形成されている。
Further, on both sides of the periphery of the cooling plate 9, a liquid injection port 14 communicating with the electrolyte passage 13 of the cooling plate upper block 10 and a liquid overflow port 15 communicating with the electrolyte passage 13 of the cooling plate lower block 10 are formed, respectively. ing.

従つてこの冷却板9をブロツク10間に介在さ
せて電池堆1に組立てたとき、第5図に示すよう
に各ブロツク毎にその下方冷却板の注液口14か
ら上方冷却板の溢液口15に至る電解液通路13
を経て各電解液貯液溝12に電解液が補給され
る。このようにして各ブロツク10毎にその各貯
液溝12に溜められた燐酸などの酸性電解液が対
応するマトリツクス4に含浸されることになる。
Therefore, when this cooling plate 9 is interposed between the blocks 10 and assembled into the battery stack 1, as shown in FIG. Electrolyte passage 13 leading to 15
Electrolyte is replenished into each electrolyte storage groove 12 through the process. In this way, the matrix 4 corresponding to each block 10 is impregnated with the acidic electrolyte such as phosphoric acid stored in the respective liquid storage grooves 12 of each block 10.

上述の如く本発明によれば、単位セルとガス分
離板を上下方向に多数積層し、この積層体を冷却
空気孔を有する冷却板により数ブロツクに分割し
てなる電池堆において、前記各冷却板に形設した
注液口及び溢液口により、ブロツク毎の各貯液溝
を結ぶ電解液通路に、電解液を下方から上方に向
つて注入するようにしたから、補液時の液圧がブ
ロツク毎に分割されて小さくなり、貯液溝及びこ
れらを結ぶ電解液通路からの液漏れを防止すると
共にマトリツクスの破損や電極の過度の濡れを引
き起すことなく電池性能の劣化原因を除去するこ
とができる。
As described above, according to the present invention, in a battery stack in which a large number of unit cells and gas separation plates are stacked vertically and this stacked body is divided into several blocks by cooling plates having cooling air holes, each of the cooling plates The electrolyte is injected from the bottom to the top into the electrolyte passage connecting the liquid storage grooves of each block using the liquid injection port and overflow port, which prevents the liquid pressure during fluid replacement. The electrolyte is divided into smaller parts, which prevents liquid from leaking from the liquid storage grooves and the electrolyte passages that connect them, and eliminates causes of deterioration in battery performance without causing damage to the matrix or excessive wetting of the electrodes. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象とする電池堆の斜面図、
第2図は同上の一部を破断して示す要部拡大図、
第3図は本発明による電池堆ブロツクを貯液溝と
電解液通路に沿つて断面した図、第4図は本発明
による冷却板を注液口及び溢液口に沿つて断面し
た図、第5図は電池堆における各ブロツク毎の補
液法を示す概要図である。 1……電池堆、3,2……正・負ガス電極、4
……電解質マトリツクス、5,6……水素及び空
気の供給溝、7……ガス分離板、8……冷却用空
気孔、9……冷却板、10……ブロツク、12…
…貯液溝、13……電解液通路、14……注液
口、15……溢液口。
FIG. 1 is a slope view of the battery stack that is the object of the present invention;
Figure 2 is an enlarged view of the main part showing a part of the same as above,
FIG. 3 is a cross-sectional view of the battery stack block according to the present invention along the liquid storage groove and electrolyte passage, FIG. FIG. 5 is a schematic diagram showing the fluid replacement method for each block in the battery stack. 1... Battery stack, 3, 2... Positive/negative gas electrode, 4
... Electrolyte matrix, 5, 6 ... Hydrogen and air supply grooves, 7 ... Gas separation plate, 8 ... Cooling air holes, 9 ... Cooling plate, 10 ... Block, 12 ...
...Liquid storage groove, 13... Electrolyte passageway, 14... Liquid injection port, 15... Liquid overflow port.

Claims (1)

【特許請求の範囲】[Claims] 1 正負ガス電極間に電解質マトリツクスを介在
させた単位セルと、両面に夫々正負各ガス供給溝
を配列したガス分離板とを上下方向に多数積層
し、この積層体を冷却空気孔を有する冷却板によ
り数ブロツクに分割してなるマトリツクス型燃料
電池において、前記各ガス分離板の周辺に前記マ
トリツクスと接する電解液貯液溝とこれら貯液溝
を前記各ブロツク毎に結ぶ電解液通路とを有し、
前記各冷却板には上方ブロツクの前記液通路に連
通する注液口及び下方ブロツクの前記液通路に連
通する溢液口を形設したことを特徴とするマトリ
ツクス型燃料電池。
1 A large number of unit cells with an electrolyte matrix interposed between positive and negative gas electrodes and gas separation plates each having positive and negative gas supply grooves arranged on both sides are stacked vertically, and this stacked body is used as a cooling plate having cooling air holes. In the matrix type fuel cell which is divided into several blocks according to ,
A matrix fuel cell characterized in that each cooling plate is provided with a liquid injection port communicating with the liquid passage of the upper block and a liquid overflow port communicating with the liquid passage of the lower block.
JP56109579A 1981-07-13 1981-07-13 Liquid supply device of matrix type fuel cell Granted JPS5810373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56109579A JPS5810373A (en) 1981-07-13 1981-07-13 Liquid supply device of matrix type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56109579A JPS5810373A (en) 1981-07-13 1981-07-13 Liquid supply device of matrix type fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59149956A Division JPS6063876A (en) 1984-07-19 1984-07-19 Llquid supplement equipment for matrix type fuel cell

Publications (2)

Publication Number Publication Date
JPS5810373A JPS5810373A (en) 1983-01-20
JPS6160542B2 true JPS6160542B2 (en) 1986-12-22

Family

ID=14513843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56109579A Granted JPS5810373A (en) 1981-07-13 1981-07-13 Liquid supply device of matrix type fuel cell

Country Status (1)

Country Link
JP (1) JPS5810373A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383009A (en) * 1981-09-21 1983-05-10 The United States Of America As Represented By The United States Department Of Energy Low hydrostatic head electrolyte addition to fuel cell stacks

Also Published As

Publication number Publication date
JPS5810373A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
US4761348A (en) Electrolytic cell stack with molten electrolyte migration control
JPS6130385B2 (en)
EP0188873B1 (en) Lightweight bipolar metal-gas battery
US4830936A (en) Activatable electrochemical battery implementing lithium/oxyhalide couples
US4614025A (en) Method for making a lightweight bipolar metal-gas battery
JPS61227370A (en) Fuel battery assembly
JPS6160542B2 (en)
CN200990395Y (en) Case and internal connection structure used for winding lead storage battery
JPH0480515B2 (en)
JPS61253773A (en) Bipolar storage battery
JPS6489150A (en) Molten carbonate fuel cell
JPS59108278A (en) Laminated type fuel cell
JPH0414469B2 (en)
JPH01279571A (en) Molten carbonate fuel cell
JPH06101338B2 (en) Fuel cell
JPH0145096Y2 (en)
JPH0145095Y2 (en)
JPS6074360A (en) Manufacture of lead storage battery
JPS6378454A (en) Electrolyte supply device for fuel cell
JPS6160546B2 (en)
JPS58165263A (en) Matrix type fuel cell
JPS6316132Y2 (en)
JPH05114408A (en) Fuel cell
JPS58154179A (en) Fuel cell
JPS6243071A (en) Electrolyte supplement device for fuel cell