JPS6155022B2 - - Google Patents

Info

Publication number
JPS6155022B2
JPS6155022B2 JP602979A JP602979A JPS6155022B2 JP S6155022 B2 JPS6155022 B2 JP S6155022B2 JP 602979 A JP602979 A JP 602979A JP 602979 A JP602979 A JP 602979A JP S6155022 B2 JPS6155022 B2 JP S6155022B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid refrigerant
liquid
detector
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP602979A
Other languages
Japanese (ja)
Other versions
JPS5599552A (en
Inventor
Toshuki Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP602979A priority Critical patent/JPS5599552A/en
Publication of JPS5599552A publication Critical patent/JPS5599552A/en
Publication of JPS6155022B2 publication Critical patent/JPS6155022B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は冷媒流量制御法の改良に関する。[Detailed description of the invention] The present invention relates to improvements in refrigerant flow rate control methods.

従来、冷媒の循環量制御装置としては、キヤピ
ラリチユーブや温度式膨張弁が主に用いられて来
た。しかし、キヤピラリチユーブは構造簡単で低
コストである長所は有するものの、制御範囲が狭
いため使用範囲が小型のものに限られている。他
方、温度式膨張弁はある程度の制御範囲を持つの
で、だいたいの要求には応じられるが、冷媒蒸発
温度と感温部との間に通常5℃程度のスーパーヒ
ートを必要とするので、蒸発出口付近では冷媒は
完全にガス化してしまい、その部分の蒸発伝熱面
積を生かせないことになる。また温度式膨張弁は
機械式であるので制御範囲を十分に大きくは取れ
ない、また応答速度が遅い、単純なフイードバツ
ク系なので蒸発器系の長さによつては過大なハン
チングを生ずるなどの欠点を有している。
Conventionally, capillary tubes and thermostatic expansion valves have been mainly used as refrigerant circulation amount control devices. However, although the capillary tube has the advantage of having a simple structure and low cost, its use is limited to small-sized devices because of its narrow control range. On the other hand, thermostatic expansion valves have a certain control range and can meet most requests, but they usually require superheat of about 5°C between the refrigerant evaporation temperature and the temperature sensor, so the evaporation outlet The refrigerant will completely gasify in the vicinity, making it impossible to utilize the evaporation heat transfer area in that area. Furthermore, since thermostatic expansion valves are mechanical, they do not have a sufficiently wide control range, and their response speed is slow.As they are simple feedback systems, they can cause excessive hunting depending on the length of the evaporator system. have.

従来から用いられている電気式膨張弁として、
フロートにより冷媒液面を検知して電磁弁を作動
させるものもあるが、これは完全な満液式蒸発器
にしか適用できない。
As a conventionally used electric expansion valve,
Some systems use a float to detect the refrigerant level and activate a solenoid valve, but this is only applicable to completely flooded evaporators.

乾式または半満式に使用できる電気式膨張弁も
あるが、この型式のものでは液冷媒検知器がひと
つのみで、これを単純に電気式弁と組み合わさせ
ているため、蒸発器の系が長い場合は温度式膨張
弁と同様に過大なハンチングが避けられない現状
である。
There is also an electric expansion valve that can be used in dry or semi-full conditions, but this type has only one liquid refrigerant detector, which is simply combined with an electric valve, so the evaporator system is long. In this case, excessive hunting is unavoidable, similar to the case with thermostatic expansion valves.

本発明は上述の従来方式の欠点を解決すること
を目的とする。すなわち、本発明においては、ヒ
ートポンプ等の冷媒回路において、その冷媒流量
の制御目標が、従来の温度式膨張弁のようなスー
パーヒート量((加熱蒸気温度)マイナス(飽和
温度)のことで、通常5度)ではなく、低圧受液
器内の液面である。
The present invention aims to overcome the drawbacks of the above-mentioned conventional methods. That is, in the present invention, in a refrigerant circuit such as a heat pump, the control target for the refrigerant flow rate is the amount of superheat ((heated steam temperature) minus (saturation temperature)), which is normally 5 degrees), but the liquid level in the low pressure receiver.

