JPS5995351A - Capacity control refrigerating circuit - Google Patents

Capacity control refrigerating circuit

Info

Publication number
JPS5995351A
JPS5995351A JP57205015A JP20501582A JPS5995351A JP S5995351 A JPS5995351 A JP S5995351A JP 57205015 A JP57205015 A JP 57205015A JP 20501582 A JP20501582 A JP 20501582A JP S5995351 A JPS5995351 A JP S5995351A
Authority
JP
Japan
Prior art keywords
compressor
amount
heat exchanger
expansion valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57205015A
Other languages
Japanese (ja)
Other versions
JPH0245796B2 (en
Inventor
文雄 松岡
等 飯島
山崎 起助
紘 笠置
康雄 中島
清 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57205015A priority Critical patent/JPS5995351A/en
Priority to KR1019830000701A priority patent/KR880000935B1/en
Priority to GB08324678A priority patent/GB2130747B/en
Priority to AU19128/83A priority patent/AU547326B2/en
Priority to DE19833340736 priority patent/DE3340736A1/en
Publication of JPS5995351A publication Critical patent/JPS5995351A/en
Priority to HK728/87A priority patent/HK72887A/en
Priority to MY635/87A priority patent/MY8700635A/en
Publication of JPH0245796B2 publication Critical patent/JPH0245796B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、インバータなどによシ圧縮機の容量制御が
可変な冷凍サイクルにおける膨張弁を可逆式膨張弁とし
、かつ電子式信号によシス−74ヒート量を任意に設定
できるようにした容量制御冷凍回路に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention uses a reversible expansion valve as an expansion valve in a refrigeration cycle in which capacity control of a compressor is variable using an inverter or the like, and the amount of Sys-74 heat can be adjusted arbitrarily using an electronic signal. This invention relates to a capacity control refrigeration circuit that can be set.

第1図は従来の膨張弁への冷媒流路を示す概略図である
。乙の第1図における1社膨張弁、2〜5はそれぞれ逆
止弁であフ、図中暖房運転時の冷媒の流れ方向を破線で
示しておシ、また、冷房運転時の冷媒の流入方向を実線
で示している。
FIG. 1 is a schematic diagram showing a refrigerant flow path to a conventional expansion valve. In Figure 1 of Figure 1, 1 company expansion valves and 2 to 5 are each check valves. The direction is shown by a solid line.

この第1図では、膨張弁lに流入する冷媒の流れ方向を
規定している。
In FIG. 1, the flow direction of the refrigerant flowing into the expansion valve l is defined.

ところで、従来、この種の冷凍サイクルにおける膨張弁
として、温度式自動膨張弁を使用しているが、スーツ4
ヒート量を制御する部分の配管に感温筒を接触させて、
温度変化を圧力変化に変換しているため、応答が遅くな
る。このために急激な負荷変動および圧縮運転容量・の
変化に追従できなく、液パツクを起こしたシ、ハンチン
グを起こしやすい欠点を有していた。
By the way, conventionally, a temperature-type automatic expansion valve is used as an expansion valve in this type of refrigeration cycle, but suit 4
By touching the thermosensitive cylinder to the piping that controls the amount of heat,
The response is slow because temperature changes are converted to pressure changes. For this reason, it is not possible to follow sudden changes in load and compression operation capacity, and has the disadvantage of being prone to liquid puddles and hunting.

また、冷媒の流れが一方向性のために、ヒートポンプの
ように冷房と暖房とを行うものでは、冷媒の流れ方向が
逆転するために、膨張弁への冷媒製入方向を一定とする
回路を形成する必要がちつた。
In addition, since the flow of refrigerant is unidirectional, in devices that perform cooling and heating such as heat pumps, the direction of flow of refrigerant is reversed, so a circuit that keeps the direction of refrigerant input to the expansion valve constant is required. It was necessary to form.

さらに、スーパヒート量を検知するため、ガスまたは液
の膨張で作動する感温筒を介するなど直接に検知してい
ないため、空調機の運転状態に合った最適なスー・ぐヒ
ート量に任意にコントロールすることが不可能であった
Furthermore, since the amount of superheat is not directly detected, such as through a thermosensor that is activated by the expansion of gas or liquid, the amount of superheat can be controlled at will to suit the operating conditions of the air conditioner. It was impossible to do so.

