JPS61262570A - Controller for refrigeration cycle - Google Patents

Controller for refrigeration cycle

Info

Publication number
JPS61262570A
JPS61262570A JP10130285A JP10130285A JPS61262570A JP S61262570 A JPS61262570 A JP S61262570A JP 10130285 A JP10130285 A JP 10130285A JP 10130285 A JP10130285 A JP 10130285A JP S61262570 A JPS61262570 A JP S61262570A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
refrigeration cycle
pressure
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10130285A
Other languages
Japanese (ja)
Inventor
松田 孝則
手塚 彰
佐用 耕作
宮本 誠吾
敏彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10130285A priority Critical patent/JPS61262570A/en
Publication of JPS61262570A publication Critical patent/JPS61262570A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、冷凍サイクルの制(財)装置に係り、膨張弁
入口の冷媒の圧力が急変することによって生ずる冷房能
力低下の防止に好適な電気式膨張弁を用いた冷凍サイク
ルの制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a control device for a refrigeration cycle, and the present invention relates to a control device for a refrigeration cycle. The present invention relates to a refrigeration cycle control device using a type expansion valve.

〔発明の背景〕[Background of the invention]

従来の装置は、特公昭56−16353VC記載のよう
に、蒸発器入口と出口の温度信号を検出し、該検出信号
にて電気式膨張弁を制御して冷凍サイクルの冷媒流量を
制御するものがある。この方法は、膨張弁入口の冷媒が
過冷却状態にあれば蒸発器出口の冷媒の過熱度を良好に
制御出来る。しかし、例え゛ば凝縮器への送風量が急増
し、高圧側圧力が急激VC低下して膨張弁入口の冷媒が
気泡まじシとなったような場合に、この高圧側サイクル
の状態変化が前記蒸発器入口・出口の温度信号VC現れ
るまでの応答遅れ、及び膨張弁のゲインの低下によって
、蒸発器への冷媒供給が不足し冷房能力が低下するとい
う点については配慮がなされていなかった。
A conventional device, as described in Japanese Patent Publication No. 56-16353VC, detects temperature signals at the inlet and outlet of the evaporator, and uses the detected signals to control an electric expansion valve to control the refrigerant flow rate in the refrigeration cycle. be. In this method, if the refrigerant at the inlet of the expansion valve is in a supercooled state, the degree of superheating of the refrigerant at the outlet of the evaporator can be well controlled. However, for example, if the amount of air blown to the condenser increases rapidly, the high pressure side pressure suddenly decreases VC, and the refrigerant at the expansion valve inlet turns into bubbles, the state change of this high pressure side cycle will occur as described above. No consideration was given to the fact that the refrigerant supply to the evaporator is insufficient and the cooling capacity is reduced due to a delay in response until the temperature signal VC appears at the inlet and outlet of the evaporator and a decrease in the gain of the expansion valve.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、膨張弁入口の冷媒の圧力が急減しても
、冷房能力を低下させることのない冷凍サイクルの制御
装置を提供することにある。
An object of the present invention is to provide a refrigeration cycle control device that does not reduce cooling capacity even if the pressure of refrigerant at the inlet of an expansion valve suddenly decreases.

〔発明の概要〕[Summary of the invention]

膨張弁入口の冷媒の圧力状態と相関する物理量の変化が
、所定時間に所定値以下ならば、蒸発器出口冷媒の過熱
度に応じ′て電気式膨張弁の弁開度を変化させる第1制
御手段と、前記物理量の変化が、所定時間に所定値以上
となった時は、膨張弁入口の冷媒の圧力状態を反映する
物理量に基づいて電気式膨張弁の弁開度を制御する第2
制呻手段を設けたことを特徴とする。
If the change in the physical quantity correlated with the pressure state of the refrigerant at the inlet of the expansion valve is less than or equal to a predetermined value in a predetermined time, the first control changes the valve opening degree of the electric expansion valve according to the degree of superheating of the refrigerant at the outlet of the evaporator. a second means for controlling the valve opening of the electric expansion valve based on the physical quantity reflecting the pressure state of the refrigerant at the inlet of the expansion valve when the change in the physical quantity becomes equal to or greater than a predetermined value in a predetermined time;
It is characterized by having a groan suppressing means.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図を用いて説明する。 An embodiment of the present invention will be described below with reference to FIG.