これにより、従来のように、冷媒蒸発器の後半
がスーパーヒート用として働くのではなく、熱交
換器全体が蒸発器として動作するので、冷媒蒸発
温度が上がつて、成績係数が向上する。この液面
高さを安定的に保つために、低圧受液器内に液冷
媒検知器を、上下2つ設ける。
As a result, the second half of the refrigerant evaporator does not function as a superheater as in the conventional case, but the entire heat exchanger operates as an evaporator, which increases the refrigerant evaporation temperature and improves the coefficient of performance. In order to keep this liquid level stable, two liquid refrigerant detectors are installed inside the low-pressure liquid receiver, one above the other.

本発明は、これらの液冷媒検知器からの2つの
検知信号(液の有無)に基づいて、冷媒流量制御
弁の開度設定方法を提供するものである。
The present invention provides a method for setting the opening degree of a refrigerant flow rate control valve based on two detection signals (the presence or absence of liquid) from these liquid refrigerant detectors.

すなわち本発明は、蒸発器と圧縮器との間に位
置する低圧受液器または液分離器内に、液冷媒の
上限を検知する液冷媒検知器と液冷媒の下限を検
知する液冷媒検知器とを設けた、冷凍機や熱ポン
プ等の冷媒回路の冷媒流量制御法において、前記
上部液冷媒検知器または下部液冷媒検知器も同時
に液冷媒を検知した場合冷媒流量制御弁の設定を
変更して単位時間当りの冷媒流量を時間と共に漸
次減少させ、前記上部液冷媒検知器が液冷媒を検
知せずかつ前記下部液冷媒検知器が液冷媒を検知
した場合前記冷媒流量制御弁の設定をそのまま持
続し、前記上下部または下部のみの液冷媒検知器
が共に液冷媒を検知しない場合は前記冷媒流量制
御弁の設定を変えて単位時間当りの冷媒循環量を
時間と共に徐々に増加させることを特徴とする冷
媒流量制御法にある。
That is, the present invention provides a liquid refrigerant detector for detecting the upper limit of liquid refrigerant and a liquid refrigerant detector for detecting the lower limit of liquid refrigerant, in a low-pressure liquid receiver or liquid separator located between an evaporator and a compressor. In a refrigerant flow control method for a refrigerant circuit such as a refrigerator or a heat pump, in which the upper liquid refrigerant detector or the lower liquid refrigerant detector simultaneously detects liquid refrigerant, the setting of the refrigerant flow control valve is changed. gradually decrease the refrigerant flow rate per unit time over time, and if the upper liquid refrigerant detector does not detect liquid refrigerant and the lower liquid refrigerant detector detects liquid refrigerant, the setting of the refrigerant flow control valve remains unchanged. If the liquid refrigerant detectors at the top and bottom or only at the bottom do not detect liquid refrigerant, the setting of the refrigerant flow control valve is changed to gradually increase the refrigerant circulation amount per unit time over time. There is a refrigerant flow control method.

