JPS6154842A - Cooler of rotary electric machine - Google Patents

Cooler of rotary electric machine

Info

Publication number
JPS6154842A
JPS6154842A JP17684284A JP17684284A JPS6154842A JP S6154842 A JPS6154842 A JP S6154842A JP 17684284 A JP17684284 A JP 17684284A JP 17684284 A JP17684284 A JP 17684284A JP S6154842 A JPS6154842 A JP S6154842A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
machine
tank
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17684284A
Other languages
Japanese (ja)
Other versions
JPH0530138B2 (en
Inventor
Takashi Watanabe
孝 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17684284A priority Critical patent/JPS6154842A/en
Publication of JPS6154842A publication Critical patent/JPS6154842A/en
Publication of JPH0530138B2 publication Critical patent/JPH0530138B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To economically control hydrogen gas pressure in a rotary electric machine by absorbing or discharging hydrogen to or from hydrogen storage alloy, and controlling hydrogen gas pressure in the machine in response to a load of a generator. CONSTITUTION:Gas flow control valves 22, 24 are opened in a normal load state, and high temperature and high pressure gas in a cooler inlet region 16 is flowed through a gas supply pipe 19 and a gas return pipe 21 into a tank 17. When the temperature rises to 60-65 deg.C, hydrogen is discharged from a hydrogen storage alloy 18 to cause the gas pressure in a machine to rise, and the gas pressure in the machine arrives at a rated target value. When a generator becomes a light load so that the hydrogen gas pressure can be decreased, the valve 22 is closed, the valves 22, 23 are then opened to flow the low temperature and high pressure gas in a discharging region 15 is flowed into the tank 17, the alloy 18 is cooled, the hydrogen is absorbed to the alloy to reduce the gas pressure in the machine.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は回転電機の冷却装置に係り、特に冷却媒体とし
て封入された水素ガスのガス圧制御に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cooling device for a rotating electrical machine, and particularly to gas pressure control of hydrogen gas sealed as a cooling medium.

〔発明の背景〕[Background of the invention]

高速回転で運転される回@電機、例えばタービン発電機
等におけろ機内の冷却には、風損を軽減するために水素
ガスが用いられる。しかも風損を更に軽減するために1
発熱量が少ない軽負荷時にはガス圧を下げてM転する冷
却ガス圧制御方法が提案されている。
Hydrogen gas is used to cool the inside of electric machines operating at high speeds, such as turbine generators, in order to reduce windage losses. Moreover, in order to further reduce windage damage,
A cooling gas pressure control method has been proposed in which the gas pressure is lowered during light loads with less calorific value and the M-shift is performed.

しかし従来imは、このガス圧制御のための設備や消費
エネルギーの増加を伴い、総合的な効率向上は小さいも
のであった。
However, conventional IMs involve an increase in equipment and energy consumption for this gas pressure control, and the overall efficiency improvement has been small.

すなわち、第3図に示す従来装には、充電機本体l内に
水素ボンベ2からガス供給パイプ3を介して水素ガスを
供給し、機内の余剰ガスはガス放出パイプ4から大気中
へMト出するものである。パイプ3,4の途中に設けら
れたガス流制御#5゜6は機内のガス圧を制御するもの
で、ガス流制御弁5は機内のガス圧が目標値よりも低下
したときに開いて水素ガスを補給して機内のガス圧を目
標値に維持するためのものであり、ガス流制御弁6は軽
負荷時にガス圧の目標値を下げたときに開いて機内の余
剰ガスを13F出してガス圧を目標値まで低下させるた
めのものである。
That is, in the conventional system shown in FIG. 3, hydrogen gas is supplied from a hydrogen cylinder 2 into the charger main body l via a gas supply pipe 3, and excess gas inside the machine is discharged into the atmosphere from a gas discharge pipe 4. It is something to be released. Gas flow control valves #5 and 6 installed in the middle of the pipes 3 and 4 control the gas pressure inside the machine, and the gas flow control valve 5 opens when the gas pressure inside the machine drops below the target value to release hydrogen. This is to replenish gas and maintain the gas pressure in the machine at the target value, and the gas flow control valve 6 opens when the target value of gas pressure is lowered under light load to release excess gas in the machine. This is to lower the gas pressure to the target value.

