JPS61293133A - Hydrogen pressure regulator for hydrogen-cooled rotary electric machine - Google Patents

Hydrogen pressure regulator for hydrogen-cooled rotary electric machine

Info

Publication number
JPS61293133A
JPS61293133A JP13341785A JP13341785A JPS61293133A JP S61293133 A JPS61293133 A JP S61293133A JP 13341785 A JP13341785 A JP 13341785A JP 13341785 A JP13341785 A JP 13341785A JP S61293133 A JPS61293133 A JP S61293133A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
cooling water
storage alloy
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13341785A
Other languages
Japanese (ja)
Other versions
JPH07101978B2 (en
Inventor
Mikio Kumagai
熊谷 幹夫
Yutaka Watanabe
裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60133417A priority Critical patent/JPH07101978B2/en
Publication of JPS61293133A publication Critical patent/JPS61293133A/en
Publication of JPH07101978B2 publication Critical patent/JPH07101978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To improve operation efficiency, by circulating cooling water flowing through the stator windings of a rotary electric machine, with a separate pump, and by cooling/heating the alloy which adsorbs/discharges the hydrogen gas for cooling the generator by a part of the cooling water. CONSTITUTION:The stator coils 2 of a rotary electric machine 1 are formed with hollow conductors, and headers 8a, 8b are connected to a separate pure water feeder 9 with pipes 10a, 10b. Pure water is circulated in a space between a tank 11 and the coils 2 via a pump 12 and a cooler 13, and a part of the water is fed back to the tank 11 through a pipe 18a, a heating pipe 16 in a case 14, and a pipe 18b. Hydrogen storage alloy 17 is contained in the case 14, and is heated/cooled with circulation water to discharge/adsorb hydrogen gas, and the hydrogen gas communicates with the space section 4 of the rotary electric machine 1 through a pipe 20. When the load of the rotary electric machine 1 is lightened, then the temperature of the circulation water falls, and hydrogen gas is adsorbed by the alloy 17, and the pressure of the hydrogen gas is reduced. As a result, the load of a cooling fan 6 fitted on a rotor is lightened, and efficiency can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水素冷却回転電機において、特に水素貯蔵合金
を用いて機内の水素ガス圧力を負荷変動に応じて調整可
能にした水素冷却回転電機の水素圧力調整装置に関する
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a hydrogen-cooled rotating electric machine, and particularly to a hydrogen-cooled rotating electric machine that uses a hydrogen storage alloy to adjust the hydrogen gas pressure inside the machine according to load fluctuations. It relates to a pressure regulating device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

回転電機、例えばタービン発電機においてはその冷却媒
体として水素ガスを用いたものがある。
Some rotating electric machines, such as turbine generators, use hydrogen gas as a cooling medium.

この場合、機内の水素ガスはタービン発電機の単機容量
が上がるに従ってその熱容量、即ち(比重量)×(比熱
)を増加して冷却効果を上げる必要があり、特に大容量
機では機内の水素ガス圧力を例えば5.2atmにして
いるものもある。
In this case, it is necessary to increase the heat capacity of the hydrogen gas in the aircraft as the capacity of the turbine generator increases, i.e., (specific weight) x (specific heat) to increase the cooling effect. Especially in large capacity aircraft, the hydrogen gas in the aircraft Some have a pressure of 5.2 atm, for example.

しかるに、近年タービン発電機の使用は多用化し、常に
100%負荷だけでなく部分負荷で使用されることがあ
る。この部分負荷時は発電機の電気損が少なく、冷却上
水素ガス圧を5.2atmのままにしておく必要がない
。部分負荷時に機内の水素ガス圧力を5.2atmのま
まにしておくと、回転子の風損、ファン動力が100%
負荷時と変わらないため、発電機の効率が低下する。そ
こで、このような場合には機内の水素ガス圧力を下げる
ことにより回転子の風損、ファン動力が減少し、発電機
の効率を向上させることができる。
However, in recent years, turbine generators have been used more frequently, and are sometimes used not only at 100% load but also at partial load. During this partial load, the electrical loss of the generator is small, and there is no need to keep the hydrogen gas pressure at 5.2 atm for cooling purposes. If the hydrogen gas pressure inside the machine is left at 5.2 atm during partial load, the windage loss of the rotor and the fan power will be reduced to 100%.
Since it is the same as when under load, the efficiency of the generator decreases. Therefore, in such a case, by lowering the hydrogen gas pressure inside the machine, the windage loss of the rotor and the fan power can be reduced, and the efficiency of the generator can be improved.

ところで、従来の水素冷却回転電機においては機内の水
素ガスを高圧の水素ガスボンベにより注入するようにし
ており、従って機内の水素ガス圧力を負荷の変動に応じ
て調整するには機内から水素ガスを放出させたり、高圧
の水素ガスボンベより再注入する方式を用いていた。し
かしこの方式は水素ガスの注入や放出のための操作が繁
雑であると共に水素ガスを取扱う上で安全対策を十分に
施しておく必要があり、また水素ガスの消耗量が多大な
ものとなるため、エネルギーの有効利用と言う観点から
見ても問題がある。
By the way, in conventional hydrogen-cooled rotating electric machines, the hydrogen gas inside the machine is injected using a high-pressure hydrogen gas cylinder. Therefore, in order to adjust the hydrogen gas pressure inside the machine according to load fluctuations, it is necessary to release hydrogen gas from inside the machine. The hydrogen gas was then re-injected from a high-pressure hydrogen gas cylinder. However, this method requires complicated operations for injecting and discharging hydrogen gas, requires sufficient safety measures when handling hydrogen gas, and consumes a large amount of hydrogen gas. There are also problems from the perspective of effective energy use.

また、かかる問題を解決するものとして、例えば実開昭
55−12720号公報に記載された発明のようにター
ビン発電機の機内の水素ガス圧力を負荷の変動に応じて
圧力調整機構により調整できるようにしたものがある。
In order to solve this problem, for example, there is an invention described in Japanese Utility Model Application Publication No. 55-12720, in which the hydrogen gas pressure inside the turbine generator can be adjusted by a pressure adjustment mechanism according to load fluctuations. There is something I did.

第6図はこのような従来の水素冷却タービン発電機にお
ける水素ガス圧力調整系を示すものである。すなわち、
第6図に示すように外部負荷系統に接続されたタービン
発電機31において、その機内32には水素ガスボンベ
33に充填された水素ガスが圧力調整弁34を介して供
給可能にしてあり、また機内の水素ガス圧力制御系とし
ては機内に圧力制御弁35を介して連通ずるレリーフ水
素リザーブ室36、このリザーブ室36の容積を調整し
て機内32の水素ガスを流出入させるピストン37、こ
のビス1−ン37を駆動するピストン駆動機構38及び
タービン発電機31の出力により負荷の大きさを検出し
、その負荷変動に応じてピストン駆動機構38に駆動指
令を与えると共に圧力調整弁35に対しては開閉指令を
与える負荷追従機構39から構成されている。
FIG. 6 shows a hydrogen gas pressure adjustment system in such a conventional hydrogen-cooled turbine generator. That is,
As shown in FIG. 6, in a turbine generator 31 connected to an external load system, hydrogen gas filled in a hydrogen gas cylinder 33 can be supplied to the inside 32 of the machine via a pressure regulating valve 34. The hydrogen gas pressure control system includes a relief hydrogen reserve chamber 36 that communicates with the inside of the machine via a pressure control valve 35, a piston 37 that adjusts the volume of this reserve chamber 36 and allows hydrogen gas to flow in and out of the inside of the machine 32, and this screw 1. The magnitude of the load is detected from the output of the piston drive mechanism 38 and the turbine generator 31 that drive the engine 37, and a drive command is given to the piston drive mechanism 38 according to the load fluctuation, and a drive command is given to the pressure regulating valve 35. It consists of a load following mechanism 39 that gives opening/closing commands.