また、従来電気式膨張弁の制御信号としてスーパヒート
量を検知するようにしているものは、蒸発器の入口とか
、中間部の温度(Te)と圧縮機入口温度(Ti)とを
検出し簡易的にスーパヒート量(SH)をSH= Ti
 −Teとしているが、蒸発器入口とか中間部と圧縮機
入口とには圧力低下がある。
In addition, conventional electric expansion valves that detect the amount of superheat as a control signal detect the temperature at the evaporator inlet or intermediate part (Te) and the compressor inlet temperature (Ti). The superheat amount (SH) is SH= Ti
-Te, but there is a pressure drop at the evaporator inlet, middle part, and compressor inlet.

この低下量が空気条件や、圧縮機運転容量によシ変化す
るために正確にスーパヒート量を検知することが不可能
であった。さらに、圧力センサと温度センサとを圧縮機
入口に設はスーパヒート量を検知するようにしているも
のもあるが、圧力センサが高価となる欠点を有していた
It has been impossible to accurately detect the amount of superheat because the amount of this decrease varies depending on the air conditions and the operating capacity of the compressor. Furthermore, some systems have installed a pressure sensor and a temperature sensor at the inlet of the compressor to detect the amount of superheat, but this has the disadvantage that the pressure sensor is expensive.

そこで、この発明では、冷媒流入方向が一逆転しても膨
張弁の絞シ動作が同じように行なわれることが可能なよ
うにし、かつ圧縮機の容量制御時に常に一定のスーパヒ
ートに限らず、任意にスー・ぐヒート量を変更できるよ
うに、スー・母ヒート量を検出し、膨張弁の開度を制御
できる制御器を備えた容量制御冷凍回路を提供すること
を目的とする。
Therefore, in this invention, the throttling operation of the expansion valve can be performed in the same way even if the direction of refrigerant inflow is reversed, and when controlling the capacity of the compressor, it is not limited to constant superheat, but can be controlled at any time. An object of the present invention is to provide a capacity control refrigeration circuit equipped with a controller that can detect the amount of soot/mother heat and control the opening degree of an expansion valve so that the amount of soot/mother heat can be changed.

以下、この発明の容量制御冷凍回路の実施例について図
面に基づき説明する。第2図はその一実施例の冷凍サイ
クルの回路図である。この第2図において、Aは室内側
ユニットを示し、Bは室外側ユニットを示す。
Embodiments of the capacity control refrigeration circuit of the present invention will be described below with reference to the drawings. FIG. 2 is a circuit diagram of a refrigeration cycle according to one embodiment. In this FIG. 2, A indicates an indoor unit, and B indicates an outdoor unit.

まず、室外側ユニツ)Bにおいて、11は容量制御可能
な圧縮機である。この圧縮機11は冷暖房切換用の四方
弁12を通して室外側熱交換器13に連結されている。
First, in the outdoor unit (B), 11 is a compressor whose capacity can be controlled. This compressor 11 is connected to an outdoor heat exchanger 13 through a four-way valve 12 for switching between air conditioning and heating.

この室外側熱交換器13はディストリビュータ14a、
14bを通して電気式可逆膨張弁15に連結さnておシ
、電気式可逆膨張弁15は室内外ユニツ)Aの室内側、
熱又換器16に連結されている。
This outdoor heat exchanger 13 includes a distributor 14a,
14b to the electric reversible expansion valve 15, the electric reversible expansion valve 15 is connected to the indoor side of the indoor/outdoor unit A,
It is connected to a heat exchanger 16.

室内側熱交換器16は上記四方弁12を通してアキュム
レータ17に連結されておシ、アキュムレータ17は上
記圧縮機11に連結されている。
The indoor heat exchanger 16 is connected to an accumulator 17 through the four-way valve 12, and the accumulator 17 is connected to the compressor 11.