、まず、冷凍サイクルは、電磁クラッチ1a#/cて駆
動制御される圧#i機1、凝縮器2、貯液器3、蒸発器
5及び電気信号を入力として弁の開度を制御する電気式
膨張弁4によ〕構成され、高温・高圧の液状冷媒を電気
式膨張弁4で断熱膨張させ、低温・低圧冷媒にして蒸発
器5にて外部空気と熱交換し冷房を行なうものである。
First, the refrigeration cycle consists of a pressure #i machine 1, a condenser 2, a liquid reservoir 3, an evaporator 5, which are driven and controlled by an electromagnetic clutch 1a#/c, and an electric motor which controls the opening degree of a valve by inputting an electric signal. The electric expansion valve 4 adiabatically expands high-temperature, high-pressure liquid refrigerant, converts it into low-temperature, low-pressure refrigerant, and exchanges heat with external air in the evaporator 5 for cooling. .

次に、本実施例の冷凍サイクルには、冷媒温度を検出す
るための温度センサ6.7及び冷媒圧力を検出するため
の圧力センサ8,9が所定位置に取り付けられている。
Next, in the refrigeration cycle of this embodiment, a temperature sensor 6.7 for detecting refrigerant temperature and pressure sensors 8, 9 for detecting refrigerant pressure are attached at predetermined positions.

1oは制御回路で、これらの温度、圧力センサからの信
号を入力し、前記電気式膨張弁4を駆動制御するもので
ある。
1o is a control circuit which inputs signals from these temperature and pressure sensors to drive and control the electric expansion valve 4.

ここで、圧力センサ8で検出された蒸発器5の出口の冷
媒圧力PeOは制御回路lo内の圧力一温度変換回路(
1) 10 aでその圧力Peo vc対応する冷媒の
飽和温度t−SC寧換されて1該温度t・易と前記温度
センサ6で検出された蒸発器5出口の冷媒温度t0.は
差動増巾回路(1) 10 bで蒸発器5の出口の冷媒
過熱度SHe <= tea−tea)の出力信号とな
る。なお、飽和温度t asの検出は、本実施例の如く
圧力センサ8を用いず特公昭56−16353の如く蒸
発器5の入口の冷媒温度t1を検出し、略飽和温度te
aとしてもよい。
Here, the refrigerant pressure PeO at the outlet of the evaporator 5 detected by the pressure sensor 8 is the pressure-temperature conversion circuit (
1) At 10 a, the pressure Peo vc is converted into the corresponding saturation temperature t-SC of the refrigerant, and the refrigerant temperature at the outlet of the evaporator 5 detected by the temperature sensor 6 is t0. becomes an output signal of the refrigerant superheat degree SHe <= tea-tea) at the outlet of the evaporator 5 in the differential amplification circuit (1) 10b. Note that the saturation temperature tas is detected by detecting the refrigerant temperature t1 at the inlet of the evaporator 5 as in Japanese Patent Publication No. 56-16353, without using the pressure sensor 8 as in this embodiment.
It may also be a.