また本発明は、蒸発器と圧縮機との間に位置す
る低圧受液器または液分離器内に、液冷媒の上限
を検知する液冷媒検知器と液冷媒の下限を検知す
る液冷媒検知器とを設けた、冷凍機や熱ポンプ等
の冷媒回路の冷媒流量制御法において、前記上部
液冷媒検知器が液冷媒を検知した場合冷媒流量制
御弁の設定を変更して単位時間当りの冷媒流量を
時間と共に漸次減少させ(以下第1の場合と云
う)、前記上部液冷媒検知器が液冷媒を検知せず
かつ前記下部液冷媒検知器が液冷媒を検知した場
合前記冷媒流量制御弁の設定をそのまま持続し
(以下第2の場合と云う)、前記上下部液冷媒検知
器または下部液冷媒検知器が液冷媒を検知しない
場合は前記冷媒流量制御弁の設定を変えて単位時
間当りの冷媒循環量を時間と共に徐々に増加させ
(以下第3の場合と云う)ると共に、第2の場合
から第1の場合に移行した時点で短時間だけ前記
冷媒制御弁を実質的に閉止させることを特徴とす
る冷媒流量制御法にある。
The present invention also provides a liquid refrigerant detector for detecting the upper limit of liquid refrigerant and a liquid refrigerant detector for detecting the lower limit of liquid refrigerant, which are installed in the low-pressure liquid receiver or liquid separator located between the evaporator and the compressor. In a refrigerant flow control method for refrigerant circuits such as refrigerators and heat pumps, when the upper liquid refrigerant detector detects liquid refrigerant, the setting of the refrigerant flow control valve is changed to control the refrigerant flow rate per unit time. gradually decreases over time (hereinafter referred to as the first case), and when the upper liquid refrigerant detector does not detect liquid refrigerant and the lower liquid refrigerant detector detects liquid refrigerant, the refrigerant flow rate control valve is set. (hereinafter referred to as the second case), and if the upper and lower liquid refrigerant detectors or the lower liquid refrigerant detector do not detect liquid refrigerant, change the setting of the refrigerant flow control valve to increase the amount of refrigerant per unit time. The amount of circulation is gradually increased over time (hereinafter referred to as the third case), and the refrigerant control valve is substantially closed for a short time when the second case shifts to the first case. The feature lies in the refrigerant flow rate control method.

さらに本発明は、蒸発器と圧縮機との間に位置
する低圧受液器または液分離器内に、液冷媒の上
限を検知する液冷媒検知器と液冷媒の下限を検知
する液冷媒検知器とを設けた、冷凍機や熱ポンプ
等の冷媒回路の冷媒流量制御法において、前記上
部液冷媒検知器が液冷媒を検知した場合冷媒流量
制御弁の設定を変更して単位時間当りの冷媒流量
を時間と共に漸次減少させ(以下第1の場合と云
う)、前記上部液冷媒検知器が液冷媒を検知せず
かつ前記液冷媒検知器が液冷媒を検知した場合前
記冷媒流量制御弁の設定をそのまま持続し(以下
第2の場合と云う)、前記上下部液冷媒検知器ま
たは下部液冷媒検知器が液冷媒を検知しない場合
は前記冷媒流量制御弁の設定を変えて単位時間当
りの冷媒循環量を時間と共に徐々に増加させ(以
下第3の場合と云う)ると共に、第2の場合から
第3の場合に移行した時点で短時間だけ前記冷媒
制御弁を実質的に全開せしめることを特徴とする
冷媒流量制御法にある。
Furthermore, the present invention provides a liquid refrigerant detector for detecting the upper limit of the liquid refrigerant and a liquid refrigerant detector for detecting the lower limit of the liquid refrigerant, which are installed in the low-pressure liquid receiver or liquid separator located between the evaporator and the compressor. In a refrigerant flow control method for refrigerant circuits such as refrigerators and heat pumps, when the upper liquid refrigerant detector detects liquid refrigerant, the setting of the refrigerant flow control valve is changed to control the refrigerant flow rate per unit time. gradually decreases over time (hereinafter referred to as the first case), and when the upper liquid refrigerant detector does not detect liquid refrigerant and the liquid refrigerant detector detects liquid refrigerant, the refrigerant flow rate control valve is set. If it continues as it is (hereinafter referred to as the second case) and the upper and lower liquid refrigerant detectors or the lower liquid refrigerant sensor do not detect liquid refrigerant, change the setting of the refrigerant flow control valve to increase the refrigerant circulation per unit time. The refrigerant control valve is gradually increased over time (hereinafter referred to as the third case), and at the time of transition from the second case to the third case, the refrigerant control valve is substantially fully opened for a short period of time. There is a refrigerant flow control method.