この圧縮機11の冷媒の吸入側近傍にはe度七ンサ18
が設けられているとともに圧力センサ19が設けられて
いる。
Near the refrigerant suction side of this compressor 11, there is a
A pressure sensor 19 is also provided.

温度センサ18は圧縮機11の冷媒の吸入温度を検出す
るものであり、その検出出力は制御器20に送出するよ
うになっている。また、圧力センサ19は圧縮機11の
冷媒の吸入圧力を検出するもので、1)、この検出出力
も制御器20に送出するようになっている。
The temperature sensor 18 detects the suction temperature of the refrigerant of the compressor 11, and its detection output is sent to the controller 20. Further, the pressure sensor 19 detects the suction pressure of the refrigerant of the compressor 11, and the detected output is also sent to the controller 20 (1).

制御器20はこれらの検出出力を受けて、上記電気式可
逆膨張弁15の開閉制御を行うようになっている。
The controller 20 receives these detection outputs and controls the opening and closing of the electric reversible expansion valve 15.

次に、以上のように構成されたこの発明の容量制御冷凍
回路の動作について説明する。圧縮機11で圧縮された
高温高圧の冷媒ガスは、四方弁12を介して、冷房運転
時には室外側熱交換器13に流入し、そこで凝縮液化さ
れた冷媒液はディストリビュータ14a 、14bを通
って電気式可逆膨張弁15に至り、断熱膨張し低圧低温
の2相冷媒になυ、室内側熱交換器16において、冷媒
液分が周囲から熱を奪って蒸発し、ガスになり、四方弁
12を通ってアキュムレータ17に流入する。
Next, the operation of the capacity control refrigeration circuit of the present invention configured as above will be explained. The high-temperature, high-pressure refrigerant gas compressed by the compressor 11 flows into the outdoor heat exchanger 13 during cooling operation through the four-way valve 12, and the refrigerant liquid condensed and liquefied there passes through distributors 14a and 14b and is then supplied with electricity. The refrigerant liquid reaches the reversible expansion valve 15 and adiabatically expands to become a low-pressure, low-temperature two-phase refrigerant υ.In the indoor heat exchanger 16, the refrigerant liquid absorbs heat from the surroundings and evaporates, becoming a gas and opening the four-way valve 12. and flows into the accumulator 17.

そこから冷媒ガスは吸入配管を通って圧縮機11に吸入
され、圧縮機11で冷媒が圧縮され、再び上記系内を循
環する。
From there, the refrigerant gas passes through the suction pipe and is sucked into the compressor 11, where the refrigerant is compressed and circulated through the system again.

この吸入冷媒の圧力Pが圧力センサ19により検出され
、温度Tが温度センサ18によシ検出され、制御器20
に送られる。
The pressure P of this suction refrigerant is detected by the pressure sensor 19, the temperature T is detected by the temperature sensor 18, and the controller 20
sent to.

制御器20では、この二つの検出出力からスーパヒー)
量SHを演算し、そのスーパヒート量の値に応じて膨張
弁開度信号を電気式膨張弁15に送られるようになって
いる。
In the controller 20, superheat is detected from these two detection outputs.
The amount SH is calculated, and an expansion valve opening signal is sent to the electric expansion valve 15 in accordance with the value of the superheat amount.

このように構成された容量制御冷凍回路において、暖房
運転時には、四方弁12の流路が切υ換わシ、圧縮機1
1で圧縮された高温高圧の冷媒ガスは四方弁12を経由
して室内側熱交換器16に流入し、低温高圧の冷媒液に
液化され、電気式可逆膨張弁15に逆方向から流入し、
低温低圧の2相冷媒に膨張し、ディストリビュータ14
a、14bを経て室外側熱交換器13で蒸発し、再び四
方弁12を経由してアキュムレータ17に入り圧縮機1
1に吸入される。
In the capacity control refrigeration circuit configured in this manner, during heating operation, the flow path of the four-way valve 12 is switched υ, and the flow path of the compressor 1 is switched.
The high-temperature, high-pressure refrigerant gas compressed in step 1 flows into the indoor heat exchanger 16 via the four-way valve 12, is liquefied into a low-temperature, high-pressure refrigerant liquid, and flows into the electric reversible expansion valve 15 from the opposite direction.
The refrigerant expands into a low-temperature, low-pressure two-phase refrigerant and passes through the distributor 14.
a, 14b, evaporates in the outdoor heat exchanger 13, enters the accumulator 17 again via the four-way valve 12, and enters the compressor 1.
1 is inhaled.

