JPS6159824A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS6159824A
JPS6159824A JP18191684A JP18191684A JPS6159824A JP S6159824 A JPS6159824 A JP S6159824A JP 18191684 A JP18191684 A JP 18191684A JP 18191684 A JP18191684 A JP 18191684A JP S6159824 A JPS6159824 A JP S6159824A
Authority
JP
Japan
Prior art keywords
substrate
resist
resist film
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18191684A
Other languages
Japanese (ja)
Other versions
JPH0376586B2 (en
Inventor
Masahiko Shimazaki
島崎 政彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18191684A priority Critical patent/JPS6159824A/en
Publication of JPS6159824A publication Critical patent/JPS6159824A/en
Publication of JPH0376586B2 publication Critical patent/JPH0376586B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Abstract

PURPOSE:To prevent damage on the handling of an FET element by forming a pattern for a resist required for isolating an electrode with four sides by whole-surface exposing and developing a resist film applied on the whole surface of the back of a GaAs substrate when the electrode is shaped in a latticed groove formed to the back of the substrate. CONSTITUTION:An FET element 22 is shaped onto a GaAs substrate 21. A scribing metal 23 is patterned onto the substrate 21 to a latticed form, and the scribing metal 23 is removed through etching. A glass plate 25 for protecting the surface is stuck by using wax 26 prior to the formation of a groove to the back of the substrate 21, the thickness of the substrate 21 is shaven, a second resist film is applied and shaped onto the back of the substrate, and the resist film is exposed by employing a glass mask and developed to form a resist film 27. The back of the substrate 21 is photoetched while using the resist film 27 as a mask to shape grooves 28. The resist film 27 is removed, and a conductive metallic film 29 is formed onto the whole surface of the back of the substrate 21. The metallic film 29 is shaped by evaporating Ti first and Au. The metallic film 29 is evaporated, and a resist film 30 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子の製造方法、詳しくは化合物半導体
装置例えばガリウム・砒素(GaAs)半導体装置の電
極の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming electrodes of a compound semiconductor device, such as a gallium arsenide (GaAs) semiconductor device.

マイクロ波用半導体装置としてGaAsショットキ形電
界効果トランジスタ(GaAs MES FET)が知
られている。かかるGaAs MES FETの素子形
成面とは反対側の面(背面)には、接地およびヒートシ
ンクの目的で電極が形成される。
A GaAs Schottky field effect transistor (GaAs MES FET) is known as a microwave semiconductor device. An electrode is formed on the surface (back surface) of the GaAs MES FET opposite to the element formation surface for the purpose of grounding and heat sinking.

GaAs化合物半導体のキャリアの移動度および飽和ド
リフト速度はシリコン(Si)等に比べて著しく大で、
更にショットキ形電界効果トランジスタは愕造および製
造工程が簡単でありゲートの微細化に通ずるので、Ga
As MES FETによって優れた高周波特性が得ら
れるのである。
The carrier mobility and saturation drift velocity of GaAs compound semiconductors are significantly higher than those of silicon (Si), etc.
In addition, Schottky field effect transistors are easy to fabricate and manufacture, allowing for gate miniaturization.
Excellent high frequency characteristics can be obtained by As MES FET.

〔従来の、技術〕[Conventional technology]

第3図の断面図を参照すると、厚さ25〜30μmのG
aAs基板11の一方面上には素子12が形成されてい
る。電極を形成するには、GaAs基板11の背面にエ
ツチング溝を格子状に形成した後に、チタン・金(T’
i−Au) H’A 13を例えば真空MMによって形
成し、次いで背面全面にフォトレジスト(以下単にレジ
ストという)を塗布して作られる膜をパターニングして
レジストJIL’ 14を作り、次いで電fWメッキに
より^U電極15を30μmの厚ざに形成し、レジスト
膜14を除去し、最後にグイサーでGaAs基(反11
の図に点線で示す部分を切断し、例えば0.3mm口の
第4図に示されるデバイスを形成する。
Referring to the cross-sectional view of FIG.
An element 12 is formed on one side of the aAs substrate 11 . To form the electrode, etching grooves are formed in a grid pattern on the back surface of the GaAs substrate 11, and then titanium/gold (T'
i-Au) H'A 13 is formed by, for example, vacuum MM, and then a photoresist (hereinafter simply referred to as resist) is applied to the entire back surface, and the resulting film is patterned to form a resist JIL' 14, and then electro-fw plating is performed. ^U electrode 15 was formed with a thickness of 30 μm, the resist film 14 was removed, and finally a GaAs-based (anti-11
The portion shown by the dotted line in the figure is cut to form the device shown in FIG. 4 having a 0.3 mm opening, for example.