また第4図に示す従来装置は、更に充電機本体■にパイ
プ7を介して連なるタンク8を備え、このパイプ7の途
中に配置したフンプレシックとガス流制御弁lOによっ
て、余剰ガスをタンク8に貯人、必要時にこのタンク8
内の貯蔵ガスを機内戻すものである。
Furthermore, the conventional device shown in FIG. 4 is further equipped with a tank 8 connected to the charger main body (2) via a pipe 7, and excess gas is transferred to the tank 8 by means of a hump press and a gas flow control valve 10 placed in the middle of this pipe 7. Savings, this tank 8 when needed
This is to return the stored gas inside the aircraft.

このような従来装置は、第3図のものは水素ガスの消費
量が多くて不経済であり、第4図のものはタンク8とコ
ンプレッサ9を付加しなければならず設備が複雑になる
と共にコンプレッサ9の消費電力が大きく不経済である
The conventional equipment shown in Figure 3 consumes a large amount of hydrogen gas and is uneconomical, while the equipment shown in Figure 4 requires the addition of a tank 8 and a compressor 9, making the equipment complex and complicated. The power consumption of the compressor 9 is large and uneconomical.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、機内の水素ガス圧を経済的に制御し得
る回転電機の冷却装置を提供することにある。
An object of the present invention is to provide a cooling device for a rotating electrical machine that can economically control the hydrogen gas pressure inside the machine.

〔発明のイ既要〕[Existing requirements of the invention]

この目的を達成するため、本発明は、冷却媒体として封
入された水素ガスを回転電機内に循環させるファンと、
該水素ガスWi環路内に設けられた水素ガス冷却用クー
ラーとを備えた回tvh ’rli pの冷却装ににお
いて、水素貯蔵合金を内臓するタンクと、該タンクの人
口を前記水素ガス循環路の高温高圧ガス領域と低温・高
圧ガス領域にそれぞれ接、続するガス供給通路と、該タ
ンクの出口を航記水素ガス循環路の低圧ガス領I或に接
続するガス循環通路と、これらの通路に配置した制御弁
とを設け、負荷軽減時には低温の水素ガスをタンク内に
送り込んで水素貯蔵合金を冷却することでこれに水素を
吸収させて機内のガス圧を下げ、負荷増加時には高温の
水素ガスをタンク内に送り込んで水素貯蔵合金を加熱す
ることでこの水素■を蔵合金から水素を放出させて機内
のガス圧を高めることにより。
To achieve this objective, the present invention includes a fan that circulates hydrogen gas sealed as a cooling medium in a rotating electrical machine;
In the cooling system for the hydrogen gas Wi, which is equipped with a cooler for cooling hydrogen gas provided in the hydrogen gas circulation path, a tank containing a hydrogen storage alloy and a population of the tank are connected to the hydrogen gas circulation path. a gas supply passage connecting the high-temperature, high-pressure gas area and the low-temperature/high-pressure gas area, respectively; a gas circulation passage connecting the outlet of the tank to the low-pressure gas area I of the hydrogen gas circulation path; and these passages. When the load is reduced, low-temperature hydrogen gas is sent into the tank to cool the hydrogen storage alloy, which absorbs hydrogen and lowers the gas pressure inside the aircraft. By pumping gas into the tank and heating the hydrogen storage alloy, this hydrogen is released from the storage alloy, increasing the gas pressure inside the aircraft.

負荷状態に応じた水素ガス圧制御を経済的に実現するも
のである。
This economically realizes hydrogen gas pressure control according to load conditions.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図を参照して説明する。 An embodiment of the present invention will be described with reference to FIG.

発電機本体l内に封入された水素ガスは回転子11に設
けられたファン12に付勢されて機内を矢印方向にII
I環する。水素ガス冷却用クーラ13は二の水素ガス循
環路に配置され、電機子巻線および界磁巻線を冷却し、
て高温になった水素を通過させてこれを冷却して前記フ
ァン12の背後に帰還させる。これにより1機内の水素
ガス循環路のうち、クーラ13の出口部領域14は低温
・低圧ガス領域、ファン12の吐出部領域工5は低泥−
高圧ガス領域、クー−7713の入1−1部領域IGは
高温・高圧ガス領域となる。
Hydrogen gas sealed in the generator body l is energized by a fan 12 provided on the rotor 11 and moves inside the generator in the direction of the arrow II.
I ring. The hydrogen gas cooling cooler 13 is arranged in the second hydrogen gas circulation path, cools the armature winding and the field winding,
The heated hydrogen is cooled and returned to the back of the fan 12. As a result, in the hydrogen gas circulation path in one machine, the outlet region 14 of the cooler 13 is a low temperature/low pressure gas region, and the discharge region 5 of the fan 12 is a low-temperature, low-pressure gas region.
The high-pressure gas area, the 1-1 part area IG of Coo-7713, becomes a high-temperature/high-pressure gas area.