このように電気式可逆膨張弁の出入口を可逆にすること
によって冷凍回路自体が簡素化され信頼性も向上させる
ことができる。
By making the inlet and outlet of the electric reversible expansion valve reversible in this way, the refrigeration circuit itself can be simplified and its reliability can be improved.

また暖房運転時の能力特性および効率(cop〜EER
)を第3図に示す。この第3図には暖房能力Qとスーパ
ヒート量SHの関係、および成績係数COPとスーパヒ
ート量SHとの関係を示している。
Also, capacity characteristics and efficiency during heating operation (cop~EER)
) is shown in Figure 3. FIG. 3 shows the relationship between the heating capacity Q and the superheat amount SH, and the relationship between the coefficient of performance COP and the superheat amount SH.

この第3図からもわかるように暖房能力Qが最大となる
スー7やヒート愈と成績効率COPが最大となるスーパ
ヒート量が一致せず異っていることがわかる。例えば暖
房能力を優先して早く室温を上げたいときはスー・臂ヒ
ート量を大きくとシ、設定温度に室温が近づいたときな
どは成績効率COPを優先して省エネルギになるスーパ
ヒ−ト量を小さくするどの制御を行うことによって快適
性向と省エネルギ化を図ることができる。
As can be seen from FIG. 3, the amount of superheat, which maximizes the heating capacity Q, and the amount of super heat, which maximizes the heating capacity Q, do not match and differ. For example, if you want to raise the room temperature quickly by giving priority to heating capacity, increase the amount of super heat, and when the room temperature approaches the set temperature, give priority to performance efficiency COP and increase the amount of super heat to save energy. Comfort and energy savings can be achieved by controlling the size of the space.