したがって、このような構成のタービン発電機の水素ガ
ス圧力調整系において、通常は圧力調整弁34によって
水素ガスボンベ33の圧力を減圧して一定になるように
制御され、また負荷変動がある時は負荷追従制御機構3
9からの指令に基いてピストン37を駆動してリザーブ
室36の容積を調整すると共に圧力調整弁35の開度を
制御することによりタービン発電機32の機内水素ガス
圧力を負荷変動に応じて調整することができる。
Therefore, in the hydrogen gas pressure adjustment system of a turbine generator with such a configuration, the pressure in the hydrogen gas cylinder 33 is normally controlled to be constant by reducing the pressure by the pressure adjustment valve 34, and when there is a load change, the pressure in the hydrogen gas cylinder 33 is controlled to be constant. Follow-up control mechanism 3
Based on the command from 9, the piston 37 is driven to adjust the volume of the reserve chamber 36, and the opening degree of the pressure regulating valve 35 is controlled to adjust the in-machine hydrogen gas pressure of the turbine generator 32 according to load fluctuations. can do.

しかし、かかるタービン発電機の水素ガス圧力調整系で
はリザーブ室36の容積をリザーブ室内周面を摺動する
ピストン37により調整するようにしているため、この
ピストン37とリザーブ室内周面との間のシールが十分
なされていないと機内と連通している側の高圧状態にあ
る水素ガスが大気状態にあるピストン背部側へリークし
て爆発につながる恐れがある。
However, in the hydrogen gas pressure adjustment system of such a turbine generator, the volume of the reserve chamber 36 is adjusted by a piston 37 that slides on the circumferential surface of the reserve chamber. If the seal is not adequate, there is a risk that hydrogen gas, which is under high pressure on the side communicating with the inside of the machine, may leak to the back of the piston, which is in atmospheric conditions, leading to an explosion.

そこで、最近では前述したようなレリーフ水素リザーブ
室及びこのリザーブ室の容積を調整するピストン等の駆
動装置を用いずに機内の水素ガス圧力を簡便に、しかも
水素ガスの消耗をなくして調整可能な水素貯蔵合金の使
用が考えられている。
Therefore, recently, a method has been developed that allows the hydrogen gas pressure inside the aircraft to be easily adjusted without using the relief hydrogen reserve chamber described above or a driving device such as a piston that adjusts the volume of this reserve chamber, and without the consumption of hydrogen gas. The use of hydrogen storage alloys is being considered.

この水素貯蔵合金は水素を非常によく吸収する性質を有
するチタンやミツシュメタルなどの金属原子を組合わせ
たもので、温度を下げるか圧力を上げると水素ガスを吸
収して発熱し、逆に温度を上げるか圧力を下げると吸収
した水素ガスを放出して周・囲から熱をうばう性質があ
り、また送込む水素ガスの圧力値によって合金自体の温
度も変化し、逆に合金自体の温度を変えることによって
発生する水素ガスの圧力も異なるという相関関係を有し
ているものである。゛ 第2図はケース内に水素ガスと共に充填された水素貯蔵
合金の特性例を示すものである。すなわち、第2図に示
すように水素貯蔵合金の温度を50°Cに保つとケース
内の平衡水素ガス圧力は5.2atmとなり、これを4
0’Cに冷却してやると水素を吸着して平衡水素ガス圧
力は4.0atmになる。この状態から再び水素貯蔵合
金の温度を50°Cに上昇するとケース内の平衡水素圧
力は5.2atmとなる。
This hydrogen storage alloy is a combination of metal atoms such as titanium and Mitsushmetal, which have the property of absorbing hydrogen very well.When the temperature is lowered or the pressure is increased, the hydrogen storage alloy absorbs hydrogen gas and generates heat, and vice versa. When the pressure is increased or decreased, the absorbed hydrogen gas is released and the heat is taken away from the surroundings. Also, the temperature of the alloy itself changes depending on the pressure value of the hydrogen gas being sent; conversely, the temperature of the alloy itself changes. There is a correlation in that the pressure of the hydrogen gas generated also differs depending on the situation. 2 shows an example of the characteristics of a hydrogen storage alloy whose case is filled with hydrogen gas. That is, as shown in Figure 2, if the temperature of the hydrogen storage alloy is maintained at 50°C, the equilibrium hydrogen gas pressure inside the case will be 5.2 atm, which is
When cooled to 0'C, hydrogen is adsorbed and the equilibrium hydrogen gas pressure becomes 4.0 atm. When the temperature of the hydrogen storage alloy is raised again to 50° C. from this state, the equilibrium hydrogen pressure in the case becomes 5.2 atm.

したがって、このような水素貯蔵合金の特性を利用すれ
ば水素冷却タービン発電機の機内水素圧力を負荷に応じ
て変えることができる。
Therefore, by utilizing the characteristics of such a hydrogen storage alloy, it is possible to change the internal hydrogen pressure of a hydrogen-cooled turbine generator depending on the load.

この場合、水素貯蔵合金の温度をヒータ及びクーラによ
り強制的に変えて機内の水素ガス圧力をコントロールす
ることも考えられるが、これを自動的に行なえればさら
に好都合である。
In this case, it is conceivable to control the hydrogen gas pressure inside the machine by forcibly changing the temperature of the hydrogen storage alloy using a heater and a cooler, but it would be more convenient if this could be done automatically.

(発明の目的〕 本発明は上記のような事情に鑑みてなされたもので、そ
の目的は爆発の危険のない静止形にして水素冷却タービ
ン発電機の機内に対して水素ガスの注入や排出を行なう
ことができると共に機内の水素ガス圧力を負荷の変動に
応じて安全且つ効率良く自動的に調整することができ、
もってエネルギーの有効利用を図ることができる水素冷
却回転電機の水素圧力調整装置を提供するにある。
(Object of the Invention) The present invention was made in view of the above-mentioned circumstances, and its purpose is to provide a stationary type hydrogen-cooled turbine generator without the risk of explosion, and to prevent hydrogen gas from being injected into or discharged from the inside of the hydrogen-cooled turbine generator. In addition, the hydrogen gas pressure inside the machine can be automatically and safely and efficiently adjusted according to load fluctuations.
It is an object of the present invention to provide a hydrogen pressure regulating device for a hydrogen-cooled rotating electric machine, which allows effective use of energy.

