JPH07101978B2 - Hydrogen pressure regulator for hydrogen-cooled rotating electric machine - Google Patents

Hydrogen pressure regulator for hydrogen-cooled rotating electric machine

Info

Publication number
JPH07101978B2
JPH07101978B2 JP60133417A JP13341785A JPH07101978B2 JP H07101978 B2 JPH07101978 B2 JP H07101978B2 JP 60133417 A JP60133417 A JP 60133417A JP 13341785 A JP13341785 A JP 13341785A JP H07101978 B2 JPH07101978 B2 JP H07101978B2
Authority
JP
Japan
Prior art keywords
cooling water
hydrogen
hydrogen gas
machine
stator winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60133417A
Other languages
Japanese (ja)
Other versions
JPS61293133A (en
Inventor
幹夫 熊谷
裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60133417A priority Critical patent/JPH07101978B2/en
Publication of JPS61293133A publication Critical patent/JPS61293133A/en
Publication of JPH07101978B2 publication Critical patent/JPH07101978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水素冷却回転電機において、特に水素貯蔵合金
を用いて機内の水素ガス圧力を負荷変動に応じて調整可
能にした水素冷却回転電機の水素圧力調整装置に関す
る。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a hydrogen-cooled rotary electric machine, and more particularly to a hydrogen-cooled rotary electric machine in which the hydrogen gas pressure in the machine can be adjusted according to the load variation by using a hydrogen storage alloy. The present invention relates to a pressure adjusting device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

回転電機、例えばタービン発電機においてはその冷却媒
体として水素ガスを用いたものがある。この場合、機内
の水素ガスはタービン発電機の単機容量が上がるに従っ
てその熱容量、即ち(比重量)×(比熱)を増加して冷
却効果を上げる必要があり、特に大容量機では機内の水
素ガス圧力を例えば5.2atmにしているものもある。
Some rotating electrical machines, such as turbine generators, use hydrogen gas as a cooling medium. In this case, it is necessary to increase the heat capacity of the hydrogen gas inside the machine as the unit capacity of the turbine generator increases, that is, (specific weight) x (specific heat) to improve the cooling effect. Some have a pressure of, for example, 5.2 atm.

しかるに、近年タービン発電機の使用は多用化し、常に
100%負荷だけでなく部分負荷で使用されることがあ
る。この部分負荷時は発電機の電気損が少なく、冷却上
水素ガス圧を5.2atmのままにしておく必要がない。部分
負荷時に機内の水素ガス圧力を5.2atmのままにしておく
と、回転子の風損,ファン動力が100%負荷時と変わら
ないため、発電機の効率が低下する。そこで、このよう
な場合には機内の水素ガス圧力を下げることにより回転
子の風損,ファン動力が減少し、発電機の効率を向上さ
せることができる。
However, in recent years, the use of turbine generators has become more frequent and
It may be used at partial load as well as 100% load. During this partial load, there is little electric loss in the generator, and it is not necessary to keep the hydrogen gas pressure at 5.2 atm for cooling. If the hydrogen gas pressure inside the machine is kept at 5.2 atm during partial load, rotor windage loss and fan power will be the same as at 100% load, resulting in reduced generator efficiency. Therefore, in such a case, by reducing the hydrogen gas pressure inside the machine, windage of the rotor and fan power are reduced, and the efficiency of the generator can be improved.

ところで、従来の水素冷却回転電機においては機内の水
素ガスを高圧の水素ガスボンベにより注入するようにし
ており、従って機内の水素ガス圧力を負荷の変動に応じ
て調整するには機内から水素ガスを放出させたり、高圧
の水素ガスボンベより再注入する方式を用いていた。し
かしこの方式は水素ガスの注入や放出のための操作が繁
雑であると共に水素ガスを取扱う上で安全対策を十分に
施しておく必要があり、また水素ガスの消耗量が多大な
ものとなるため、エネルギーの有効利用と言う観点から
見ても問題がある。
By the way, in the conventional hydrogen-cooled rotating electric machine, the hydrogen gas in the machine is injected by a high-pressure hydrogen gas cylinder. Therefore, in order to adjust the hydrogen gas pressure in the machine according to the fluctuation of the load, the hydrogen gas is discharged from the machine. Or, the method of re-injecting from a high-pressure hydrogen gas cylinder was used. However, in this method, the operations for injecting and releasing hydrogen gas are complicated, and it is necessary to take sufficient safety measures in handling hydrogen gas, and the consumption of hydrogen gas will be enormous. However, there is a problem from the viewpoint of effective use of energy.