一方、圧力センサ9で検出された膨張弁4人口の冷媒圧
力Pexは制御回路10内の圧力一温度変換回路(2)
IOCでその圧力PeXに対応する冷媒の飽和温度t、
、、に変換されて、該温度t、!、  と記温度センサ
6で検出された膨張弁4人口の冷媒温度t、!は差動増
巾回路(2) 10 dで膨張弁4人口の冷媒過冷却度
5Cex(j ezs  j ex)の出力信号となる
On the other hand, the refrigerant pressure Pex of the expansion valve 4 detected by the pressure sensor 9 is determined by the pressure-temperature conversion circuit (2) in the control circuit 10.
The saturation temperature t of the refrigerant corresponding to its pressure PeX at IOC,
, , and the temperature t,! , refrigerant temperature t of the expansion valve 4 detected by the temperature sensor 6, ! is the output signal of the refrigerant subcooling degree 5Cex (j ezs j ex) of the differential amplifier circuit (2) 10 d and the expansion valve 4.

次に、本発明の制御法について第2図に示すフローチャ
ートを参照しながら説明する。
Next, the control method of the present invention will be explained with reference to the flowchart shown in FIG.

まず、膨張弁4の入口の冷媒過冷却度5Cexの変化割
合Δ5Hexが所定時間に所定値Δ5Cex以下である
ことがモード判定回路10で判定されるとゝ従来技術で
ある特公昭56−16353と同じ制御を行なう第1制
御手段10fにょカミ気式膨張弁4を駆動し、サイクル
内の冷媒流量を制御する。
First, when the mode determination circuit 10 determines that the rate of change Δ5Hex of the degree of subcooling 5Cex of the refrigerant at the inlet of the expansion valve 4 is less than or equal to the predetermined value Δ5Cex for a predetermined time, it is the same as in the prior art Japanese Patent Publication No. 56-16353. The first control means 10f drives the pneumatic expansion valve 4 and controls the flow rate of refrigerant in the cycle.

次に、膨張弁4の入口冷媒過冷却度5Cexの変化割合
Δ5Cexが所定時間に所定値ΔS Cexo以上の時
は、モード判定回路10eで選択された第2制一手段に
より電気式膨張弁4を駆動し、サイクル内の冷媒流量を
制御する。
Next, when the rate of change Δ5Cex of the inlet refrigerant supercooling degree 5Cex of the expansion valve 4 is equal to or greater than a predetermined value ΔS Cexo for a predetermined time, the electric expansion valve 4 is controlled by the second control means selected by the mode determination circuit 10e. drive and control the refrigerant flow rate within the cycle.

この第2制御手段による制御時は、冷媒過冷却度5Ce
xの時間変化に対する変化量(dsc ex/d t)
に応じて、膨張弁4の開度を増加させて、蒸発器・\の
冷媒供給を促進するように冷媒流量が制御される。
During control by this second control means, the degree of subcooling of the refrigerant is 5Ce.
Amount of change in x over time (dsc ex/d t)
Accordingly, the opening degree of the expansion valve 4 is increased to control the refrigerant flow rate so as to promote refrigerant supply to the evaporator.

従って、自動車用空気調和装置の如く、運転条件によっ
て、凝縮器2に冷却風を送る冷却ファン13が断続制御
されるような場合に、冷却風が急増して、冷凍サイクル
の高圧側圧力が急減しても、それによって生ずる冷媒過
冷却度5Cexの変化量(−d8cex/d t )を
とらえて、第2制御手段に切替えられるため、この圧力
変化が蒸発器5の出口の冷媒過熱度SHe の上昇変化
を待たずに、dscex/dtに応じて膨張弁4を第1
制御手段よシ開くよう制御11−gれ、それによって蒸
発器5への冷媒供給が促進され、従来技術の如く冷房能
力が大′吊ニ低下することを防止出来る。
Therefore, when the cooling fan 13 that sends cooling air to the condenser 2 is controlled intermittently, such as in an automobile air conditioner, depending on the operating conditions, the cooling air increases rapidly and the high-pressure side pressure of the refrigeration cycle suddenly decreases. Even if the refrigerant supercooling degree SHe at the outlet of the evaporator 5 changes, this pressure change changes to the refrigerant superheating degree SHe at the outlet of the evaporator 5. Without waiting for an upward change, the expansion valve 4 is set to the first position according to dscex/dt.
The control means opens the control 11-g, thereby promoting the supply of refrigerant to the evaporator 5 and preventing the cooling capacity from being significantly reduced as in the prior art.