〔発明の概要〕[Summary of the invention]

本発明はかかる目的を達成するため、水素ガスを冷却媒
体として用いる回転電機において、温度変化により水素
ガスを放出または吸着する水素貯蔵合金を収納したケー
スを機内の水素ガス循環系に機内の水素ガスが流出入可
能に接続すると共に前記ケース内に形成された冷却水流
通路と前記回転電機の巻線冷却水循環系とを接続して前
記冷却水流通路に巻線冷却水を流出入せしめて前記水素
貯蔵合金を冷却又は加熱することにより機内水素ガス圧
力を負荷変動に応じて自動的に調整できるようにしたこ
とを特徴とするものである。
In order to achieve such an object, the present invention installs a case containing a hydrogen storage alloy that releases or adsorbs hydrogen gas in response to temperature changes in a rotating electrical machine that uses hydrogen gas as a cooling medium. The cooling water flow path formed in the case is connected to the winding cooling water circulation system of the rotating electrical machine so that the winding cooling water can flow in and out of the cooling water flow path, and the hydrogen storage is performed. It is characterized by being able to automatically adjust the in-machine hydrogen gas pressure according to load fluctuations by cooling or heating the alloy.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による水素冷却回転電機の水素圧力調整
装置の構成例を示すものである。第1図において、1は
回転電機、例えばタービン発電機の固定子フレームで、
その内周面には冷却水が流出入可能な中空導体からなる
固定子巻線2を備えた固定子鉄心3が取付けられると共
にその背部にガス通気空間部4が形成されている。5は
軸受に支承された回転子で、この回転子5には自己ファ
ン6が取付けられており、機内に大気圧以上の圧力で封
入された水素ガス7を強制循環させるためのものである
。また8a、8bは固定子巻線2の中空導体に冷却水を
通すためのヘッダーであり、これらヘッダー8a、8b
には機外に設けられた純水供給装置9が配管10a、1
0bを介して接続されている。この純水供給装置9はタ
ンク11゜ポンプ12.クーラ13及び図示しないイオ
ン交換樹脂から構成されている。一方、14は機外に設
けられたケースで、このケース14は筒体の周面のほぼ
中央部に上部ヘッダ15を有し、またケース内部には複
数個の伝熱管16を筒体の長手方向に沿って配設する共
にこれら各伝熱管16相互間に形成される管外スペース
には粉末状の水素貯蔵合金17を充填したものである。
FIG. 1 shows an example of the configuration of a hydrogen pressure regulating device for a hydrogen-cooled rotating electric machine according to the present invention. In FIG. 1, 1 is a stator frame of a rotating electric machine, for example a turbine generator,
A stator core 3 having a stator winding 2 made of a hollow conductor through which cooling water can flow in and out is attached to its inner peripheral surface, and a gas ventilation space 4 is formed at its back. Reference numeral 5 denotes a rotor supported by a bearing, and a self-supporting fan 6 is attached to the rotor 5 to forcefully circulate hydrogen gas 7 sealed inside the machine at a pressure higher than atmospheric pressure. Further, 8a and 8b are headers for passing cooling water through the hollow conductor of the stator winding 2, and these headers 8a and 8b
A pure water supply device 9 installed outside the machine connects the pipes 10a and 1
Connected via 0b. This pure water supply device 9 includes a tank 11, a pump 12. It is composed of a cooler 13 and an ion exchange resin (not shown). On the other hand, 14 is a case provided outside the machine, and this case 14 has an upper header 15 at approximately the center of the circumferential surface of the cylinder. A powdered hydrogen storage alloy 17 is filled in the extra-tube space formed between each of these heat transfer tubes 16 along the direction of the heat transfer tube.

このようなケ一ス14において、その筒体の一方の開口
部に固定子巻線2の冷却水流出側ヘッダー88と純水供
給装置9のタンク11との間を結ぶ配管10aの中途に
接続された配管18aを接続し、また筒体の他方の開口
部に冷却水を純水供給装置9のタンク11へ戻す配管1
8bを接続して冷却水の一部をバイパスするバイパス路
を形成する。さらにケース14に有する上部ヘッダー1
5にはダストや微粒子が機内へ浮遊あるいは飛散しない
ようにするための通気性のフィルタ19が設けられると
共にこの部分を配管20を介して機内のガス通気空間部
4に連通させて接続し、水素貯蔵合金17から放出また
は水素貯蔵合金17に吸着される水素ガスを機内との間
で流通できるようになっている。
In such a case 14, one opening of the cylindrical body is connected to the middle of a pipe 10a connecting between the cooling water outflow side header 88 of the stator winding 2 and the tank 11 of the pure water supply device 9. A pipe 1 is connected to the pipe 18a that has been removed, and the pipe 1 returns the cooling water to the tank 11 of the pure water supply device 9 through the other opening of the cylindrical body.
8b to form a bypass path that bypasses a portion of the cooling water. Furthermore, the upper header 1 included in the case 14
5 is provided with a breathable filter 19 to prevent dust and particulates from floating or scattering into the cabin, and this part is connected via piping 20 to the gas ventilation space 4 inside the cabin, and hydrogen Hydrogen gas released from the storage alloy 17 or adsorbed by the hydrogen storage alloy 17 can be circulated to and from the inside of the machine.

尚、218.21b、2ICはケース14の両端開口部
に接続された冷却水バイパス路を形成する配管18a、
18b及び上部ヘッダー15と機内とを結ぶ水素ガス流
通路となる配管20の適宜箇所に設けられたパルプで、
これらはケース14を発電機側から取外す時に機内の水
素ガスが大気に放出しないようにするためのものである
In addition, 218.21b and 2IC are pipes 18a that form a cooling water bypass path connected to both end openings of the case 14,
18b and the pulp provided at appropriate locations on the pipe 20 that serves as a hydrogen gas flow path connecting the upper header 15 and the inside of the machine.
These are to prevent hydrogen gas inside the machine from being released into the atmosphere when the case 14 is removed from the generator side.

このように構成された水素冷却タービン発電機の水素圧
力調整装置において、今様外の純水供給装置9のタンク
11から固定子巻線2の中空導体に冷却水が配管10b
、流入側ヘッダー8bを通して流入し、流出側ヘッダー
88から配管10aを通して純水供給装置9のタンク1
1へ戻る固定子巻線冷却水循環系により固定子巻線2が
冷却されているものとし、またこの時ケース14内に充
填された水素貯蔵合金17はその時の固定子巻線冷却水
循環系からバイパスされる冷却水により回転電機の負荷
に対する冷却上の許容水素圧力に対応した流度に調整さ
れているものとする。このような状態にある時、発電機
の負荷が大きくなると固定子巻線2に流れる電流が増加
し、その導体には電流の2乗に比例する熱が発生する。
In the hydrogen pressure regulating device for the hydrogen-cooled turbine generator configured as described above, cooling water is supplied from the tank 11 of the pure water supply device 9 to the hollow conductor of the stator winding 2 through the pipe 10b.
, flows into the tank 1 of the pure water supply device 9 through the inflow header 8b, and from the outflow header 88 through the piping 10a.
Return to 1. It is assumed that the stator winding 2 is cooled by the stator winding cooling water circulation system, and at this time, the hydrogen storage alloy 17 filled in the case 14 is bypassed from the stator winding cooling water circulation system at that time. It is assumed that the flow rate of the cooling water is adjusted to correspond to the permissible hydrogen pressure for cooling the load of the rotating electric machine. In such a state, when the load on the generator increases, the current flowing through the stator winding 2 increases, and heat is generated in the conductor in proportion to the square of the current.