以上のように、この発明の容量制御冷凍回路によれば、
圧縮機入口の冷媒の圧力と温度を検出しその検出信号に
よシスーパヒート量の値を演算し、その演算結果によシ
ミ気式可逆膨張弁の開度制御を行うようにするとともに
暖房運転時に圧縮機で圧縮された高温高圧の冷媒ガスを
室内側熱交換器に流入して低温高圧の冷媒液に液化して
電気式可逆膨張弁に逆方向から流入して、低温低圧の2
相冷媒に膨張させるようにしたので、省エネルギ運転、
快適性を考慮した運転など制御性もよくすることが可能
になる。
As described above, according to the capacity control refrigeration circuit of the present invention,
The pressure and temperature of the refrigerant at the inlet of the compressor are detected, and the value of the system superheat amount is calculated based on the detection signal.The opening of the air-type reversible expansion valve is controlled based on the calculation result, and the compression is performed during heating operation. The high-temperature, high-pressure refrigerant gas compressed by the machine flows into the indoor heat exchanger, where it is liquefied into a low-temperature, high-pressure refrigerant liquid, which flows into the electric reversible expansion valve from the opposite direction.
Since the phase refrigerant is expanded, energy-saving operation is possible.
It will also be possible to improve controllability, such as driving with comfort in mind.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の膨張弁への冷媒の液路を示す図、第2図
はこの発明の容量制御冷凍回路の一実施例を示す冷凍回
路図、第3図は上客量制御冷凍回路のスーパヒートに対
する暖房能力と成績係数の特性曲線図である。 11・・・圧縮機、12・・・四方弁、13・・・室外
側熱交換器、14a 、14b・・・ディストリビュー
タ、15・・・電気式可逆膨張弁、16・・・室内側熱
交換器、17・・・アキュムレータ、18・・・温度セ
ンサ、19・・・圧力センサ、20・・・制御器。 代理人   葛  野  信  − 第1図 第2図 第3図 ′1)1−許庁長官殿 1、事f’lの表示    fll;IG(j、昭57
−205015号2 づこ明の21(4、 容気制御冷凍回路 3、  ’f′山」1.をすると 5、 補正の対称 明細書の特許請求の範囲の欄 6、 補正の内容 (1)  明細ij中、特許請求の範囲を別紙の通り訂
正する。 7 添付書類の目録 (1)  訂正特許請求の範囲     1通以上 2、特許請求の範囲 容量制御可能な圧縮機と、室外側熱交換器と、室内側熱
交換器と、冷暖房切換用の四方弁と、アキュムレータと
を有する冷凍回路において、前記圧縮機入口冷媒のスー
パヒート量全検出する手段と、この手段により検出され
たスーパヒート量にもとづき指令を出す制御器と、前記
制御器の指令に基づいて膨張弁の開度を調節できるとと
もに冷出入口可逆な電気式膨張弁とを備えたことを特徴
とする容量制御冷凍回路。
Fig. 1 is a diagram showing a conventional liquid path for refrigerant to an expansion valve, Fig. 2 is a refrigeration circuit diagram showing an embodiment of the capacity control refrigeration circuit of the present invention, and Fig. 3 is a diagram of a high volume control refrigeration circuit. It is a characteristic curve diagram of heating capacity and coefficient of performance for super heat. DESCRIPTION OF SYMBOLS 11... Compressor, 12... Four-way valve, 13... Outdoor heat exchanger, 14a, 14b... Distributor, 15... Electric reversible expansion valve, 16... Indoor heat exchanger 17...Accumulator, 18...Temperature sensor, 19...Pressure sensor, 20...Controller. Agent Makoto Kuzuno - Fig. 1 Fig. 2 Fig. 3 Fig. 3 '1) 1 - Director-General of the Agency 1, Indication of matter f'l fll; IG (j, 1982)
-205015 No. 2 Zuko Akira's 21 (4, Volume control refrigeration circuit 3, 'f'mountain' 1.) 5, Claims column 6 of the symmetrical specification of the amendment, Contents of the amendment (1) Specification 7. List of Attached Documents (1) Amended Claims 1 or more 2 Claims: Capacity controllable compressor, outdoor heat exchanger , in a refrigeration circuit having an indoor heat exchanger, a four-way valve for switching between air conditioning and heating, and an accumulator, means for detecting the total amount of superheat of the refrigerant at the inlet of the compressor, and issuing a command based on the amount of superheat detected by the means. 1. A capacity control refrigeration circuit characterized by comprising: a controller for generating air, and an electric expansion valve that can adjust the opening degree of the expansion valve based on commands from the controller and has a reversible opening/outlet of a cold.

Claims (1)

【特許請求の範囲】[Claims] 容量制御可能な圧縮機と、室外側熱交換器と、室内側熱
交換器と、冷暖房切換用の四方弁と、アキュムレータと
を有する冷凍回路において、前記圧縮機入口冷媒のスー
パヒート量を検出する手段と、この手段によシ検出され
たスーパヒート量にもとづき指令を出す制御器と、前記
制御器の指令に基づいて膨張弁の開度を調節できるとと
もに暖房運転時に圧縮機から室内側熱交換器に流入され
た高温高圧の冷媒ガスが逆方向に流入される出入口可逆
な電気式膨張弁とを備えたことを特徴とする容量制御冷
凍回路。
In a refrigeration circuit having a capacity controllable compressor, an outdoor heat exchanger, an indoor heat exchanger, a four-way valve for switching between air conditioning and heating, and an accumulator, means for detecting the amount of superheat of the refrigerant at the inlet of the compressor. and a controller that issues a command based on the amount of superheat detected by this means; and a controller that can adjust the opening degree of the expansion valve based on the command of the controller, and that also controls the amount of heat exchanger from the compressor to the indoor heat exchanger during heating operation. 1. A capacity control refrigeration circuit characterized by comprising a reversible electric expansion valve at an inlet and outlet through which high-temperature, high-pressure refrigerant gas flows in the opposite direction.
JP57205015A 1982-11-22 1982-11-22 Capacity control refrigerating circuit Granted JPS5995351A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57205015A JPS5995351A (en) 1982-11-22 1982-11-22 Capacity control refrigerating circuit
KR1019830000701A KR880000935B1 (en) 1982-11-22 1983-02-21 Control device for refrigeration cycle
GB08324678A GB2130747B (en) 1982-11-22 1983-09-14 Control device for refrigeration cycle
AU19128/83A AU547326B2 (en) 1982-11-22 1983-09-14 Control of super-heat quantity to compressor by control of expansion valve
DE19833340736 DE3340736A1 (en) 1982-11-22 1983-11-10 CONTROL DEVICE FOR A COOLING CIRCUIT
HK728/87A HK72887A (en) 1982-11-22 1987-10-07 Control device for refrigeration cycle
MY635/87A MY8700635A (en) 1982-11-22 1987-12-30 Control device for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57205015A JPS5995351A (en) 1982-11-22 1982-11-22 Capacity control refrigerating circuit