以下本発明を添付図面に例示したその好適な実
施例について述べる。
Hereinafter, preferred embodiments of the present invention will be described, which are illustrated in the accompanying drawings.

第1図は通常の冷凍サイクルにおける制御装置
を示すものである。
FIG. 1 shows a control device in a normal refrigeration cycle.

ガス化した冷媒は圧縮機3により圧縮されて冷
媒配管8を介して凝縮器2に至り、ここで凝縮し
て液冷媒となり受液器5に貯えられる。この受液
器5からくみ上げられた液冷媒は冷媒熱交換器6
および液溜内熱交換器7を介して冷媒流量制御弁
10および固定または半固定の膨張弁(減圧弁)
9を経て蒸発器1に至り、ここで冷熱を生ずる。
蒸発器1から出た冷媒は一旦液溜4に入り、ここ
では気相の冷媒と液相の冷媒とに完全に分離し、
その気相分のみを、ループ状の管を介して圧縮機
3の方へと戻すのである。
The gasified refrigerant is compressed by the compressor 3 and reaches the condenser 2 via the refrigerant pipe 8, where it is condensed to become a liquid refrigerant and stored in the liquid receiver 5. The liquid refrigerant pumped up from this liquid receiver 5 is transferred to a refrigerant heat exchanger 6.
and a refrigerant flow rate control valve 10 and a fixed or semi-fixed expansion valve (pressure reducing valve) via a liquid reservoir heat exchanger 7.
9 and reaches the evaporator 1, where it generates cold heat.
The refrigerant discharged from the evaporator 1 once enters the liquid reservoir 4, where it is completely separated into gas phase refrigerant and liquid phase refrigerant.
Only the gaseous phase component is returned to the compressor 3 via the loop-shaped pipe.

この液溜4における液相の冷媒の液面高さを制
御することにより、この系全体の冷媒流量を制御
するのである。このため本発明によれば、液溜4
の内壁面に液面の上限を定める上部液冷媒検知器
13と液面の下限を定める下部液冷媒検知器14
とを設置してある。これらは電線15により共に
コントローラ11に接続してあり、このコントロ
ーラ11からの信号線が冷媒流量制御弁10に連
結してある。なお、参照番号12はコントローラ
用の電源を示す。
By controlling the level of the liquid phase refrigerant in the liquid reservoir 4, the flow rate of the refrigerant in the entire system is controlled. Therefore, according to the present invention, the liquid reservoir 4
An upper liquid refrigerant detector 13 that determines the upper limit of the liquid level and a lower liquid refrigerant detector 14 that determines the lower limit of the liquid level on the inner wall surface of the
has been set up. These are both connected to a controller 11 by electric wires 15, and a signal line from this controller 11 is connected to a refrigerant flow rate control valve 10. Note that reference number 12 indicates a power supply for the controller.

検知器13,14としてはサーミスタ(米国
SINGER社製)を用いた。このサーミスタは気体
中では自己発熱して温度が上がり抵抗が減少す
る。また、液冷媒中ではサーミスタが冷却される
ので温度が低下して、抵抗が増大する。
The detectors 13 and 14 are thermistors (U.S.
(manufactured by SINGER) was used. This thermistor self-heats in gas, increasing its temperature and decreasing its resistance. Furthermore, since the thermistor is cooled in the liquid refrigerant, the temperature decreases and the resistance increases.

従つて、第3図のような回路を作り、このサー
ミスタを冷媒中に露出させておけば、抵抗16の
電流値が変化し、端子18,18′間の電圧が変
化するので、液冷媒か否かを判定できる。
Therefore, if a circuit as shown in Figure 3 is made and this thermistor is exposed in the refrigerant, the current value of the resistor 16 will change and the voltage between terminals 18 and 18' will change, so that the liquid refrigerant will change. It can be determined whether or not.