したがって、固定子巻線2の中空導体を通して流出側ヘ
ッダー88に流出される冷却水の温度が上昇する。
Therefore, the temperature of the cooling water flowing out to the outflow side header 88 through the hollow conductor of the stator winding 2 increases.

この温度上昇した冷却水の一部が前述した固定子巻線冷
却水循環系からケース14内の冷却水流通路を通して純
水供給装置9のタンク11へ流れると、ケース15内に
充填された水素貯蔵合金17が暖められ、水素貯蔵合金
17から機内への水素ガスの放出が促進される。これに
より機内を循環している水素ガスの圧力が増加するので
、機内発熱部の冷却が向上することになる。
When a part of the cooling water whose temperature has increased flows from the stator winding cooling water circulation system described above through the cooling water flow path in the case 14 to the tank 11 of the pure water supply device 9, the hydrogen storage alloy filled in the case 15 17 is warmed, and the release of hydrogen gas from the hydrogen storage alloy 17 into the cabin is promoted. This increases the pressure of the hydrogen gas circulating inside the machine, which improves cooling of the heat generating parts inside the machine.

一方、発電機の負荷が小さくなると固定子巻線2に流れ
る電流も減少するので、固定子巻線2の中空導体を通し
て流出側ヘッダー88に流出される冷却水の温度が低下
する。この温度低下した冷却水の一部が前述した固定子
巻線冷却水循環系からケース14内を通して純水供給装
置9のタンク11へ流れると、ケース14内に充填され
た水素貯蔵合金17が冷却され、機内の水素ガスが水素
貯蔵合金17に吸着される。これにより機内を循環して
いる水素ガスの圧力が低下するので、回転子5の表面の
風損やファン動力が少なくなり、発電機の効率が向上す
ることになる。この場合、ケース14内に充填された水
素貯蔵合金17から機内に放出または機内から水素貯蔵
合金17に吸着される水素ガスはケース14の上部ヘッ
ダー15に設けられたフィルタ19を通して流れるので
、水素貯蔵合金17が粉末状のものであってもこの水素
貯蔵合金がガス流と一緒に機内に流入したり、絶縁物に
付着して電気絶縁耐圧を低下させたりするようなことが
なく、信頼性の高いものとなる。
On the other hand, as the load on the generator decreases, the current flowing through the stator winding 2 also decreases, so the temperature of the cooling water flowing out to the outflow side header 88 through the hollow conductor of the stator winding 2 decreases. When a part of this cooling water whose temperature has decreased flows from the stator winding cooling water circulation system described above through the case 14 to the tank 11 of the pure water supply device 9, the hydrogen storage alloy 17 filled in the case 14 is cooled. , hydrogen gas inside the aircraft is adsorbed by the hydrogen storage alloy 17. This reduces the pressure of the hydrogen gas circulating inside the machine, which reduces wind damage on the surface of the rotor 5 and reduces fan power, improving the efficiency of the generator. In this case, hydrogen gas released into the machine from the hydrogen storage alloy 17 filled in the case 14 or adsorbed by the hydrogen storage alloy 17 from inside the machine flows through the filter 19 provided in the upper header 15 of the case 14, so the hydrogen storage Even if Alloy 17 is in powder form, this hydrogen storage alloy will not flow into the machine together with the gas flow or adhere to insulators and lower the electrical withstand voltage, improving reliability. It will be expensive.

以上のように本実施例では筒体の周面のほぼ中央部に上
部ヘッダ15を有するケース14の内部に複数個の伝熱
管16を筒体の長手方向に沿って配設する共にこれら各
伝熱管1(!S相互間に形成される管外スペースに粉末
状の水素貯蔵合金17を充填したケース14を機外に設
けてその内部に設けられた伝熱管16に発電機の固定子
巻線冷却水系から冷却水を流出入せしめ、またケース1
4を機内のガス通気空間部に連通させて冷却水の温度変
化により水素貯蔵合金17から水素ガスを機内へ放出し
たり、あるいは機内の水素ガスを水素貯蔵合金に吸着し
たりするようにしたので、機内の水素ガス圧力を負荷の
変動に応じて自動的に調整することができる。すなわち
、固定子巻線の冷却水の温度は負荷に敏感なので、負荷
変動があると機内の水素ガス圧力はスピーディに自動的
に調整され、負荷が増加した時には機内発熱部を効果的
に冷却でき、また負荷が減少した時には回転子表面の風
損やファン動力を少なくして発電機の効率を向上させる
ことができる。またケース14内に充填された水素貯蔵
合金17を発電機の固定子巻線冷却水系から冷却水を流
出入せしめて加熱したり、冷却したりするようにしてい
るので、特に加熱器や冷却器を用いなくてよく、エネル
ギーの有効利用を図ることができる。さらにケース14
に有する上部ヘッダー15の水素ガス流通路にはフィル
タ19が設けられているので、水素貯蔵合金17が粉末
状であってもその粉状体がガス流によって機内に侵入す
ることを防止でき、信頼性の高いものとなる。またケー
ス14を機外に設けているので、交換等の必要がある場
合には発電機を停止することな〈実施することが可能で
あり、そのメンテナンスが容易である。
As described above, in this embodiment, a plurality of heat transfer tubes 16 are disposed along the longitudinal direction of the cylinder inside the case 14 which has the upper header 15 at approximately the center of the circumferential surface of the cylinder, and each of these heat transfer tubes 16 is disposed along the longitudinal direction of the cylinder. A case 14 filled with a powdered hydrogen storage alloy 17 in the space outside the tubes formed between the heat tubes 1 (! Cooling water flows in and out from the cooling water system, and case 1
4 is communicated with the gas ventilation space inside the aircraft, and hydrogen gas is released from the hydrogen storage alloy 17 into the aircraft interior due to temperature changes of the cooling water, or hydrogen gas inside the aircraft is adsorbed by the hydrogen storage alloy. , the hydrogen gas pressure inside the machine can be automatically adjusted according to load fluctuations. In other words, the temperature of the cooling water in the stator windings is sensitive to the load, so when there is a load change, the hydrogen gas pressure inside the machine is quickly and automatically adjusted, and when the load increases, the heat generating parts inside the machine can be effectively cooled. Furthermore, when the load decreases, wind damage on the rotor surface and fan power can be reduced to improve the efficiency of the generator. In addition, since the hydrogen storage alloy 17 filled in the case 14 is heated and cooled by flowing cooling water in and out from the stator winding cooling water system of the generator, it is particularly useful for heaters and coolers. There is no need to use energy, and energy can be used effectively. Furthermore, case 14
Since a filter 19 is provided in the hydrogen gas flow path of the upper header 15, even if the hydrogen storage alloy 17 is in powder form, the powder can be prevented from entering the machine due to the gas flow, thereby increasing reliability. It becomes highly sexual. Furthermore, since the case 14 is provided outside the machine, if replacement or the like is required, it can be done without stopping the generator, and maintenance is easy.