タンク17は水素貯蔵合金I8を内蔵している。Tank 17 contains hydrogen storage alloy I8.

この水i貯蔵合金18は、一般に、ランタン・リッチレ
アアース・ニッケル・アルミニウlX系自金で、冷却お
よび/または加圧すると熱を発生し、っつ水素を吸収し
、逆に、加熱および/または加圧すると熱を吸収しつつ
水素を放出する性質をもつ。
The water storage alloy 18 is generally made of lanthanum, rich rare earth, nickel, and aluminum alloy, which generates heat and absorbs hydrogen when cooled and/or pressurized; It has the property of absorbing heat and releasing hydrogen when pressurized.

そしでこの水素貯蔵合金18は、タンク内の水素ガスと
の接触面稙を多くするために、繊維あるいI′:r、多
孔質体に加工したものが用いられる。タンク17の入口
17aはガス供給パイプ19を介して前記水素ガス循環
路の高温・高圧ガスが存在するクーラ入口部領域】6に
接続されると共に、ガス供給パイプ20を介して低湿・
高圧ガスが存在する吐出部類hA15に接続される。ま
た、タンク17の出口すはガス帰還パイプ2】を介して
低ρ低圧ガスが存在するクーラ出口部領域14に接続さ
れる。そしてこれらのパイプ19〜21の途中にはガス
流制御弁22〜24が設けられる。
The hydrogen storage alloy 18 is processed into a fiber, I':r, or porous material in order to increase the contact surface with the hydrogen gas in the tank. The inlet 17a of the tank 17 is connected via a gas supply pipe 19 to the cooler inlet region 6 where high-temperature, high-pressure gas of the hydrogen gas circulation path exists, and is connected via a gas supply pipe 20 to the cooler inlet region 6 where high-temperature, high-pressure gas exists.
It is connected to the discharge section hA15 where high pressure gas exists. Further, the outlet of the tank 17 is connected via a gas return pipe 2 to the cooler outlet area 14 where the low-ρ low-pressure gas is present. Gas flow control valves 22 to 24 are provided in the middle of these pipes 19 to 21.

ガス流制御弁22〜24は、発電機の負荷電流あるいは
界磁電流の大きさまたはクーラ入口部領J或16のガス
温度伝計測することによって発電機の負荷状態を検出し
て制御される4通常負荷状態ではガス流制御弁22’、
24を開いてガス流:’j’l in弁23を閉じ、軽
負荷状態ではガス流制御弁23゜24を開いてガス流制
御弁22を閉じることにより機内ガス圧が発電機の負荷
状態に応じた目標値となるようにする。
The gas flow control valves 22 to 24 are controlled by detecting the load state of the generator by measuring the magnitude of the load current or field current of the generator or the gas temperature conduction in the cooler inlet area J or 16. Under normal load conditions, the gas flow control valve 22';
24 is opened and the gas flow:'j'l in valve 23 is closed, and in the light load state, the gas flow control valve 23°24 is opened and the gas flow control valve 22 is closed, so that the in-machine gas pressure is adjusted to the generator load state. Set the target value accordingly.

なお機内への水素ガス封入は従来装置と同様に水素ボン
ベ2からガス供給パイプ3を介して行なう。
Note that hydrogen gas is charged into the machine from a hydrogen cylinder 2 via a gas supply pipe 3, as in the conventional apparatus.