また、かかる問題を解決するものとして、例えば実開昭
55−12720号公報に記載された発明のようにタービン発
電機の機内の水素ガス圧力を負荷の変動に応じて圧力調
整機構により調整できるようにしたものがある。
Moreover, as a means for solving such a problem, for example,
There is one in which the hydrogen gas pressure inside the turbine generator can be adjusted by a pressure adjusting mechanism according to the fluctuation of the load, as in the invention described in Japanese Patent No. 55-12720.

第6図はこのような従来の水素冷却タービン発電機にお
ける水素ガス圧力調整系を示すものである。すなわち、
第6図に示すように外部負荷系統に接続されたタービン
発電機31において、その機内32には水素ガスボンベ33に
充填された水素ガスが圧力調整弁34を介して供給可能に
してあり、また機内の水素ガス圧力制御系としては機内
に圧力制御弁35を介して連通するレリーフ水素リザーブ
室36、このリザーブ室36の容積を調整して機内32の水素
ガスを流出入させるピストン37、このピストン37を駆動
するピストン駆動機構38及びタービン発電機31の出力に
より負荷の大きさを検出し、その負荷変動に応じてピス
トン駆動機構38に駆動指令を与えると共に圧力調整弁35
に対しては開閉指令を与える負荷追従機構39から構成さ
れている。
FIG. 6 shows a hydrogen gas pressure adjusting system in such a conventional hydrogen cooling turbine generator. That is,
In the turbine generator 31 connected to the external load system as shown in FIG. 6, the hydrogen gas filled in the hydrogen gas cylinder 33 can be supplied to the inside 32 of the turbine generator 31 through the pressure regulating valve 34, and As the hydrogen gas pressure control system, a relief hydrogen reserve chamber 36 communicating with the inside of the aircraft via a pressure control valve 35, a piston 37 for adjusting the volume of the reserve chamber 36 to let the hydrogen gas in and out of the aircraft 32 flow, and this piston 37 The magnitude of the load is detected by the outputs of the piston drive mechanism 38 and the turbine generator 31 that drive the engine, and a drive command is given to the piston drive mechanism 38 according to the load fluctuation, and the pressure adjustment valve 35
Is constituted by a load follow-up mechanism 39 which gives an opening / closing command.

したがって、このような構成のタービン発電機の水素ガ
ス圧力調整系において、通常は圧力調整弁34によって水
素ガスボンベ33の圧力を減圧して一定になるように制御
され、また負荷変動がある時は負荷追従制御機構39から
の指令に基いてピストン37を駆動してリザーブ室36の容
積を調整すると共に圧力調整弁35の開度を制御すること
によりタービン発電機32の機内水素ガス圧力を負荷変動
に応じて調整することができる。
Therefore, in the hydrogen gas pressure adjusting system of the turbine generator having such a configuration, the pressure of the hydrogen gas cylinder 33 is normally controlled by the pressure adjusting valve 34 so that the pressure is controlled to be constant, and when the load fluctuates, the load is changed. Drive the piston 37 based on the command from the tracking control mechanism 39 to adjust the volume of the reserve chamber 36 and control the opening degree of the pressure adjustment valve 35 to change the hydrogen gas pressure in the turbine generator 32 to the load fluctuation. It can be adjusted accordingly.

しかし、かかるタービン発電機の水素ガス圧力調整系で
はリザーブ室36の容積をリザーブ室内周面を摺動するピ
ストン37により調整するようにしているため、このピス
トン37とリザーブ室内周面との間のシールが十分なされ
ていないと機内と連通している側の高圧状態にある水素
ガスが大気状態にあるピストン背部側へリークして爆発
につながる恐れがある。
However, in the hydrogen gas pressure adjusting system of such a turbine generator, the volume of the reserve chamber 36 is adjusted by the piston 37 that slides on the peripheral surface of the reserve chamber, so that the volume between the piston 37 and the peripheral surface of the reserve chamber is adjusted. If the seal is not sufficient, the high-pressure hydrogen gas on the side communicating with the inside of the machine may leak to the back side of the piston in the atmospheric state, leading to an explosion.