尚、上記実施例では1セツトのケースを機外に設ける場
合について説明したが、これを2セット設けてその一方
のセットに寿命が来たら他方のセットに切換え、寿命の
来たセットに対しては水素貯蔵合金を交換してこれを予
備として待機させるようにしてもよい。
In the above embodiment, one set of cases is installed outside the machine, but two sets of cases are provided, and when one set reaches the end of its lifespan, it is switched to the other set. Alternatively, the hydrogen storage alloy may be replaced and kept on standby as a reserve.

次に本発明の他の実施例をについて説明する。Next, another embodiment of the present invention will be described.

第3図は水素冷却回転電機の水素圧力調整装置の他の構
成例を示すもので、第1図と同一部分には同一記号を付
してその説明を省略し、ここでは異なる部分についての
み述べる。本実施例では第3図に示すように冷却水流出
側ヘッダー88と純水供給装置9のタンク11間を結ぶ
固定子巻線冷却水系からケース14の一方の開口部に冷
却水を流入せしめる配管18aの中途に冷却水再加熱器
22を設けると共に純水供給装置9の配管10bと冷却
水再加熱器22より上流側の配管18aとの間を配管2
3により接続してクーラ13の出口側の温度の低い冷却
水の一部をバイパスさせる構成としたものである。尚、
24a及び24b、24Cは配管23及び10a、10
bの中途に設けられたバルブである。
Fig. 3 shows another configuration example of a hydrogen pressure regulating device for a hydrogen-cooled rotating electrical machine. The same parts as in Fig. 1 are given the same symbols and their explanations are omitted, and only the different parts will be described here. . In this embodiment, as shown in FIG. 3, piping is provided that allows cooling water to flow into one opening of the case 14 from the stator winding cooling water system that connects the cooling water outflow side header 88 and the tank 11 of the pure water supply device 9. A cooling water reheater 22 is provided in the middle of the cooling water reheater 18a, and a piping 2 is installed between the piping 10b of the pure water supply device 9 and the piping 18a upstream of the cooling water reheater 22.
3 to bypass a portion of the low-temperature cooling water on the outlet side of the cooler 13. still,
24a, 24b, 24C are pipes 23, 10a, 10
This is a valve installed in the middle of b.

ここで、上記構成の作用を述べるにあたり、先ず配管1
8aの中途に冷却水再加熱器22を設け、且つその上流
側の配管18aにクーラ13の出口側の温度の低い冷却
水の一部をバイパスさせる理由について述べる。ケース
14において、その内部に充填された水素貯蔵合金17
の温度と水素平衡圧力の関係が負荷を基準とした冷却水
出口温度と機内許容水素ガス圧力とが一致していれば、
冷却水出口温度により水素貯蔵合金17を加熱、冷却す
ることで外部より冷却、加熱の熱量を付加することなく
完全に負荷の変動に応じて機内水素ガス圧を自動的に調
整することが可能である。
Here, in describing the effect of the above configuration, first, the piping 1
The reason why the cooling water reheater 22 is provided in the middle of the cooling water reheater 8a and a portion of the low temperature cooling water on the outlet side of the cooler 13 is bypassed to the piping 18a on the upstream side thereof will be described. In the case 14, a hydrogen storage alloy 17 filled inside the case 14
If the relationship between temperature and hydrogen equilibrium pressure matches the cooling water outlet temperature based on the load and the allowable hydrogen gas pressure in the machine,
By heating and cooling the hydrogen storage alloy 17 according to the cooling water outlet temperature, it is possible to automatically adjust the hydrogen gas pressure inside the machine according to load fluctuations without adding external cooling or heating heat. be.

しかし、実際には冷却水出口温度と機内許容水素ガス圧
力とが完全に一致するような水素貯蔵合金は実在してい
ない。第4図は固定子巻線冷却水出口温度と許容機内水
素圧力の関係と水素貯蔵合金の温度と水素平衡圧力の関
係を示す特性図で、実線(A)は負荷と固定子巻線冷却
水出口温度の関係と負荷と許容水素圧力の関係から導い
た固定子巻線冷却水出口温度の特性例を示しており、二
点鎖線(a)1点線(b)、一点鎖線(C)及び(d)
はそれぞれ種類の異なる水素貯蔵合金の温度と水素平衡
圧力の関係を示す特性例である。かかる特性図からも分
るように水素冷却回転電機の運転に必要な実線Aなる特
性、つまり負荷(冷却水出口温度)と許容機内水素圧力
に対して、水素貯蔵合金の特性は二点鎖線(a)2点線
(b)。
However, in reality, there is no hydrogen storage alloy in which the cooling water outlet temperature and the allowable internal hydrogen gas pressure completely match. Figure 4 is a characteristic diagram showing the relationship between stator winding cooling water outlet temperature and allowable in-machine hydrogen pressure, and the relationship between hydrogen storage alloy temperature and hydrogen equilibrium pressure, where the solid line (A) shows the load and stator winding cooling water. Examples of the characteristics of the stator winding cooling water outlet temperature derived from the relationship between outlet temperature, load, and allowable hydrogen pressure are shown. d)
are characteristic examples showing the relationship between temperature and hydrogen equilibrium pressure of different types of hydrogen storage alloys. As can be seen from this characteristic diagram, the characteristics of the hydrogen storage alloy are shown by the chain double-dashed line (with respect to the solid line A, which is necessary for the operation of a hydrogen-cooled rotating electric machine, that is, the load (cooling water outlet temperature) and the allowable internal hydrogen pressure) a) Two-dot line (b).

一点鎖線(C)及び(d)に示すように数ケースある。There are several cases as shown in dashed lines (C) and (d).

いま、水素圧力の調整範囲を4.2〜2に9 / cI
Iの間とすると、二点鎖線(a)のように実線(A)よ
り右上にある特性の水素貯蔵合金の場合には常に固定子
巻線の出口冷却水をさらに冷やして使用しなければなら
ず、また一点鎖線(C)のように実線Aより左下にある
特性の水素貯蔵合金の場合には常に固定子巻線の出口冷
却水を加熱して使用する必要があり、エネルギ的には損
である。これに対して点線(b)、一点鎖線(d)特性
の水素貯蔵合金の場合は圧力調整範囲で実線(A)と交
鎖しており、エネルギ的には有利であリ、望ましい水素
貯蔵合金と言える。しかし、このような特性の水素貯蔵
合金を使用しても実線(A)の特性と一致しているわけ
ではないので、実際には固定子巻線冷却水の温度の微調
整が必要である。すなわち、点線(b)に示す特性の水
素貯蔵合金を使用する場合は負荷100%で固定子巻線
冷却水出口温度が80″Cになるとすると、その時の水
素平衡圧力は約5 K9 / crlになり、100%
負荷時の必要水素圧力4.2に9/crlを上回るので
、この時点で固定子巻線冷却水を少し冷却して図示11
 X11点に来るようにする必要がある。また75%負
荷時の固定子巻線冷却水出口温度65°Cで水素貯蔵合
金を加熱すると、水素平衡圧力は約1.0OK9/cM
となり、この時点で固定子巻線冷却水を加熱して図示“
′Y″点に来るようにする必要がある。
Now, adjust the hydrogen pressure adjustment range to 4.2 to 2 9/cI
In the case of a hydrogen storage alloy with characteristics to the upper right of the solid line (A), such as the two-dot chain line (a), the outlet cooling water of the stator winding must always be further cooled before use. Furthermore, in the case of a hydrogen storage alloy with characteristics below the solid line A, as shown by the dashed-dotted line (C), it is necessary to always heat the outlet cooling water of the stator windings, resulting in energy loss. It is. On the other hand, in the case of hydrogen storage alloys having the characteristics of the dotted line (b) and the dashed-dotted line (d), they intersect with the solid line (A) in the pressure adjustment range, which is advantageous in terms of energy and is a desirable hydrogen storage alloy. I can say that. However, even if a hydrogen storage alloy with such characteristics is used, the characteristics do not match those shown by the solid line (A), so it is actually necessary to finely adjust the temperature of the stator winding cooling water. In other words, when using a hydrogen storage alloy with the characteristics shown in dotted line (b), if the stator winding cooling water outlet temperature is 80"C at 100% load, the hydrogen equilibrium pressure at that time will be approximately 5 K9/crl. Yes, 100%
Since the required hydrogen pressure at load exceeds 4.2 to 9/crl, at this point, the stator winding cooling water is slightly cooled and
It is necessary to make it reach the X11 point. Furthermore, when the hydrogen storage alloy is heated at a stator winding cooling water outlet temperature of 65°C at 75% load, the hydrogen equilibrium pressure is approximately 1.0 OK9/cM.
At this point, the stator winding cooling water is heated to
It is necessary to make it come to the 'Y' point.