コントローラ11はマイクロプロセツサであつ
て、その論理回路のいくつかの例を第2a図ない
し第2c図にフローチヤートとして示した。
The controller 11 is a microprocessor, and some examples of its logic circuits are shown as flowcharts in FIGS. 2a-2c.

第2a図の例では、上部検知器13でこの液面
レベルにおいて液冷媒が存在するか否かを検知す
る。YESであれば制御弁10に時間と共に開度
を減らす信号を発する。NOであればその事実を
アンド回路23およびアンド回路24へ入れる。
他方下部検知器14でこの液面レベルにおいて液
冷媒が存在するか否かを検知する。この結果が
NOでしかも検知器13がNOであればアンド回路
24を介して制御弁10を時間と共に開度を増加
させる信号を発せしめる。上部検知器がNOで、
下部検知器がYESの場合すなわち液面が上部検
知器と下部検知器の間にあれば、現在の開度設定
を維持せしめることとなる。
In the example of FIG. 2a, the upper detector 13 detects whether liquid refrigerant is present at this liquid level. If YES, a signal is issued to the control valve 10 to reduce the opening degree over time. If NO, that fact is input to the AND circuit 23 and the AND circuit 24.
On the other hand, the lower detector 14 detects whether or not liquid refrigerant is present at this liquid level. This result is
If NO and the detector 13 indicates NO, a signal is generated via the AND circuit 24 to increase the opening degree of the control valve 10 over time. The upper detector is NO,
If the lower detector is YES, that is, if the liquid level is between the upper detector and the lower detector, the current opening setting will be maintained.

上述の開度減少および開度増加の場合、その動
作開始直前に短時間(たとえば数秒間)制御弁1
0の開度を極端に減少せしめるか完全に閉止せし
める動作および開度を極端に増大せしめるか全開
せしめる動作を行わせるようにしてもよい。これ
らの動作はいずれか一方を行わせるものとする。
In the case of the above-mentioned opening decrease and opening increase, the control valve 1 is activated for a short time (for example, several seconds) immediately before the operation starts.
It may be possible to perform an operation in which the opening degree of 0 is extremely reduced or completely closed, and an operation in which the opening degree is extremely increased or fully opened. It is assumed that one of these operations is performed.

上部検知器13が液を検知した場合(第1の場
合)は、液冷媒の供給が蒸発能力を上回つている
ことを示す(給液過剰)。
If the upper detector 13 detects liquid (first case), this indicates that the supply of liquid refrigerant exceeds the evaporation capacity (excess liquid supply).

この場合は、制御弁開度を減らせば良いのであ
るが、蒸発器管路の長い装置や、検知器感度の悪
いもの、制御弁動作が遅いもの(制御用語では、
ムダ時間や遅れ時間が大きいと言う)では、間に
合わないことがある。
In this case, it would be better to reduce the control valve opening, but if the evaporator pipe is long, the detector has poor sensitivity, or the control valve operates slowly (in control terminology,
If there is a large amount of wasted time or delay time, you may not be able to make it in time.

そこで、制御弁10を一時的に全閉させ、この
不具合を積分的に補正しようとするものである。
Therefore, the control valve 10 is temporarily fully closed in an attempt to integrally correct this malfunction.

下部検知器14が、液の無いことを検知した場
合(第3の場合)、上記とは逆に、給液不足であ
ることを示す。
When the lower detector 14 detects that there is no liquid (third case), contrary to the above, it indicates that the liquid supply is insufficient.

この場合は、上記と同様の理由により、ムダ時
間や遅れ時間により給液増大の遅れを積分的に補
正するために、制御弁10を、一時的に全開にす
るのである。
In this case, for the same reason as above, the control valve 10 is temporarily fully opened in order to integrally correct the delay in increasing the liquid supply due to the waste time or delay time.