前記した工程は第5図に示される如くレジスト+111
4が基板上に形成されている場合、メッキは横(側)方
向と縦方向に工:1の割合で形成される事実を利用する
ものである。
The above-mentioned process is performed by resist+111 as shown in FIG.
4 is formed on a substrate, the plating is formed at a ratio of 1:1 in the horizontal (side) direction and in the vertical direction.

なお第4図以下において第3図に示した部分と同じ部分
は同一符号を付して表示する。かかるデバイスの取り扱
いはピンセットで第4図に矢印で示される部分を押える
ことによってなされる。
Note that in FIG. 4 and subsequent figures, the same parts as those shown in FIG. 3 are designated by the same reference numerals. Handling of such a device is accomplished by pressing the portion indicated by the arrow in FIG. 4 with tweezers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第3図を参照して説明したレジスト膜のパターニングを
より詳細に説明すると、第6図に示される如< GaA
s基板11の背面には溝17が形成されている。この溝
17内の約2μmの厚さのレジスト膜をガラスマスク1
8を用いて露光するのであるが、溝I7の形状の故に、
矢印1.Uで示される如く露光距離の違いがあり、現像
時間のずれがあってレジストパターンが、ガラスマスク
に形成されたパターン19に合致して形成されないこと
や、ガラスマスクの位置合せがずれることがある。なお
、ここで用いるレジストはボン型レジストであり、それ
を用いる理由は、基板背面の電極形成工程においては、
素子12を保護するため素子の上にワックスでガラス板
をはりつけるが、ネガ型レジストを用いると、それの〃
1掬It 111を120’c程度に加温しなければな
らず、そうすると前記したワックスが溶けて保護用のガ
ラス板が外れるが(ワックスば80 ”cで溶ける)、
それに反し、ポジ型レジストは常温のアセトン系有機溶
剤で剥離され、ワ、クスカ<2容はガラス板が外れるお
それが全くなくなるからである。
To explain in more detail the patterning of the resist film explained with reference to FIG. 3, as shown in FIG.
A groove 17 is formed on the back surface of the s-substrate 11. Glass mask 1
However, due to the shape of groove I7,
Arrow 1. As shown by U, there is a difference in exposure distance, and there is a difference in development time, so the resist pattern may not be formed in accordance with the pattern 19 formed on the glass mask, or the alignment of the glass mask may be misaligned. . The resist used here is a Bonn type resist, and the reason for using it is that in the electrode formation process on the back of the substrate,
To protect the element 12, a glass plate is pasted on top of the element with wax, but if a negative resist is used, the
One scoop of It 111 must be heated to about 120'c, and then the wax mentioned above will melt and the protective glass plate will come off (wax melts at 80'c).
On the other hand, a positive resist can be removed with an acetone-based organic solvent at room temperature, and if the adhesive is less than 2%, there is no possibility that the glass plate will come off.

レジストパターンが第7図に示される如くずれていたと
すると、電極15は図示の如くにずれて形成され、その
状態は第4図に点線で示される。このように電極がずれ
ると、ピンセントで第4図のデバイスをはさんだときに
、GaAs基板の一方IJ!IJがピンセットに触れて
損傷を受け、既に作られたGa−As MES F[E
jを不良品にする問題がある。
If the resist pattern is misaligned as shown in FIG. 7, the electrode 15 will be formed misaligned as shown, and this state is shown by the dotted line in FIG. If the electrodes shift in this way, when the device shown in Figure 4 is held in place with a pin, one side of the GaAs substrate IJ! The IJ was damaged by touching the tweezers, and the already made Ga-As MES F[E
There is a problem of making j into a defective product.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解消した半導体素子の製造方法
を提供するもので、その手段は、化合物半導体の素子が
形成された面に保護ガラス板を張り付けた後前記素子と
は反対側の背面に素子の配置に対応する格子状の溝を形
成する工程、背面に金属膜を形成する工程、該背面にフ
ォトレジストIK’を形成し前記溝をフォトレジストで
埋める工程、フォトレジストを全面露光し現像して前記
溝の底部にのみフォトレジストを残す工程、金属メッキ
によって前記溝により限定される格子内部に電極を形成
する工程を育することを特徴とする半導体素子の製造方
法によってなされる。
The present invention provides a method for manufacturing a semiconductor element that solves the above-mentioned problems. a step of forming a lattice-shaped groove corresponding to the arrangement of the elements, a step of forming a metal film on the back surface, a step of forming a photoresist IK' on the back surface and filling the groove with photoresist, and exposing the entire surface of the photoresist. This is accomplished by a method for manufacturing a semiconductor device, which comprises the following steps: developing to leave photoresist only at the bottoms of the grooves, and forming electrodes within the lattice defined by the grooves by metal plating.