また、一点鎖線(d)に示す特性の水素貯蔵合金を使用
する場合は上記(b)の特性とは逆になり、100%負
荷時で固定子巻線冷却水を加熱し、75%負荷時では固
定子巻線冷却水を冷却して水素貯蔵合金を冷却する必要
がある。
In addition, when using a hydrogen storage alloy with the characteristics shown in dashed-dotted line (d), the characteristics in (b) above will be reversed, and the stator winding cooling water will be heated at 100% load, and at 75% load. In this case, it is necessary to cool the stator winding cooling water to cool the hydrogen storage alloy.

このように固定子巻線冷却水により水素貯蔵合金を加熱
、冷却するに際して、水素貯蔵合金の温度微調整用に最
小限の外部熱量を冷却水再加熱器22とクーラ13の出
口側の温度の低い冷却水の一部を配管23によりバイパ
スさせるようにしたものである。
In this way, when heating and cooling the hydrogen storage alloy with the stator winding cooling water, the minimum amount of external heat is used to adjust the temperature of the cooling water reheater 22 and the outlet side of the cooler 13 in order to finely adjust the temperature of the hydrogen storage alloy. A portion of the low-temperature cooling water is bypassed through the pipe 23.

以上の如く構成された水素冷却タービン発電機の水素圧
力調整装置において、前述した実施例と同様に固定子巻
線冷却水循環系により固定子巻線2が冷却され、またこ
の時ケース14内に充填された水素貯蔵合金17がその
時の固定子巻線冷却水循環系からバイパスされる冷却水
により回転電機の負荷に対する冷却上の許容水素圧力に
対応した温度に調整されているものとする。このような
状態にある時、発電機の負荷が大きくなると固定子巻線
2に流れる電流が増加し、その導体には電流の2乗に比
例する熱が発生するため、固定子巻線2の中空導体を通
して流出側ヘッダー8aに流出される冷却水の温度が上
昇する。この温度上昇した冷却水の一部は前述した固定
子巻線冷却水循環系から冷却水再加熱器22に流入し、
ここでその戻り冷却水を適宜温度に加熱した後ケース1
4内を通して純水供給装置9のタンク11へ流れる。
In the hydrogen pressure regulating device for the hydrogen-cooled turbine generator configured as described above, the stator winding 2 is cooled by the stator winding cooling water circulation system as in the above-described embodiment, and at this time, the case 14 is filled with water. It is assumed that the temperature of the hydrogen storage alloy 17 is adjusted to a temperature corresponding to the permissible hydrogen pressure for cooling the load of the rotating electric machine by cooling water bypassed from the stator winding cooling water circulation system at that time. In this situation, when the load on the generator increases, the current flowing through the stator winding 2 increases, and heat is generated in the conductor in proportion to the square of the current, so the stator winding 2 The temperature of the cooling water flowing out to the outflow side header 8a through the hollow conductor increases. A part of the cooling water whose temperature has increased flows from the stator winding cooling water circulation system described above to the cooling water reheater 22,
After heating the returned cooling water to an appropriate temperature, Case 1
4 and flows to the tank 11 of the pure water supply device 9.

したがって、ケース14内に充填された水素貯蔵合金1
7は冷却水再加熱器22により加熱された戻り冷却水に
よって暖められるので、水素貯蔵合金17から機内への
水素ガスの放出が促進される。
Therefore, the hydrogen storage alloy 1 filled in the case 14
7 is warmed by the return cooling water heated by the cooling water reheater 22, so that release of hydrogen gas from the hydrogen storage alloy 17 into the interior of the aircraft is promoted.

これにより機内を循環している水素ガスの圧力が増加し
て負荷に対する許容水素ガス圧力となるので、機内発熱
部の冷却が向上することになる。この場合、冷却水再加
熱器22に対して通電が行なわれ、また配管23に設け
られているバルブ24aは閉路されている。
As a result, the pressure of the hydrogen gas circulating inside the machine increases and becomes the permissible hydrogen gas pressure for the load, so that cooling of the heat generating parts inside the machine is improved. In this case, the cooling water reheater 22 is energized, and the valve 24a provided in the pipe 23 is closed.

一方、発電機の負荷が小さくなると固定子巻線2に流れ
る電流も減少するので、固定子巻線2の中空導体を通し
て流出側ヘッダー88に流出される冷却水の温度が低下
する。この温度低下した冷却水の一部はクーラ13の出
口側の温度の低い冷却水の一部と合流してケース14内
を通して純水供給装置9のタンク11へ流れ、ケース1
4内に充填された水素貯蔵合金17が冷却される。した
がって、機内の水素ガスが水素貯蔵合金17に吸着され
、機内を循環している水素ガスの圧力がその時の負荷に
対する許容水素ガス圧力となるように低下するので、回
転子5の表面の風損やファン動力が少なくなり、発電機
の効率を向上させることができる。この場合、冷却水再
加熱器22に対する通電は行なわれず、また配管23に
設けられているバルブ24aが開放されている。
On the other hand, as the load on the generator decreases, the current flowing through the stator winding 2 also decreases, so the temperature of the cooling water flowing out to the outflow side header 88 through the hollow conductor of the stator winding 2 decreases. A part of the cooling water whose temperature has decreased joins a part of the cooling water with a low temperature on the outlet side of the cooler 13 and flows through the case 14 to the tank 11 of the pure water supply device 9.
The hydrogen storage alloy 17 filled in the hydrogen storage alloy 17 is cooled. Therefore, the hydrogen gas inside the machine is adsorbed by the hydrogen storage alloy 17, and the pressure of the hydrogen gas circulating inside the machine is reduced to the permissible hydrogen gas pressure for the load at that time, causing wind damage on the surface of the rotor 5. This reduces fan power and improves generator efficiency. In this case, the cooling water reheater 22 is not energized, and the valve 24a provided in the pipe 23 is open.