この具体的な例を第3図に示す。この図は、自動車用空
気調和装置におけるクールダウン実験結果を示すもので
ある。まず、運転開始直後は凝縮器2の後流に配設され
たエンジン冷却水冷却用ラジェター12の放熱量が少な
いため冷却7ア/13flOFFしてお夛、凝縮器2は
車両の走行風のみによって冷却される。車両の運転に伴
って冷却水温が所定値迄上昇して、時間t、で冷却ファ
ン13がOWとなると、凝縮器2の放熱能力が急増する
ため高圧側圧力が急激に低下すると共に、冷却されて温
度の低くなった凝縮器2の内部に液化した冷媒が一時的
に溜るため、膨張弁4人口の冷媒過冷却度5Cex<急
減する。ここで、本発明ではこの変化(−dsc ex
/dt ) をとらえて、時間t。
A concrete example of this is shown in FIG. This figure shows the results of a cool-down experiment in an automotive air conditioner. First, immediately after the start of operation, the amount of heat dissipated from the engine cooling water cooling radiator 12 installed downstream of the condenser 2 is small, so cooling 7A/13fl is turned off and the condenser 2 is operated only by the wind from the vehicle. cooled down. When the cooling water temperature rises to a predetermined value as the vehicle is operated, and the cooling fan 13 turns on at time t, the heat dissipation capacity of the condenser 2 rapidly increases, so the pressure on the high pressure side rapidly decreases, and the water is cooled. Since the liquefied refrigerant temporarily accumulates inside the condenser 2 whose temperature has become low, the degree of subcooling of the refrigerant in the expansion valve 4 decreases rapidly. Here, in the present invention, this change (-dsc ex
/dt) at time t.

からtb迄の間、膨張弁4の弁開度を開く方向に制御す
るため、常に蒸発器出口の冷媒過熱度信号8He Vc
よって制御する従来技術よりも早く多くの冷媒を蒸発器
5[供給する。従って圧力急減後遅れて現象の現われる
蒸発器出口の冷媒過熱度SHe の異常上昇を抑えられ
るので、従来技術に比べ冷房能力の異常低下を防止出来
る。
to tb, in order to control the opening of the expansion valve 4 in the direction of opening, the refrigerant superheat degree signal 8He Vc at the evaporator outlet is always maintained.
Therefore, more refrigerant is supplied to the evaporator 5 more quickly than in the conventional control technology. Therefore, an abnormal increase in the degree of superheating SHe of the refrigerant at the evaporator outlet, which occurs after a sudden pressure decrease, can be suppressed, so that an abnormal decrease in cooling capacity can be prevented compared to the prior art.

以上の実施例では、第2制岬手段の検出信号として、膨
張弁4の入口冷媒の温度Texと、圧力Pex  の両
方にて算出される過冷却度5Cexを入力信号としたが
、第3図に示すとおり冷却ファ/作動によυ変化する膨
張弁4人口の温度Tex  あるいは、圧力Pexのい
ずれかのみによって制御を行なうようにしても良い。
In the above embodiment, the degree of supercooling 5Cex calculated from both the temperature Tex of the inlet refrigerant of the expansion valve 4 and the pressure Pex was used as the input signal for the detection signal of the second cape control means. As shown in FIG. 2, control may be performed only by either the temperature Tex of the expansion valve 4, which varies depending on the cooling fan/operation, or the pressure Pex.