上述のように本発明では、電子回路11を利用
し、制御弁10を電気的に動作させるため、従来
の温度式膨張弁(機械式)のような動作上の制限
がない。(具体的に言えば、容量制御範囲と動作
の速い、パルスモータ駆動弁など。) このため本発明によれば、従来の温度式膨張
弁、キヤピラリチユーブ等の代替方式であるが、
(イ)容量、温度制御範囲が広い、(ロ)定常特性が良い
(目標値からの偏差が小さい)、(ハ)制御過程におけ
る安定性が高い(行き過ぎ量が小さい)、(ニ)速い
応答性がある、(ホ)構造が簡単で動作確実などの長
所が得られる。
As described above, in the present invention, the electronic circuit 11 is used to operate the control valve 10 electrically, so there is no operational restriction as in the conventional thermostatic expansion valve (mechanical type). (Specifically, a pulse motor-driven valve with a capacity control range and quick operation.) Therefore, according to the present invention, although it is an alternative method to the conventional temperature-type expansion valve, capillary tube, etc.,
(a) Wide capacity and temperature control range, (b) Good steady-state characteristics (small deviation from target value), (c) High stability in control process (small overshoot), (d) Fast response (e) Simple structure and reliable operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常の冷凍サイクルに本発明を適用し
た実施例を示す回路図、第2a図ないし第2c図
はその論理回路例を示す回路図、第3図は冷媒液
検出回路例を示す回路図である。 1……蒸発器、2……凝縮器、3……圧縮器、
4……低圧液溜、5……高圧受液器、6……冷媒
熱交換器、7……液溜内熱交換器、8……冷媒配
管、9……膨張弁、10……冷媒流量制御弁、1
1……コントローラ、12……電源、13……上
部液冷媒検知器、14……下部液冷媒検知器、1
5……電線、16……抵抗、17,17′……DC
入力端子、18,18′……DC出力端子、23,
24……アンド回路。
Fig. 1 is a circuit diagram showing an embodiment in which the present invention is applied to a normal refrigeration cycle, Figs. 2a to 2c are circuit diagrams showing examples of logic circuits thereof, and Fig. 3 is a circuit showing an example of a refrigerant liquid detection circuit. It is a diagram. 1... Evaporator, 2... Condenser, 3... Compressor,
4...Low pressure liquid reservoir, 5...High pressure liquid receiver, 6...Refrigerant heat exchanger, 7...Reservoir internal heat exchanger, 8...Refrigerant piping, 9...Expansion valve, 10...Refrigerant flow rate control valve, 1
1... Controller, 12... Power supply, 13... Upper liquid refrigerant detector, 14... Lower liquid refrigerant detector, 1
5...Wire, 16...Resistance, 17,17'...DC
Input terminal, 18, 18'...DC output terminal, 23,
24...AND circuit.

Claims (1)