このように本実施例では冷却水流出側ヘッダー88と純
水供給装置9のタンク11間を結ぶ固定子巻線冷却水系
からケース14の一方の開口部に冷却水を流入せしめる
配管18aの中途に冷却水再加熱器22を設けると共に
純水供給装置9の配管10bと冷却水再加熱器22より
上流側の配管18aとの間を配管23により接続してク
ーラ13の出口側の温度の低い冷却水の一部をバイパス
させる構成としたので、負荷上昇時や負荷減少時には機
内水素ガス圧力を最小のエネルギによる微調整で負荷に
対する許容水素ガス圧力にできる。
As described above, in this embodiment, a pipe 18a that allows cooling water to flow into one opening of the case 14 from the stator winding cooling water system connecting the cooling water outlet header 88 and the tank 11 of the pure water supply device 9 is installed. A cooling water reheater 22 is provided, and a piping 23 connects the piping 10b of the pure water supply device 9 and the piping 18a upstream of the cooling water reheater 22, thereby cooling the outlet side of the cooler 13 at a lower temperature. Since the configuration is such that a portion of the water is bypassed, when the load increases or decreases, the in-machine hydrogen gas pressure can be adjusted to the allowable hydrogen gas pressure for the load by using the minimum amount of energy.

また、予め負荷が上昇する前に冷却水再加熱器で水素貯
蔵合金を加熱して機内水素圧力を上昇時における負荷の
許容水素圧力まで上げておくことにより、負荷上昇時の
圧力調整に要するタイムラグを無くして機内の水素圧力
を調整することができる。
In addition, by heating the hydrogen storage alloy in the cooling water reheater before the load increases and raising the in-flight hydrogen pressure to the allowable hydrogen pressure for the load at the time of increase, the time required for pressure adjustment when the load increases It is possible to adjust the hydrogen pressure inside the aircraft by eliminating it.

尚、本実施例では戻り冷却水の温度を下げるためクーラ
13の出口側の温度の低い冷却水の一部を配管23によ
りバイパスさせる構成としたが、第5図に示すように固
定子巻線冷却系からケース14に戻り冷却水を流入する
配管18aに冷却水再加熱器22と直列にクーラ25を
設けるようにしてもよい。
In this embodiment, in order to lower the temperature of the return cooling water, a part of the low-temperature cooling water on the outlet side of the cooler 13 is bypassed by the pipe 23, but as shown in FIG. A cooler 25 may be provided in series with the cooling water reheater 22 in the pipe 18a through which cooling water returns from the cooling system to the case 14 and flows therein.

前述した各実施例では水素貯蔵合金を冷却、加熱する媒
体として固定子巻線水冷却系を用いる場合について述べ
たが、回転軸孔を通して回転子巻線を水冷却するように
した回転子巻線水冷却系を用いるようにしても良い。
In each of the above-mentioned embodiments, a stator winding water cooling system is used as a medium for cooling and heating the hydrogen storage alloy. A water cooling system may also be used.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、水素ガスを冷却媒体
として用いる回転電機において、湿度変化により水素ガ
スを放出または吸着する水素貯蔵合金を収納したケース
を機内の水素ガス循環系に水素ガスが流出入可能に接続
すると共に前記ケース内に形成された冷却水流通路と前
記回転電機の巻線冷却水循環系とを接続して前記冷却水
流通路に前記巻線冷却水を流出入せしめて前記水素貯蔵
合金を冷却又は加熱するようにしだので、爆発の危険の
ない静止形にして水素冷却タービン発電機の機内に対し
て水素ガスの注入や排出を行なうことができると共に機
内の水素ガス圧力を回転電機の負荷の変動に応じて安全
且つ効率良く自動的に調整することができ、もってエネ
ルギーの有効利用を図ることができる水素冷却回転電機
の水素圧力調整装置を提供することができる。
As described above, according to the present invention, in a rotating electric machine that uses hydrogen gas as a cooling medium, a case containing a hydrogen storage alloy that releases or adsorbs hydrogen gas due to changes in humidity is used to supply hydrogen gas to the in-machine hydrogen gas circulation system. The hydrogen is stored by connecting the cooling water flow passage formed in the case so as to be able to flow in and out of the case, and connecting the winding cooling water circulation system of the rotating electric machine to allow the winding cooling water to flow in and out of the cooling water flow passage. Since the alloy is cooled or heated, hydrogen gas can be injected into and discharged from the inside of the hydrogen-cooled turbine generator in a stationary type without the danger of explosion, and the hydrogen gas pressure inside the machine can be transferred to the rotating electrical machine. It is possible to provide a hydrogen pressure regulating device for a hydrogen-cooled rotating electric machine that can automatically adjust safely and efficiently in accordance with changes in the load of the hydrogen-cooled rotating electric machine, thereby making it possible to use energy effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による水素冷却回転電機の一実施例を示
す構成説明図、第2図は同実施例で用いられる水素貯蔵
合金の特性図、第3図は本発明の他の実施例を示す構成
説明図、第4図は固定子巻線冷却水出口温度と許容機内
水素圧力の関係及び水素貯蔵合金と水素平衡圧力の関係
を示す特性図、第5図は本発明のさらに異なる他の実施
例の要部を示す構成図、第6図は従来のタービン発電機
の水素圧力調整系を示す構成図である。 1・・・・・・固定子フレーム、2・・・・・・固定子
巻線、3・・・・・・固定子鉄心、4・・・・・・空間
部、5・・・・・・回転子、6・・・・・・自己ファン
、7・・・・・・水素ガス、Ba、Bb・・・・・・ヘ
ッダ、9・・・・・・純水装置、10a、LOb・・・
、・・・配管、11・・・・・・タンク、12・・・・
・・ポンプ、13・・・・・・クーラ、14・・・・・
・ケース、15・・・・・・ケースの上部ヘッダー、1
6・・・・・・伝熱管、17・・・・・・水素貯蔵合金
、’18a、’18b・・・・・・配管、19・・・・
・・上部ヘッダ、20・・・・・・配管、218〜21
G・・・・・・バルブ、22・・・・・・冷却水再加熱
器、23・・・・・・配管、24a〜24c・・・・・
・バルブ、25・・・・・・クーラ。 出願人代理人 弁理士 鈴江武彦 旦 第3図 −帥’C65’C 合金運度・固定−5巻a玲即木嶽a3区虚第4図
Fig. 1 is a configuration explanatory diagram showing one embodiment of a hydrogen-cooled rotating electric machine according to the present invention, Fig. 2 is a characteristic diagram of a hydrogen storage alloy used in the same embodiment, and Fig. 3 is a diagram showing another embodiment of the present invention. FIG. 4 is a characteristic diagram showing the relationship between the stator winding cooling water outlet temperature and allowable in-machine hydrogen pressure, and the relationship between the hydrogen storage alloy and hydrogen equilibrium pressure. FIG. FIG. 6 is a block diagram showing the main parts of the embodiment. FIG. 6 is a block diagram showing the hydrogen pressure adjustment system of a conventional turbine generator. 1...Stator frame, 2...Stator winding, 3...Stator core, 4...Space, 5...・Rotor, 6...Self-fan, 7...Hydrogen gas, Ba, Bb...Header, 9...Pure water device, 10a, LOb・・・・
,... Piping, 11... Tank, 12...
...Pump, 13...Cooler, 14...
・Case, 15... Upper header of case, 1
6... Heat exchanger tube, 17... Hydrogen storage alloy, '18a, '18b... Piping, 19...
...Top header, 20...Piping, 218-21
G... Valve, 22... Cooling water reheater, 23... Piping, 24a to 24c...
・Valve, 25... Cooler. Applicant's representative Patent attorney Takehikotan Suzue Figure 3 - Marshal 'C65'C Alloy luck/fixation - Volume 5 a Ling Sokitake A3 Ward Imaginary Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)水素ガスを冷却媒体として用いる回転電機におい
て、温度変化により水素ガスを放出または吸着する水素
貯蔵合金を収納したケースを機内の水素ガス循環系に水
素ガスが流出入可能に接続すると共に前記ケース内に形
成された冷却水流通路と前記回転電機の巻線冷却水循環
系とを接続して該冷却水流通路に巻線冷却水を流出入せ
しめて前記水素貯蔵合金を冷却又は加熱することにより
機内水素ガス圧力を負荷変動に応じて自動的に調整する
ようにしたことを特徴とする水素冷却回転電機の水素圧
力調整装置。
(1) In a rotating electric machine that uses hydrogen gas as a cooling medium, a case housing a hydrogen storage alloy that releases or adsorbs hydrogen gas due to temperature changes is connected to the hydrogen gas circulation system inside the machine so that hydrogen gas can flow in and out, and A cooling water flow path formed in the case is connected to the winding cooling water circulation system of the rotating electrical machine, and winding cooling water is caused to flow in and out of the cooling water flow path to cool or heat the hydrogen storage alloy. A hydrogen pressure adjustment device for a hydrogen-cooled rotating electric machine, characterized in that hydrogen gas pressure is automatically adjusted according to load fluctuations.
(2)水素ガスを冷却媒体として用いる回転電機におい
て、温度変化により水素ガスを放出または吸着する水素
貯蔵合金を収納したケースを機内の水素ガス循環系に水
素ガスが流出入可能に接続すると共に前記ケース内に形
成された冷却水流通路と前記回転電機の巻線冷却水循環
系とを接続して該冷却水流通路に前記ケースの上流側に
設けられた冷却水再加熱器及びクーラにより巻線冷却水
を加熱又は冷却した上で流出入せしめて前記水素貯蔵合
金を冷却又は加熱することにより水素貯蔵合金の温度を
負荷に対する許容水素ガス圧力にマッチするように微調
整可能にしたことを特徴とする水素冷却回転電機の水素
圧力調整装置。
(2) In a rotating electric machine that uses hydrogen gas as a cooling medium, a case containing a hydrogen storage alloy that releases or adsorbs hydrogen gas due to temperature changes is connected to the hydrogen gas circulation system inside the machine so that hydrogen gas can flow in and out, and The cooling water flow passage formed in the case is connected to the winding cooling water circulation system of the rotating electrical machine, and the winding cooling water is supplied to the cooling water flow passage by a cooling water reheater and a cooler provided on the upstream side of the case. The temperature of the hydrogen storage alloy can be finely adjusted to match the permissible hydrogen gas pressure for the load by cooling or heating the hydrogen storage alloy by heating or cooling it and then allowing it to flow in and out. Hydrogen pressure adjustment device for hydrogen-cooled rotating electric machines.
JP60133417A 1985-06-19 1985-06-19 Hydrogen pressure regulator for hydrogen-cooled rotating electric machine Expired - Lifetime JPH07101978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60133417A JPH07101978B2 (en) 1985-06-19 1985-06-19 Hydrogen pressure regulator for hydrogen-cooled rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60133417A JPH07101978B2 (en) 1985-06-19 1985-06-19 Hydrogen pressure regulator for hydrogen-cooled rotating electric machine