そこで、最近では前述したようなレリーフ水素リザーブ
室及びこのリザーブ室の容積を調整するピストン等の駆
動装置を用いずに機内の水素ガス圧力を簡便に、しかも
水素ガスの消耗をなくして調整可能な水素貯蔵合金の使
用が考えられている。
Therefore, recently, the hydrogen gas pressure inside the machine can be easily adjusted without using the relief hydrogen reserve chamber and the drive device such as a piston for adjusting the volume of the reserve chamber as described above, and the consumption of hydrogen gas can be eliminated. The use of hydrogen storage alloys is being considered.

この水素貯蔵合金は水素を非常によく吸収する性質を有
するチタンやミッシュメタルなどの金属原子を組合わせ
たもので、温度を下げるか圧力を上げると水素ガスを吸
収して発熱し、逆に温度を上げるか圧力を下げると吸収
した水素ガスを放出して周囲から熱をうばう性質があ
り、また送込む水素ガスの圧力値によって合金自体の温
度も変化し、逆に合金自体の温度を変えることによって
発生する水素ガスの圧力も異なるという相関関係を有し
ているものである。
This hydrogen storage alloy is a combination of metal atoms such as titanium and misch metal, which have the property of absorbing hydrogen very well.When the temperature is lowered or the pressure is raised, hydrogen gas is absorbed and heat is generated. If the temperature is raised or the pressure is lowered, the absorbed hydrogen gas is released and heat is absorbed from the surroundings.Also, the temperature of the alloy itself changes depending on the pressure value of the hydrogen gas sent in, and conversely the temperature of the alloy itself is changed. There is a correlation that the pressure of hydrogen gas generated by is also different.

第2図はケース内に水素ガスと共に充填された水素貯蔵
合金の特性例を示すものである。すなわち、第2図に示
すように水素貯蔵合金の温度を50℃に保つとケース内の
平衡水素ガス圧力は5.2atmとなり、これを40℃に冷却し
てやると水素を吸着して平衡水素ガス圧力は4.0atmにな
る。この状態から再び水素貯蔵合金の温度を50℃に上昇
するとケース内の平衡水素圧力は5.2atmとなる。
FIG. 2 shows a characteristic example of a hydrogen storage alloy filled with hydrogen gas in a case. That is, as shown in Fig. 2, when the temperature of the hydrogen storage alloy is kept at 50 ° C, the equilibrium hydrogen gas pressure in the case becomes 5.2 atm, and when this is cooled to 40 ° C, hydrogen is adsorbed and the equilibrium hydrogen gas pressure becomes It will be 4.0 atm. When the temperature of the hydrogen storage alloy is raised again to 50 ° C from this state, the equilibrium hydrogen pressure in the case becomes 5.2 atm.

したがって、このような水素貯蔵合金の特性を利用すれ
ば水素冷却タービン発電機の機内水素圧力を負荷に応じ
て変えることができる。
Therefore, by utilizing such characteristics of the hydrogen storage alloy, the in-machine hydrogen pressure of the hydrogen-cooled turbine generator can be changed according to the load.

この場合、水素貯蔵合金の温度をヒータ及びクーラによ
り強制的に変えて機内の水素ガス圧力をコントロールす
ることも考えられるが、これを自動的に行なえればさら
に好都合である。
In this case, it is conceivable to forcibly change the temperature of the hydrogen storage alloy by a heater and a cooler to control the hydrogen gas pressure in the machine, but it is more convenient if this can be done automatically.

〔発明の目的〕[Object of the Invention]

本発明は上記のような事情に鑑みてなされたもので、そ
の目的は爆発の危険のない静止形にして水素冷却タービ
ン発電機の機内に対して水素ガスの注入や排出を行なう
ことができると共に機内の水素ガス圧力を負荷の変動に
応じて安全且つ効率良く自動的に調整することができ、
もってエネルギーの有効利用を図ることができる水素冷
却回転電機の水素圧力調整装置を提供するにある。
The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to make it possible to inject and discharge hydrogen gas into the interior of a hydrogen-cooled turbine generator while making it stationary without danger of explosion. The hydrogen gas pressure inside the machine can be automatically adjusted safely and efficiently according to the load fluctuation.
Accordingly, it is an object of the present invention to provide a hydrogen pressure adjusting device for a hydrogen-cooled rotary electric machine that can effectively use energy.