以上の構成において6機内への水素ガス封入は、先ず機
内およびタンク内を真空にした後に水素ガスを供給する
か、あるいは炭酸ガスを充満させた後に水素ガスに置換
して行なう。この水素ガス封入は常温(40’C以T′
−)の状態で行なうことにより、タンクエフ内の水素貯
蔵合金18は水素を吸収゛4−る。水素貯蔵合金18が
水素を放出した状filで機内のガス圧が定格の目標値
となるような量を封入する。従ってこの時点では、機内
の水素の一部は水;(−4貯蔵合金18に吸収されてい
るのでガス圧は定格目標値よりも低い。
In the above configuration, hydrogen gas is filled into the interior of the six machines by first evacuating the interior of the machine and the tank and then supplying hydrogen gas, or by filling the interior with carbon dioxide gas and then replacing it with hydrogen gas. This hydrogen gas filling is carried out at room temperature (40'C or higher).
-), the hydrogen storage alloy 18 in Tank F absorbs hydrogen. The hydrogen storage alloy 18 releases hydrogen in an amount such that the gas pressure inside the machine reaches the rated target value. Therefore, at this point, some of the hydrogen on board has been absorbed into the water-4 storage alloy 18, so the gas pressure is lower than the rated target value.

発電機が運転されると機内を循環する水素ガスの温度が
、と昇する。通常負荷状態では、ガス流制弁22.24
が開かれているので、クーラ入口部領域[6にある高温
・高圧ガスがガス供給パイプ ′19、ガス帰還パイプ
21を介してタンク17的に流れる。そし、て、その温
度が60°C〜65℃になると水素貯蔵合金18から水
素が放出されて機内ガス圧が上昇し、機内ガス圧が定格
目標値に達する。
When the generator is operated, the temperature of the hydrogen gas circulating inside the machine rises rapidly. Under normal load conditions, the gas flow control valve 22.24
is open, the high-temperature, high-pressure gas in the cooler inlet region [6 flows through the gas supply pipe '19 and the gas return pipe 21 to the tank 17. Then, when the temperature reaches 60° C. to 65° C., hydrogen is released from the hydrogen storage alloy 18, and the in-machine gas pressure increases, and the in-machine gas pressure reaches the rated target value.

発電機が軽負荷になって水素ガス圧を下げることができ
るようになった場合には、ガス流制御弁22を閉じ、ガ
ス流制御弁23.24を聞いて吐出部領域15に存在す
るf!、温・高圧ガスをタンク17内に流すことにより
、水素貯蔵合金18を冷却してこれに水素を吸収させ1
機内のガス圧を低下させることにより風損を1!滅する
When the generator is under light load and the hydrogen gas pressure can be reduced, the gas flow control valve 22 is closed and the gas flow control valves 23,24 are activated to reduce the f ! , by flowing hot and high-pressure gas into the tank 17, the hydrogen storage alloy 18 is cooled and hydrogen is absorbed into the hydrogen storage alloy 18.
By lowering the gas pressure inside the aircraft, windage loss can be reduced by 1! perish.

また、発電機を五間は高負荷で運転し、夜間は軽負荷で
運転するようにプログラム制御する場合には1機内ガス
圧もこれに合わせてプロゲラ11制御することができる
Furthermore, if the program is to control the generator so that it is operated at a high load for five days and at a light load during the night, the gas pressure inside the machine can be controlled by the progera 11 accordingly.

更に、負荷急増の場合に水素ガス圧上昇が水素計N粍合
金18からの水素放出のみでは追従できない場合には水
素ボンベ2から補給することができる。
Further, in the case of a sudden increase in load, if the hydrogen gas pressure cannot be increased by releasing hydrogen from the hydrogen meter alloy 18 alone, replenishment can be made from the hydrogen cylinder 2.

第2図は上記実施例に対して水素貯蔵合金18の応答性
を高める工夫を施す場合の例を示すものである。加熱装
置25はガス供給パイプ19の途中に設けられ、タンク
17に供給する水素ガスを直接加熱して温度を更に高め
るものである。冷却装置26はガス供給パイプ20の途
中に設けられ、タユノク17に供給する水素ガスを直接
冷却して温度を更に低めるものである。また、装置27
はタンク17を直接冷却または加熱するものである。
FIG. 2 shows an example in which the above embodiment is modified to improve the responsiveness of the hydrogen storage alloy 18. The heating device 25 is provided in the middle of the gas supply pipe 19 and directly heats the hydrogen gas supplied to the tank 17 to further raise the temperature. The cooling device 26 is provided in the middle of the gas supply pipe 20 and directly cools the hydrogen gas supplied to the tayunok 17 to further lower the temperature. In addition, the device 27
is for directly cooling or heating the tank 17.