Publications (2)

Publication Number Publication Date
JPS61293133A true JPS61293133A (en) 1986-12-23
JPH07101978B2 JPH07101978B2 (en) 1995-11-01

Family

ID=15104282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60133417A Expired - Lifetime JPH07101978B2 (en) 1985-06-19 1985-06-19 Hydrogen pressure regulator for hydrogen-cooled rotating electric machine

Country Status (1)

Country Link
JP (1) JPH07101978B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010739A1 (en) * 1992-11-04 1994-05-11 Siemens Aktiengesellschaft Process for removing hydrogen from a hydrogen-filled electric machine
CN110601408A (en) * 2019-09-30 2019-12-20 长江勘测规划设计研究有限责任公司 Hydro-turbo generator set stator winding internal cooling circulation system based on hydrogen cooling technology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186948A (en) * 1981-05-13 1982-11-17 Hitachi Ltd Coolant supplier for electric rotary machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186948A (en) * 1981-05-13 1982-11-17 Hitachi Ltd Coolant supplier for electric rotary machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010739A1 (en) * 1992-11-04 1994-05-11 Siemens Aktiengesellschaft Process for removing hydrogen from a hydrogen-filled electric machine
CN110601408A (en) * 2019-09-30 2019-12-20 长江勘测规划设计研究有限责任公司 Hydro-turbo generator set stator winding internal cooling circulation system based on hydrogen cooling technology
CN110601408B (en) * 2019-09-30 2024-04-12 长江勘测规划设计研究有限责任公司 Internal cooling circulation system for stator winding of hydroelectric generating set based on hydrogen cooling technology

Also Published As

Publication number Publication date
JPH07101978B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
ES2269209T3 (en) APPARATUS AND METHOD FOR REFRIGERATING POWER TRANSFORMERS.
US7681395B2 (en) Systems and methods for providing backup energy to a load
JP6441497B2 (en) Cooling device for cooling a fuel cell
US11444346B2 (en) Battery thermal management system for hybrid and full electric vehicles using heat capacitor
JP2004281243A (en) Fuel cell system and hydrogen storage method
KR101427924B1 (en) Cooling device of compressed air in fuel cell system
EP1188213A1 (en) Uninterruptible power supply utilizing thermal energy source
US3089969A (en) Cooling arrangement for turbogenerators
CN106121753A (en) Improvement control concept for closed loop Brayton cycle
CN110014921A (en) The charging unit and vehicle of vehicle
CN109029005A (en) Cooling system and development machine with the cooling system
US4784586A (en) Turbocharger having controlled heat transfer for bearing protection
JPS61293133A (en) Hydrogen pressure regulator for hydrogen-cooled rotary electric machine
JPS6154842A (en) Cooler of rotary electric machine
CN109742903B (en) Vehicle, hub motor heat dissipation system thereof and hub motor heat dissipation method
JP4774028B2 (en) Closed cycle plant
JPS61293132A (en) Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine
JP2019027385A (en) Compressed air storage power generation device and method
CN110014945A (en) The charging unit and vehicle of vehicle
JPS61293131A (en) Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine
US20110139097A1 (en) Gas generation and management system
JPS61227652A (en) Hydrogen pressure regulator of hydrogen-cooled rotary electric machine
JPH09190927A (en) Exhaust heat recovery equipment
CN214281064U (en) Generator and cooling system thereof
JP2004032845A (en) Cooling device for generator