〔発明の概要〕[Outline of Invention]

本発明はかかる目的を達成するため、機内に水素ガスを
冷却媒体として充填し且つ冷却水が流出入可能な中空導
体により形成された固定子巻線に冷却水循環系を接続し
てなる回転電機において、温度変化により水素ガスを放
出または吸着する水素貯蔵合金を収納したケースを機内
の水素ガス循環系に水素ガスが流出入可能に接続すると
共に前記ケース内に形成された冷却水流通路と前記回転
電機の固定子巻線に冷却水供給装置より冷却水を循環さ
せて固定子巻線を冷却する冷却水循環系とを接続して前
記冷却水流通路に前記固定子巻線の冷却水出側から前記
冷却水供給装置に戻る冷却水の一部を流出入せしめて前
記水素貯蔵合金を冷却又は加熱することにより機内水素
ガス圧力を負荷変動に応じて自動的に調整するようにし
たものである。
In order to achieve the above object, the present invention relates to a rotating electric machine in which a cooling water circulation system is connected to a stator winding formed by filling a hydrogen gas as a cooling medium into a machine and forming a cooling water flow-in / out hollow conductor. Connecting a case containing a hydrogen storage alloy that releases or adsorbs hydrogen gas depending on temperature changes so that hydrogen gas can flow in and out of a hydrogen gas circulation system in the machine, and a cooling water flow passage formed in the case and the rotating electric machine. And a cooling water circulation system for cooling the stator winding by circulating cooling water from a cooling water supply device to the stator winding of the stator winding to the cooling water flow passage from the cooling water outlet side of the stator winding. A part of the cooling water returning to the water supply device is caused to flow in and out to cool or heat the hydrogen storage alloy so that the internal hydrogen gas pressure is automatically adjusted according to the load fluctuation.

従って、上記のように構成された本発明による水素冷却
回転電機の水素圧力調整装置にあっては、回転電機の負
荷に応じて冷却水温が変動することから、この回転電機
自身の発生する損失熱を利用して水素貯蔵合金による水
素ガスの吸気、排気の駆動源に水素貯蔵合金を冷却又は
加熱することにより、機内水素ガス圧力を負荷変動に応
じて自動的に調整することが可能となり、機内の水素ガ
ス圧を自動的に決定する自己調整作用が得られる。
Therefore, in the hydrogen pressure adjusting device for a hydrogen-cooled rotary electric machine according to the present invention configured as described above, the cooling water temperature fluctuates according to the load of the rotary electric machine, and therefore the loss heat generated by the rotary electric machine itself is lost. By cooling or heating the hydrogen storage alloy as the drive source for the intake and exhaust of hydrogen gas by the hydrogen storage alloy, it becomes possible to automatically adjust the hydrogen gas pressure inside the aircraft according to load fluctuations. A self-regulating action of automatically determining the hydrogen gas pressure of is obtained.