また、膨張弁40入口冷媒の過冷却度S/Cexが0と
なった飽和状態になると、液冷媒中に飽和ガスが混入す
るため、膨張弁4の入口冷媒の乾き度Xは、第3図に示
す如く変化する念め、この変化を膨張弁入口に例えば特
開昭56−119474に記載されている如くの対向電
極を配置した電極間の冷媒の静電容量変化で検出し第2
制御手段を行なうようにしても良い。
Furthermore, when the degree of subcooling S/Cex of the refrigerant at the inlet of the expansion valve 40 reaches a saturated state, saturated gas is mixed into the liquid refrigerant, so the degree of dryness X of the refrigerant at the inlet of the expansion valve 4 is as shown in FIG. In order to make sure that the change occurs as shown in Fig. 1, this change is detected by the change in capacitance of the refrigerant between the electrodes of which opposing electrodes are arranged at the inlet of the expansion valve, for example, as described in JP-A No. 56-119474.
Control means may also be provided.

〔発明の効果〕 本発明によれば、冷媒圧力の急減時には、その圧力変化
に対応して変化する物理量にもとづいて、電気式膨張弁
の弁開度を制御するようにしたので膨張弁の制御応答性
が高まり、前記したような冷凍サイクルの過渡状態での
蒸発器出口の空気温度上昇を防止できる。
[Effects of the Invention] According to the present invention, when the refrigerant pressure suddenly decreases, the valve opening degree of the electric expansion valve is controlled based on the physical quantity that changes in response to the pressure change. Responsiveness is improved, and it is possible to prevent the air temperature at the evaporator outlet from rising during the transient state of the refrigeration cycle as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例となるシステム構成図、第2
図は第1図の冷凍サイクル制御性を説明するためのフロ
ーチャート、第3図は、冷凍サイクルの状態変化を示す
実験結果の1例を示すグラフである。 1・・・圧縮機、1a・・・IIl、aグラツチ、2・
・・凝縮器、3・・・貯液器、4・・・電気式膨張弁、
5・・・蒸発器、6゜7・・・温度センサ、8,9・・
・圧力センサ、10°°°制却回路、12・・・ラジェ
ータ、13・・・冷却ファン。 罷1 口 曝20 峯3 囚
Figure 1 is a system configuration diagram that is an embodiment of the present invention;
The figure is a flowchart for explaining the controllability of the refrigeration cycle in FIG. 1, and FIG. 3 is a graph showing an example of experimental results showing changes in the state of the refrigeration cycle. 1...Compressor, 1a...IIl, a gratch, 2.
... Condenser, 3... Liquid reservoir, 4... Electric expansion valve,
5... Evaporator, 6° 7... Temperature sensor, 8,9...
・Pressure sensor, 10°°° control circuit, 12... radiator, 13... cooling fan. 1 prisoner, 20 prisoners, 3 prisoners

Claims (6)