〔作用〕[Effect]

本発明の方法においては、GaAs基板の背面にエツチ
ング溝を格子状に形成した後に、背面全面にレジストを
堂布し、マスクを用いることな(全面に露光すると、エ
ツチング溝と基板上のレジスト+1Aの厚さが異なるの
で、エツチング溝内のみにレジスト膜が残ることを利用
し、G、1lAS MES FIETの電極が正確に形
成されるものである。
In the method of the present invention, after etching grooves are formed in a lattice pattern on the back surface of a GaAs substrate, a resist is deposited on the entire back surface, and a mask is not used. Since the thicknesses of the G and IAS MES FIETs are different, the resist film remains only in the etching grooves, so that the electrodes of the G, 11AS MES FIET can be formed accurately.

〔実施例〕   − 以下、図面を参照して本発明の実施例を詳細に説明する
[Embodiments] - Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図に本発明方法を実施する工程における半導体装置
要部が断面図で示され、同図の+alないしく1)を参
照して説明する。
FIG. 1 shows a cross-sectional view of a main part of a semiconductor device in a step of implementing the method of the present invention, and will be described with reference to +al to 1) in the same figure.

第1図(a); GaAs基板21上にば、通常の技術を用いFET素子
22が形成されている。基板21上に格子状にスクライ
ブメタル23をバターニングする。なお、図において2
4は第1のレジストIIWを示す。
FIG. 1(a): A FET element 22 is formed on a GaAs substrate 21 using a conventional technique. Scribe metal 23 is patterned in a grid pattern on a substrate 21. In addition, in the figure, 2
4 indicates the first resist IIW.

第1図(b): エツチングによってスクライブメタル23を除去する。Figure 1(b): The scribe metal 23 is removed by etching.

第1図(C): 基板21の背面に溝を形成するに先立って、表面保護用
ガラス4反25をワックス26を用いて張り付け、しか
る後に基板21の厚ざを25〜30μm程度に削り、基
板背面に第2のレジス) IIQを塗布形成し、それを
ガラスマスク(図示せず)を用いて露光し、現像してレ
ジスト膜27を形成する。
FIG. 1(C): Prior to forming grooves on the back surface of the substrate 21, a surface protection glass 4 sheet 25 is attached using wax 26, and then the thickness of the substrate 21 is shaved to about 25 to 30 μm. A second resist (IIQ) is coated on the back surface of the substrate, exposed using a glass mask (not shown), and developed to form a resist film 27.

第1図(d)ニ レジスト膜27をマスクにして基板21の背面をフォト
エツチングし、溝28を形成する。この溝28は格子状
に形成されるものであり、この格子の各々がFET素子
22に対応する。
FIG. 1(d) Using the resist film 27 as a mask, the back surface of the substrate 21 is photo-etched to form a groove 28. The grooves 28 are formed in a lattice shape, and each of the lattices corresponds to an FET element 22.

第1図(e)ニ レジスト膜27を除去し、基板21の背面の全面に導電
性金属膜29を形成する。金属)模29は、最初Tiを
1000人の膜厚に、次いで篩を5000人の1模厚に
蒸着して形成する。
FIG. 1(e) The resist film 27 is removed and a conductive metal film 29 is formed on the entire back surface of the substrate 21. As shown in FIG. The metal pattern 29 is formed by first depositing Ti to a thickness of 1000 mm and then evaporating a sieve to a thickness of 5000 mm.

第1図(f); 金属膜29を蒸着した後に、全面に第3のポジ型レジス
トをスピンコード法で塗布してレジストIIQ30を形
成する。レジスト1挨は平坦部で3〜5μm、’/A’
j 28内−(: 30μm程度の厚さになるよう形成
する。
FIG. 1(f): After depositing the metal film 29, a third positive type resist is applied to the entire surface by a spin code method to form a resist IIQ30. Resist 1 thickness is 3 to 5 μm on the flat part, '/A'
j Inside 28-(: Formed to have a thickness of approximately 30 μm.

第1図(g): 基板背面の全面を露光し、次いで現像して、溝28内の
みに15μ「n程度の厚さのレジスl−30aを残ず。
FIG. 1(g): The entire back surface of the substrate is exposed, and then developed, leaving no resist l-30a with a thickness of about 15 μm only in the grooves 28.