Publications (2)

Publication Number Publication Date
JPS5995351A true JPS5995351A (en) 1984-06-01
JPH0245796B2 JPH0245796B2 (en) 1990-10-11

Family

ID=16500030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57205015A Granted JPS5995351A (en) 1982-11-22 1982-11-22 Capacity control refrigerating circuit

Country Status (2)

Country Link
JP (1) JPS5995351A (en)
KR (1) KR880000935B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419847U (en) * 1987-07-24 1989-01-31

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665495B1 (en) * 2015-02-24 2016-10-12 대우조선해양 주식회사 BOG Re-liquefaction Apparatus and Method for Vessel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152361A (en) * 1979-05-17 1980-11-27 Matsushita Electric Ind Co Ltd Air conditioner
JPS5672150U (en) * 1979-11-09 1981-06-13
JPS5798763A (en) * 1980-12-10 1982-06-19 Hitachi Ltd Heat pump type refrigerating system
JPS57196052A (en) * 1981-05-27 1982-12-01 Hitachi Ltd Refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152361A (en) * 1979-05-17 1980-11-27 Matsushita Electric Ind Co Ltd Air conditioner
JPS5672150U (en) * 1979-11-09 1981-06-13
JPS5798763A (en) * 1980-12-10 1982-06-19 Hitachi Ltd Heat pump type refrigerating system
JPS57196052A (en) * 1981-05-27 1982-12-01 Hitachi Ltd Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419847U (en) * 1987-07-24 1989-01-31
JPH0544653Y2 (en) * 1987-07-24 1993-11-12

Also Published As

Publication number Publication date
JPH0245796B2 (en) 1990-10-11
KR840003762A (en) 1984-09-15
KR880000935B1 (en) 1988-05-31

Similar Documents

Publication Publication Date Title
JPH0327249Y2 (en)
JPS6334459A (en) Air conditioner
JP6223469B2 (en) Air conditioner
WO1999034156A1 (en) Refrigerating cycle
JP2010506132A (en) Method and apparatus for controlling stop operation of air conditioner
CN101122436A (en) Constant speed hot pump unit with logic control throttle style and its control method
JPH074756A (en) Air-conditioning device
JP2002228282A (en) Refrigerating device
JP5517891B2 (en) Air conditioner
JPS5995351A (en) Capacity control refrigerating circuit
JPH0733095Y2 (en) Accumulator oil return device
JPH06317360A (en) Multi-chamber type air conditioner
JPH0285647A (en) Air conditioner
JP2003065584A (en) Air-conditioning apparatus and its control method
JP3009481B2 (en) Heat pump type air conditioner
JP2923058B2 (en) Heat pump type air conditioner
JPS6139256Y2 (en)
JPS6018757Y2 (en) air conditioner
JPS63286664A (en) Heat pump type air conditioner
JP3134388B2 (en) Air conditioner
JPS63290368A (en) Heat pump type air conditioner
JPH0639979B2 (en) Refrigeration cycle equipment
JPH0633910B2 (en) Heat pump refrigeration system
JPS5995349A (en) Controller for electric type expansion valve
JPH03144245A (en) Operation control device for air conditioner