【特許請求の範囲】 1 蒸発器と圧縮機との間に位置する低圧受液器
または液分離器内に、液冷媒の上限を検知する液
冷媒検知器と液冷媒の下限を検知する液冷媒検知
器とを設けた、冷凍機や熱ポンプ等の冷媒回路の
冷媒流量制御法において、前記上部液冷媒検知器
または下部液冷媒検知器も同時に液冷媒を検知し
た場合冷媒流量制御弁の設定を変更して単位時間
当りの冷媒流量を時間と共に漸次減少させ、前記
上部液冷媒検知器が液冷媒を検知せずかつ前記下
部液冷媒検知器が液冷媒を検知した場合前記冷媒
流量制御弁の設定をそのまま持続し、前記上下部
または下部のみの液冷媒検知器が共に液冷媒を検
知しない場合は前記冷媒流量制御弁の設定を変え
て単位時間当りの冷媒循環量を時間と共に徐々に
増加させることを特徴とする冷媒流量制御法。 2 蒸発器と圧縮機との間に位置する低圧受液器
または液分離器内に、液冷媒の上限を検知する液
冷媒検知器と液冷媒の下限を検知する液冷媒検器
器とを設けた、冷凍機や熱ポンプ等の冷媒回路の
冷媒流量制御法において、前記上部液冷媒検知器
が液冷媒を検知した場合冷媒流量制御弁の設定を
変更して単位時間当りの冷媒流量を時間と共に漸
次減少させ(以下第1の場合と云う)、前記上部
液冷媒検知器が液冷媒を検知せずかつ前記液冷媒
検知器が液冷媒を検知した場合前記冷媒流量制御
弁の設定をそのまま持続し(以下第2の場合と云
う)、前記上下部液冷媒検知器または下部液冷媒
検知器が液冷媒を検知しない場合は前記冷媒流量
制御弁の設定を変えて単位時間当りの冷媒循環量
を時間と共に徐々に増加させ(以下第3の場合と
云う)ると共に、第2の場合から第1の場合に移
行した時点で短時間だけ前記冷媒制御弁を実質的
に閉止させることを特徴とする冷媒流量制御法。 3 蒸発器と圧縮機との間に位置する低圧受液器
または液分離器内に、液冷媒の上限を検知する液
冷媒検知器と液冷媒の下限を検知する液冷媒検知
器とを設けた、冷凍機や熱ポンプ等の冷媒回路の
冷媒流量制御法において、前記上部液冷媒検知器
が液冷媒を検知した場合冷媒流量制御弁の設定を
変更して単位時間当りの冷媒流量を時間と共に漸
次減少させ(以下第1の場合と云う)、前記上部
液冷媒検知器が液冷媒を検知せずかつ前記液冷媒
検知器が液冷媒を検知した場合前記冷媒流量制御
弁の設定をそのまま持続し(以下第2の場合と云
う)、前記上下部液冷媒検知器または下部液冷媒
検知器が液冷媒を検知しない場合は前記冷媒流量
制御弁の設定を変えて単位時間当りの冷媒循環量
を時間と共に徐々に増加させ(以下第3の場合と
云う)ると共に、第2の場合から第3の場合に移
行した時点で短時間だけ前記冷媒制御弁を実質的
に全開せしめることを特徴とする冷媒流量制御
法。
[Claims] 1. A liquid refrigerant detector that detects the upper limit of liquid refrigerant and a liquid refrigerant detector that detects the lower limit of liquid refrigerant are installed in a low-pressure liquid receiver or liquid separator located between the evaporator and the compressor. In a refrigerant flow control method for a refrigerant circuit such as a refrigerator or a heat pump that is equipped with a detector, if the upper liquid refrigerant detector or the lower liquid refrigerant detector simultaneously detects liquid refrigerant, the refrigerant flow control valve is set. the refrigerant flow rate per unit time is gradually decreased over time, and when the upper liquid refrigerant detector does not detect liquid refrigerant and the lower liquid refrigerant detector detects liquid refrigerant, the refrigerant flow rate control valve is set. If the above-mentioned upper and lower liquid refrigerant detectors or only the lower liquid refrigerant detectors do not detect liquid refrigerant, the setting of the refrigerant flow control valve is changed to gradually increase the refrigerant circulation amount per unit time over time. A refrigerant flow control method characterized by: 2 A liquid refrigerant detector that detects the upper limit of liquid refrigerant and a liquid refrigerant detector that detects the lower limit of liquid refrigerant are installed in the low-pressure liquid receiver or liquid separator located between the evaporator and the compressor. In addition, in a refrigerant flow control method for refrigerant circuits such as refrigerators and heat pumps, when the upper liquid refrigerant detector detects liquid refrigerant, the settings of the refrigerant flow control valve are changed to adjust the refrigerant flow rate per unit time over time. (hereinafter referred to as the first case), and if the upper liquid refrigerant detector does not detect liquid refrigerant and the liquid refrigerant detector detects liquid refrigerant, the setting of the refrigerant flow rate control valve is maintained as is. (hereinafter referred to as the second case), if the upper and lower liquid refrigerant detectors or the lower liquid refrigerant detector do not detect liquid refrigerant, change the setting of the refrigerant flow control valve to adjust the refrigerant circulation amount per unit time. (hereinafter referred to as the third case), and the refrigerant control valve is substantially closed for a short time at the time of transition from the second case to the first case. Flow control method. 3 A liquid refrigerant detector that detects the upper limit of liquid refrigerant and a liquid refrigerant detector that detects the lower limit of liquid refrigerant are installed in the low-pressure liquid receiver or liquid separator located between the evaporator and the compressor. In a refrigerant flow rate control method for refrigerant circuits such as refrigerators and heat pumps, when the upper liquid refrigerant detector detects liquid refrigerant, the settings of the refrigerant flow control valve are changed to gradually increase the refrigerant flow rate per unit time over time. (hereinafter referred to as the first case), and if the upper liquid refrigerant detector does not detect liquid refrigerant and the liquid refrigerant detector detects liquid refrigerant, the setting of the refrigerant flow rate control valve is maintained as it is ( (hereinafter referred to as the second case), if the upper and lower liquid refrigerant detectors or the lower liquid refrigerant detector do not detect liquid refrigerant, change the setting of the refrigerant flow control valve to adjust the refrigerant circulation amount per unit time over time. The refrigerant flow rate is gradually increased (hereinafter referred to as the third case), and the refrigerant control valve is substantially fully opened for a short time at the time of transition from the second case to the third case. Control method.
JP602979A 1979-01-24 1979-01-24 Method of regulating flow rate of coolant Granted JPS5599552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP602979A JPS5599552A (en) 1979-01-24 1979-01-24 Method of regulating flow rate of coolant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP602979A JPS5599552A (en) 1979-01-24 1979-01-24 Method of regulating flow rate of coolant