第1図(h): メッキ液(例えば国中貴金属(42311iJのテンペ
レソク 401)を用いて選択的に金メッキして電極3
1を形成する。前記した如く、メッキによってAu層は
横方向にも縦方向と1:1の1ヒ率で成長するが、レジ
ストの上には成長しないので、Auの電極31は図示の
如くになる。
Figure 1 (h): Electrode 3 is selectively plated with gold using a plating solution (for example, Kuninaka Precious Metals (42311iJ Temperosek 401)).
form 1. As described above, by plating, the Au layer grows both in the horizontal direction and in the vertical direction at a ratio of 1:1, but it does not grow on the resist, so the Au electrode 31 becomes as shown in the figure.

第1図(1): 次いで電極31上にニッケル(Ni)メッキによってN
i1lA32を形成し、常温でレジストを有機溶剤を用
いて除去し、溝28の底部にあるAuと1′iをそれぞ
れ除去して溝28の底部の金属膜29を除去し、引続き
Ni1lA32を硝酸系の常温のエツチング液を用いて
除去し、ワックス26を溶かしてガラス板25を外し、
レジスト膜24を剥離する。
Figure 1 (1): Next, the electrode 31 is plated with N.
i1lA32 is formed, the resist is removed using an organic solvent at room temperature, Au and 1'i at the bottom of the groove 28 are removed, the metal film 29 at the bottom of the groove 28 is removed, and then Ni1lA32 is removed using a nitric acid-based solution. Remove the glass plate 25 by melting the wax 26 using an etching solution at room temperature.
The resist film 24 is peeled off.

第1図(i)に点線で示す部分をグイサーを用いて切断
して、0.3mm口のFIETを得たが、それの拡大平
面図は第2図に示され、同図において、33ばソース電
極、34ばドレイン電極、35はゲート電極を示す。前
記のダイシングは、電極31が満28の中I已1線に沿
って分離されているので容易になすことができる。
A FIET with a diameter of 0.3 mm was obtained by cutting the part indicated by the dotted line in FIG. A source electrode, 34 a drain electrode, and 35 a gate electrode. The above-mentioned dicing can be easily performed because the electrodes 31 are separated along one line of the middle I width.

図示ノ如<、電極31はデバイスの4辺に沿って均”J
に張り出しているので、ピンセ・ノトヲJ’[”ルデバ
イスの取り扱いにおいてFETが傷付けられることが防
止される。
As shown in the figure, the electrodes 31 are arranged uniformly along the four sides of the device.
The overhang prevents the FET from being damaged during handling of the pincer device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、GaAs基板の背
面に形成された格子状の溝に4辺をもつ電極を形成する
に際し、電極分離に必要なレジストのパターンは、背面
全面に塗布されたレジスト膜を全面露光し現像すること
によって形成されるので、工程が簡略化され、またレジ
ストの位置ずれがなくなるので、電極の位置ずれもなく
なり、FIET素子の4辺に沿って電極は均一に張り出
た状態で形成され、FヒT素子の取り扱いにおける損傷
が防止される。
As explained above, according to the present invention, when forming an electrode with four sides in a lattice-like groove formed on the back surface of a GaAs substrate, the resist pattern necessary for separating the electrodes is formed by coating the entire back surface. Since the resist film is formed by exposing and developing the entire surface of the resist film, the process is simplified, and since there is no misalignment of the resist, there is no misalignment of the electrodes, and the electrodes can be stretched uniformly along the four sides of the FIET device. This prevents damage during handling of the FHT element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する工程における半導体装
置の要部を示す断面図、第2図は第1図に示した方法に
よって形成されたNET素子の平面図、第3図と第4図
は従来例FET素子の断面図、第5図は従来例による篩
メッキを示すに面図、第6図は従来例によるレジストパ
ターニングを示す断面図、第7図は従来例の電極の位置
ずれを示す断面図である。 図中、21はGaAs基板、22はFIET素子、23
はスクライブメタル、24はレジスト膜、25は表面保
護用ガラス、26はワックス、27はレジスト膜、28
は溝、29は金属膜、30はレジスト1lffi、31
は電極、32はニッケル膜、33はソース電極、34は
ドレイン電極、35はゲート電極、をそれぞれ示す。 ff11図 第1 図 第1図 第2図 第3図 第4図 1つ 第5図
FIG. 1 is a sectional view showing the main parts of a semiconductor device in the process of carrying out the method of the present invention, FIG. 2 is a plan view of a NET element formed by the method shown in FIG. 1, and FIGS. The figure is a cross-sectional view of a conventional FET element, FIG. 5 is a side view showing sieve plating according to the conventional example, FIG. 6 is a cross-sectional view showing resist patterning according to the conventional example, and FIG. 7 is a positional deviation of the electrode in the conventional example. FIG. In the figure, 21 is a GaAs substrate, 22 is a FIET element, 23
24 is a scribe metal, 24 is a resist film, 25 is a surface protection glass, 26 is a wax, 27 is a resist film, 28
is a groove, 29 is a metal film, 30 is a resist 1lffi, 31
32 is a nickel film, 33 is a source electrode, 34 is a drain electrode, and 35 is a gate electrode. ff11Figure 1Figure 1Figure 2Figure 3Figure 4One Figure 5