〔発明の実施例〕Example of Invention

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による水素冷却回転電機の水素圧力調整
装置の構成例を示すものである。第1図において、1は
回転電機、例えばタービン発電機の固定子フレームで、
その内周面には冷却水が流出入可能な中空導体からなる
固定子巻線2を備えた固定子鉄心3が取付けられると共
にその背部にガス通気空間部4が形成されている。5は
軸受に支承された回転子で、この回転子5には自己ファ
ン6が取付けられており、機内に大気圧以上の圧力で封
入された水素ガス7を強制循環させるためのものであ
る。また8a,8bは固定子巻線2の中空導体に冷却水を通
すためのヘッダーであり、これらヘッダー8a,8bには機
外に設けられた純水供給装置9が配管10a,10bを介して
接続されている。この純水供給装置9はタンク11,ポン
プ12,クーラ13及び図示しないイオン交換樹脂から構成
されている。一方、14は機外に設けられたケースで、こ
のケース14は筒体の周面のほぼ中央部に上部ヘッダ15を
有し、またケース内部には複数個の伝熱管16を筒体の長
手方向に沿って配設する共にこれら各伝熱管16相互間に
形成される管外スペースには粉末状の水素貯蔵合金17を
充填したものである。このようなケース14において、そ
の筒体の一方の開口部に固定子巻線2の冷却水流出側ヘ
ッダー8aと純水供給装置9のタンク11との間を結ぶ配管
10aの中途に接続された配管18aを接続し、また筒体の他
方の開口部に冷却水を純水供給装置9のタンク11へ戻す
配管18bを接続して冷却水の一部をバイパスするバイパ
ス路を形成する。さらにケース14に有する上部ヘッダー
15にはダストや微粒子が機内へ浮遊あるいは飛散しない
ようにするための通気性のフィルタ19が設けられると共
にこの部分を配管20を介して機内のガス通気空間部4に
連通させて接続し、水素貯蔵合金17から放出または水素
貯蔵合金17に吸着される水素ガスを機内との間で流通で
きるようになっている。尚、21a,21b,21cはケース14の
両端開口部に接続された冷却水バイパス路を形成する配
管18a,18b及び上部ヘッダー15と機内とを結ぶ水素ガス
流通路となる配管20の適宜箇所に設けられたバルブで、
これらはケース14を発電機側から取外す時に機内の水素
ガスが大気に放出しないようにするためのものである。
FIG. 1 shows an example of the configuration of a hydrogen pressure adjusting device for a hydrogen-cooled rotary electric machine according to the present invention. In FIG. 1, 1 is a rotating electric machine, for example, a stator frame of a turbine generator,
A stator core 3 having a stator winding 2 made of a hollow conductor through which cooling water can flow in and out is attached to the inner peripheral surface thereof, and a gas ventilation space 4 is formed in the back portion thereof. Reference numeral 5 denotes a rotor supported by bearings, and a self-fan 6 is attached to the rotor 5 for forcibly circulating the hydrogen gas 7 sealed in the machine at a pressure higher than atmospheric pressure. Further, 8a and 8b are headers for passing cooling water through the hollow conductors of the stator winding 2, and a pure water supply device 9 provided outside the machine is installed in these headers 8a and 8b via pipes 10a and 10b. It is connected. The pure water supply device 9 is composed of a tank 11, a pump 12, a cooler 13 and an ion exchange resin (not shown). On the other hand, 14 is a case provided outside the machine, this case 14 has an upper header 15 at approximately the center of the peripheral surface of the cylinder, and a plurality of heat transfer tubes 16 are provided inside the case in the longitudinal direction of the cylinder. The outer space formed along the direction and formed between the heat transfer tubes 16 is filled with a powdery hydrogen storage alloy 17. In such a case 14, a pipe connecting the cooling water outflow side header 8a of the stator winding 2 and the tank 11 of the pure water supply device 9 to one opening of the cylindrical body.
Bypass connecting a pipe 18a connected to the middle of 10a and connecting a pipe 18b for returning the cooling water to the tank 11 of the pure water supply device 9 to the other opening of the cylinder to bypass a part of the cooling water. Forming a path. In addition, the upper header included in case 14
The 15 is provided with a breathable filter 19 for preventing dust and particles from floating or scattering in the machine, and this portion is connected to the gas ventilation space section 4 in the machine through a pipe 20 so as to connect with hydrogen gas. The hydrogen gas released from the storage alloy 17 or adsorbed by the hydrogen storage alloy 17 can be distributed to and from the inside of the aircraft. Incidentally, 21a, 21b, 21c are pipes 18a, 18b forming a cooling water bypass passage connected to the opening portions at both ends of the case 14 and an appropriate portion of a pipe 20 which is a hydrogen gas flow passage connecting the upper header 15 and the inside of the machine. With the valve provided,
These are for preventing the hydrogen gas inside the machine from being released to the atmosphere when the case 14 is removed from the generator side.