Publications (2)

Publication Number Publication Date
JPS5599552A JPS5599552A (en) 1980-07-29
JPS6155022B2 true JPS6155022B2 (en) 1986-11-26

Family

ID=11627233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP602979A Granted JPS5599552A (en) 1979-01-24 1979-01-24 Method of regulating flow rate of coolant

Country Status (1)

Country Link
JP (1) JPS5599552A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692846B2 (en) * 1985-12-27 1994-11-16 三洋電機株式会社 Air conditioner control device
JPH0735929B2 (en) * 1986-01-07 1995-04-19 三洋電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPS5599552A (en) 1980-07-29

Similar Documents

Publication Publication Date Title
JP2634139B2 (en) Refrigeration apparatus and control method thereof
US5195331A (en) Method of using a thermal expansion valve device, evaporator and flow control means assembly and refrigerating machine
EP0237822B1 (en) Refrigerant flow control system for use with refrigerator
JPH08510048A (en) Refrigerant flow control based on evaporator dryness
US5050393A (en) Refrigeration system with saturation sensor
US5117645A (en) Refrigeration system with saturation sensor
JPS6155022B2 (en)
JP2904525B2 (en) Method of controlling refrigerant flow rate in heat pump air conditioner and heat pump air conditioner
KR960002567B1 (en) Refrigeration circuit
JP2522116B2 (en) Operation control device for air conditioner
JP2572648B2 (en) Overheating prevention device for ice machine compressor
JPS611963A (en) Method of controlling refrigerant for heat pump type air conditioner
JPH0510183Y2 (en)
JPH0772648B2 (en) Refrigerant flow control method
JPS5872859A (en) Refrigerator
JPH03225161A (en) Liquid injection device of freezing cycle in thermostatic device
JPS5823544B2 (en) Refrigerant control device
JPH02176363A (en) Heat pump device
JPS5984052A (en) Method of controlling capability of refrigerator
JPS61262570A (en) Controller for refrigeration cycle
JPS5944548A (en) Refrigerator
JPS6356465B2 (en)
JP2903860B2 (en) Operation control device for refrigeration equipment
JPS602578B2 (en) Refrigeration equipment
JP2600713B2 (en) Expansion valve control device for air conditioner