このような各装置の付加は、水素貯蔵合金18の吸収、
放出作用を高めて応答性をよくする効果がある。し、か
もこれらの熱源(冷却、加熱)を、発電機に従来から付
属しているものを利用すれば省エネルギーをはかること
ができる、 〔発明の効果〕 以上のように本発明は、水素貯蔵合金を用い。
The addition of each of these devices includes absorption of the hydrogen storage alloy 18,
It has the effect of increasing the release action and improving responsiveness. However, it is possible to save energy by using these heat sources (cooling, heating) that are conventionally attached to generators. [Effects of the Invention] As described above, the present invention provides hydrogen storage alloys using.

更に回!Iti4?ti機の発熱、クーラによる冷却、
冷却用ファンによる水素ガス循環流を利用して水素I?
蔵金合金水素を吸収または放出させ、機内の水素ガス圧
を発電機の負荷に応じて制御するようにしたので、経済
的にガス圧を制御できる効果がa6る。
More times! Iti4? Heat generation of TI machine, cooling by cooler,
Hydrogen I? using the hydrogen gas circulation flow by the cooling fan.
Since the hydrogen contained in the metal alloy is absorbed or released and the hydrogen gas pressure inside the machine is controlled according to the load of the generator, there is an effect that the gas pressure can be controlled economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる発電機冷却装置の系統図。 第2図はその変形例を示す系統図、第3図、第4図は従
来の発電機冷却′!A院の系統図である。 1・・・・・・発fi機本体、  12・・・・・・フ
ァン、13・・・・・・クーラ、  )4・・・・・・
低温・低圧ガスの出口部頭載、  15・・・・・・低
温・高圧ガスの吐出部領域、16・・・・・・高温・高
圧ガスの入口部領域、17・・・・・・タンク、  1
8・・・・・・水素貯蔵合金、19.20・・・・・・
ガス供給パイプ、  21・・・・・・ガス帰還パイプ
。 22〜24・・・・・・ガス流制御弁。 第1図 第2医
FIG. 1 is a system diagram of a generator cooling device according to the present invention. Figure 2 is a system diagram showing a modified example, and Figures 3 and 4 are conventional generator cooling systems! This is a system diagram of Hospital A. 1...Filming machine body, 12...Fan, 13...Cooler, )4...
Low-temperature/low-pressure gas outlet head, 15... Low-temperature/high-pressure gas discharge area, 16... High-temperature/high-pressure gas inlet area, 17... Tank , 1
8...Hydrogen storage alloy, 19.20...
Gas supply pipe, 21...Gas return pipe. 22-24... Gas flow control valve. Figure 1 Second doctor

Claims (1)

【特許請求の範囲】[Claims] 1、冷却媒体として封入された水素ガスを回転電機内に
循環させるファンと、該水素ガス循環路内に設けられた
水素ガス冷却用クーラとを備えた回転電機の冷却装置に
おいて、水素貯蔵合金を内蔵するタンクと、該タンクの
入口を前記水素ガス循環路の高温・高圧ガス領域と低温
・高圧ガス領域にそれぞれ接続するガス供給通路と、該
タンクの出口を前記水素ガス循環路の低圧ガス領域に接
続するガス帰還通路と、これらの通路に配置した制御弁
とを設けたことを特徴とする回転電機の冷却装置。
1. In a cooling device for a rotating electrical machine that includes a fan that circulates hydrogen gas sealed as a cooling medium within the rotating electrical machine and a hydrogen gas cooling cooler provided in the hydrogen gas circulation path, a hydrogen storage alloy is used. A built-in tank, a gas supply passage connecting the inlet of the tank to the high temperature/high pressure gas region and the low temperature/high pressure gas region of the hydrogen gas circulation path, and the outlet of the tank to the low pressure gas region of the hydrogen gas circulation path. 1. A cooling device for a rotating electric machine, comprising: a gas return passageway connected to a gas return passage; and a control valve disposed in these passageways.
JP17684284A 1984-08-27 1984-08-27 Cooler of rotary electric machine Granted JPS6154842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17684284A JPS6154842A (en) 1984-08-27 1984-08-27 Cooler of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17684284A JPS6154842A (en) 1984-08-27 1984-08-27 Cooler of rotary electric machine

Publications (2)

Publication Number Publication Date
JPS6154842A true JPS6154842A (en) 1986-03-19
JPH0530138B2 JPH0530138B2 (en) 1993-05-07