【特許請求の範囲】[Claims] 1.電気信号により弁開度を変化させて冷媒流量を制御
する電気式膨張弁を有する冷凍サイクルの制御装置にお
いて、蒸発器出口の冷媒過熱度に応じて電気式膨張弁の
弁開度を変化させ冷媒流量を制御する第1制御手段と、
膨張弁入口の冷媒の圧力急減時に動作し冷媒の圧力が急
減することによつて生ずる物理量の変化に応じて、膨張
弁の弁開度を制御する第2制御手段を有したことを特徴
とする冷凍サイクルの制御装置。
1. In a refrigeration cycle control device that has an electric expansion valve that controls the refrigerant flow rate by changing the valve opening degree using an electric signal, the valve opening degree of the electric expansion valve is changed according to the degree of superheating of the refrigerant at the outlet of the evaporator. a first control means for controlling the flow rate;
The invention is characterized by having a second control means that operates when the pressure of the refrigerant at the inlet of the expansion valve suddenly decreases and controls the opening degree of the expansion valve in accordance with a change in a physical quantity caused by the sudden decrease in the pressure of the refrigerant. Refrigeration cycle control device.
2.特許請求範囲第1項の物理量は、膨張弁入口の冷媒
の過冷却度としたことを特徴とする冷凍サイクルの制御
装置。
2. A control device for a refrigeration cycle, wherein the physical quantity according to claim 1 is a degree of supercooling of a refrigerant at an inlet of an expansion valve.
3.特許請求範囲第1項の物理量は、膨張弁入口の冷媒
の圧力としたことを特徴とする冷凍サイクルの制御装置
3. A control device for a refrigeration cycle, wherein the physical quantity according to claim 1 is the pressure of refrigerant at an inlet of an expansion valve.
4.特許請求範囲第1項の物理量は、膨張弁入口の冷媒
の温度としたことを特徴とする冷凍サイクルの制御装置
4. A control device for a refrigeration cycle, wherein the physical quantity according to claim 1 is the temperature of the refrigerant at the inlet of the expansion valve.
5.特許請求範囲第1項の物理量は、膨張弁入口の冷媒
の乾き度としたことを特徴とする冷凍サイクルの制御装
置。
5. A control device for a refrigeration cycle, wherein the physical quantity according to claim 1 is the degree of dryness of the refrigerant at the inlet of the expansion valve.
6.特許請求範囲第5項の乾き度は、冷媒の静電容量の
変化で検出することを特徴とする冷凍サイクルの制御装
置。
6. A refrigeration cycle control device according to claim 5, wherein the degree of dryness is detected by a change in capacitance of the refrigerant.
JP10130285A 1985-05-15 1985-05-15 Controller for refrigeration cycle Pending JPS61262570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10130285A JPS61262570A (en) 1985-05-15 1985-05-15 Controller for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10130285A JPS61262570A (en) 1985-05-15 1985-05-15 Controller for refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS61262570A true JPS61262570A (en) 1986-11-20

Family

ID=14297015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10130285A Pending JPS61262570A (en) 1985-05-15 1985-05-15 Controller for refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS61262570A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181768U (en) * 1987-05-18 1988-11-24
JP2005308392A (en) * 2005-07-08 2005-11-04 Mitsubishi Electric Corp Air conditioner
JP2017015327A (en) * 2015-07-01 2017-01-19 株式会社デンソー Refrigeration cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181768U (en) * 1987-05-18 1988-11-24
JPH0526434Y2 (en) * 1987-05-18 1993-07-05
JP2005308392A (en) * 2005-07-08 2005-11-04 Mitsubishi Electric Corp Air conditioner
JP4566845B2 (en) * 2005-07-08 2010-10-20 三菱電機株式会社 Air conditioner
JP2017015327A (en) * 2015-07-01 2017-01-19 株式会社デンソー Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2974974B2 (en) Refrigeration system
EP1826513A1 (en) Refrigerating air conditioner
KR910004893Y1 (en) Refrigeration circuit
JPS61262570A (en) Controller for refrigeration cycle
JP3257044B2 (en) Injection type refrigeration equipment
JPH1073328A (en) Cooler
JPH0534578B2 (en)
KR920009308B1 (en) Refrigerant flow control method and apparatus
US3786650A (en) Air conditioning control system
JP3060444B2 (en) Air conditioner
JPS5919255B2 (en) Defrosting control method for air conditioners
JPH06307722A (en) Air-conditioning equipment for vehicle
JP3395449B2 (en) Air conditioner
JP3134388B2 (en) Air conditioner
JPS6218082Y2 (en)
JPS63259353A (en) Refrigerator
JP2503785B2 (en) Operation control device for air conditioner
JPH06159822A (en) Device for controlling motor-operated expansion valve for air conditioner
JPS60151118A (en) Air conditioner for automobile
JPS6321457A (en) Refrigeration cycle device
JPS5885079A (en) Controller for flow rate of refrigerant of air conditioner for automobile
JPS6298168A (en) Refrigerant flow controller for refrigerating air conditioner
JPS60207858A (en) Method of controlling capacity of turbo-refrigerator
JP2000310452A (en) Turbo refrigerator
JPS5995351A (en) Capacity control refrigerating circuit