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体の素子が形成された面に保護ガラス板を張
り付けた後前記素子とは反対側の背面に索子の配置に対
応する格子状の溝を形成する工程、背面に金属膜を形成
する工程、該背面にフォトレジスト膜を形成し前記溝を
フォトレジストで埋める工程、フォトレジストを全面露
光し現像して前記溝の底部にのみフォトレジストを残す
工程、金工メッキによって前記溝により限定される格子
内部に電極を形成する工程を有することを特徴とする半
導体素子の製造方法。
A step of attaching a protective glass plate to the surface on which the compound semiconductor element is formed, and then forming a lattice-shaped groove corresponding to the arrangement of the cables on the back surface opposite to the element, and a step of forming a metal film on the back surface. , a step of forming a photoresist film on the back surface and filling the groove with photoresist; a step of exposing and developing the entire surface of the photoresist to leave the photoresist only at the bottom of the groove; and a grating defined by the groove by metal plating. 1. A method of manufacturing a semiconductor device, comprising the step of forming an electrode inside.
JP18191684A 1984-08-31 1984-08-31 Manufacture of semiconductor element Granted JPS6159824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18191684A JPS6159824A (en) 1984-08-31 1984-08-31 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18191684A JPS6159824A (en) 1984-08-31 1984-08-31 Manufacture of semiconductor element

Publications (2)

Publication Number Publication Date
JPS6159824A true JPS6159824A (en) 1986-03-27
JPH0376586B2 JPH0376586B2 (en) 1991-12-05

Family

ID=16109144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18191684A Granted JPS6159824A (en) 1984-08-31 1984-08-31 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS6159824A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892842A (en) * 1987-10-29 1990-01-09 Tektronix, Inc. Method of treating an integrated circuit
US4923825A (en) * 1989-05-01 1990-05-08 Tektronix, Inc. Method of treating a semiconductor body
US5872396A (en) * 1994-10-26 1999-02-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with plated heat sink

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892842A (en) * 1987-10-29 1990-01-09 Tektronix, Inc. Method of treating an integrated circuit
US4923825A (en) * 1989-05-01 1990-05-08 Tektronix, Inc. Method of treating a semiconductor body
US5872396A (en) * 1994-10-26 1999-02-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with plated heat sink
US5998238A (en) * 1994-10-26 1999-12-07 Mitsubishi Denki Kabushiki Kaisha Method of fabricating semiconductor device

Also Published As

Publication number Publication date
JPH0376586B2 (en) 1991-12-05

Similar Documents

Publication Publication Date Title
US3897627A (en) Method for manufacturing semiconductor devices
US4145459A (en) Method of making a short gate field effect transistor
US3913217A (en) Method of producing a semiconductor device
US4080722A (en) Method of manufacturing semiconductor devices having a copper heat capacitor and/or copper heat sink
JPS63213943A (en) Three-dimensional semiconductor integrated circuit
US4824800A (en) Method of fabricating semiconductor devices
JPS6159824A (en) Manufacture of semiconductor element
JPH03198342A (en) Manufacture of semiconductor device
JPH0645436A (en) Bonding method for semiconductor substrate
US6074948A (en) Method for manufacturing thin semiconductor device
JP3140828B2 (en) Method for manufacturing semiconductor device
JPH05326697A (en) Manufacture of semiconductor device
JPS5921193B2 (en) Method for manufacturing field effect transistors
KR0162757B1 (en) Airbridge metal formation method using dielectric material
JPS63221678A (en) Manufacture of thin film transistor
JPH04124822A (en) Manufacture of semiconductor device
JPS61150379A (en) Manufacture of semiconductor device
JPS5820137B2 (en) Manufacturing method of semiconductor device
JP2867169B2 (en) Method for manufacturing semiconductor device
JPH0342505B2 (en)
JPS5820138B2 (en) Manufacturing method of semiconductor device
JPS5854652A (en) Manufacture of semiconductor device
JPS616870A (en) Manufacture of field-effect transistor
JPS6025277A (en) Manufacture of semiconductor device
JPS62142334A (en) Formation of metallic pattern