Family

ID=16020783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17684284A Granted JPS6154842A (en) 1984-08-27 1984-08-27 Cooler of rotary electric machine

Country Status (1)

Country Link
JP (1) JPS6154842A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293131A (en) * 1985-06-19 1986-12-23 Toshiba Corp Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine
JPH04103706A (en) * 1990-08-20 1992-04-06 Sumitomo Metal Ind Ltd Method for controlling end-point carbon concentration in top and bottom-blown converter
WO1994010739A1 (en) * 1992-11-04 1994-05-11 Siemens Aktiengesellschaft Process for removing hydrogen from a hydrogen-filled electric machine
JP2010014092A (en) * 2008-07-07 2010-01-21 Toyota Motor Corp Pump device and fuel cell system
EP2658097A1 (en) * 2012-04-25 2013-10-30 Alstom Technology Ltd Electric machine and method for operating it
CN109347262A (en) * 2018-09-29 2019-02-15 东方电机控制设备有限公司 A kind of anti-siphon method of Generator Stator Cooling water system
NL2025727B1 (en) * 2020-06-02 2022-01-20 Bronswerk/Radiax Tech ® B V Electric motor with cooling
WO2022145435A1 (en) * 2020-12-28 2022-07-07 株式会社ダイセル Electric circuit breaking device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293131A (en) * 1985-06-19 1986-12-23 Toshiba Corp Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine
JPH04103706A (en) * 1990-08-20 1992-04-06 Sumitomo Metal Ind Ltd Method for controlling end-point carbon concentration in top and bottom-blown converter
WO1994010739A1 (en) * 1992-11-04 1994-05-11 Siemens Aktiengesellschaft Process for removing hydrogen from a hydrogen-filled electric machine
JP2010014092A (en) * 2008-07-07 2010-01-21 Toyota Motor Corp Pump device and fuel cell system
EP2658097A1 (en) * 2012-04-25 2013-10-30 Alstom Technology Ltd Electric machine and method for operating it
CN109347262A (en) * 2018-09-29 2019-02-15 东方电机控制设备有限公司 A kind of anti-siphon method of Generator Stator Cooling water system
NL2025727B1 (en) * 2020-06-02 2022-01-20 Bronswerk/Radiax Tech ® B V Electric motor with cooling
WO2022145435A1 (en) * 2020-12-28 2022-07-07 株式会社ダイセル Electric circuit breaking device

Also Published As

Publication number Publication date
JPH0530138B2 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
CN108615916B (en) Fuel cell and control method thereof
JP2004281243A (en) Fuel cell system and hydrogen storage method
JP2004281243A5 (en)
CN113833534B (en) Supercritical carbon dioxide turbine shaft seal air supply and air leakage recovery system and method
CN113611895A (en) Fuel cell cooling system and method based on cooling coupling heat control
CN113771699B (en) Two-phase immersed liquid cooling electric automobile cold start system based on vortex heating
JPS6154842A (en) Cooler of rotary electric machine
RU2447524C2 (en) Electric power plant with closed loop
CN117393797A (en) Fuel cell stack cooling system and control method
CN113053548A (en) High-temperature gas cooled reactor with natural circulation reactor core waste heat derivation function
CN114023999B (en) Fuel cell system with rapid cold start function and start method thereof
CN113675433B (en) Multi-mode fuel cell test bench thermal management system and control method thereof
CN211405756U (en) Power generation system and automobile
CN210718302U (en) Power station temperature control system
JP2019027385A (en) Compressed air storage power generation device and method
JPS61293132A (en) Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine
JP3133812B2 (en) Boiling water reactor and start-up method thereof
JPH11257096A (en) Gas turbine power plant
JP3074124B2 (en) Element test equipment for liquid metal cooling furnace
KR101186285B1 (en) heat exchanger system for ship with hydrogen storage tank.
JPS61293133A (en) Hydrogen pressure regulator for hydrogen-cooled rotary electric machine
JPH04148161A (en) Room cooling/heating method with generation or supplying method for cold/hot water
JP3113990B2 (en) Helium liquefaction refrigeration apparatus and operating method thereof
CN220873641U (en) Hydrogen fuel power system and hydrogen energy apparatus
JPH04140699A (en) Nuclear reactor electric power generator