このように構成された水素冷却タービン発電機の水素圧
力調整装置において、今機外の純水供給装置9のタンク
11から固定子巻線2の中空導体に冷却水が配管10b,流入
側ヘッダー8bを通して流入し、流出側ヘッダー8aから配
管10aを通して純水供給装置9のタンク11へ戻る固定子
巻線冷却水循環系により固定子巻線2が冷却されている
ものとし、またこの時ケース14内に充填された水素貯蔵
合金17はその時の固定子巻線冷却水循環系からバイパス
される冷却水により回転電機の負荷に対する冷却上の許
容水素圧力に対応した温度に調整されているものとす
る。このような状態にある時、発電機の負荷が大きくな
ると固定子巻線2に流れる電流が増加し、その導体には
電流の2乗に比例する熱が発生する。したがって、固定
子巻線2の中空導体を通して流出側ヘッダー8aに流出さ
れる冷却水の温度が上昇する。この温度上昇した冷却水
の一部が前述した固定子巻線冷却水循環系からケース14
内の冷却水流通路を通して純水供給装置9のタンク11へ
流れると、ケース15内に充填された水素貯蔵合金17が暖
められ、水素貯蔵合金17から機内への水素ガスの放出が
促進される。これにより機内を循環している水素ガスの
圧力が増加するので、機内発熱部の冷却が向上すること
になる。
In the hydrogen pressure adjusting device of the hydrogen-cooled turbine generator configured as described above, the tank of the pure water supply device 9 outside the device now
Cooling water flows from 11 into the hollow conductor of the stator winding 2 through the pipe 10b and the inflow header 8b, and returns from the outflow header 8a to the tank 11 of the pure water supply device 9 through the pipe 10a. It is assumed that the stator winding 2 is cooled by the above, and the hydrogen storage alloy 17 filled in the case 14 at this time is applied to the load of the rotating electric machine by the cooling water bypassed from the stator winding cooling water circulation system at that time. It shall be adjusted to a temperature corresponding to the allowable hydrogen pressure for cooling. In such a state, when the load of the generator increases, the current flowing through the stator winding 2 increases, and the conductor generates heat proportional to the square of the current. Therefore, the temperature of the cooling water flowing out to the outflow side header 8a through the hollow conductor of the stator winding 2 rises. A part of the temperature-increased cooling water flows from the stator winding cooling water circulation system described above to the case 14
When flowing into the tank 11 of the pure water supply device 9 through the cooling water flow passage therein, the hydrogen storage alloy 17 filled in the case 15 is warmed, and release of hydrogen gas from the hydrogen storage alloy 17 into the machine is promoted. As a result, the pressure of the hydrogen gas circulating in the machine is increased, so that the cooling of the heat generating part in the machine is improved.

一方、発電機の負荷が小さくなると固定子巻線2に流れ
る電流も減少するので、固定子巻線2の中空導体を通し
て流出側ヘッダー8aに流出される冷却水の温度が低下す
る。この温度低下した冷却水の一部が前述した固定子巻
線冷却水循環系からケース14内を通して純水供給装置9
のタンク11へ流れると、ケース14内に充填された水素貯
蔵合金17が冷却され、機内の水素ガスが水素貯蔵合金17
に吸着される。これにより機内を循環している水素ガス
の圧力が低下するので、回転子5の表面の風損やファン
動力が少なくなり、発電機の効率が向上することにな
る。この場合、ケース14内に充填された水素貯蔵合金17
から機内に放出または機内から水素貯蔵合金17に吸着さ
れる水素ガスはケース14の上部ヘッダー15に設けられた
フィルタ19を通して流れるので、水素貯蔵合金17が粉末
状のものであってもこの水素貯蔵合金がガス流と一緒に
機内に流入したり、絶縁物に付着して電気絶縁耐圧を低
下させたりするようなことがなく、信頼性の高いものと
なる。
On the other hand, when the load of the generator decreases, the current flowing through the stator winding 2 also decreases, so the temperature of the cooling water that flows out to the outflow header 8a through the hollow conductor of the stator winding 2 decreases. A part of the cooling water whose temperature has dropped is passed through the case 14 from the stator winding cooling water circulation system described above to pass the pure water supply device 9
When the hydrogen storage alloy 17 filled in the case 14 is cooled when flowing into the tank 11 of the, the hydrogen gas inside the aircraft is stored in the hydrogen storage alloy 17
Is adsorbed on. As a result, the pressure of the hydrogen gas circulating in the machine is reduced, and the windage on the surface of the rotor 5 and the fan power are reduced, and the efficiency of the generator is improved. In this case, the hydrogen storage alloy 17 filled in the case 14
Since hydrogen gas released from the inside of the machine or adsorbed to the hydrogen storage alloy 17 from the inside of the machine flows through the filter 19 provided in the upper header 15 of the case 14, even if the hydrogen storage alloy 17 is in the powder form, this hydrogen storage alloy 17 is stored. The alloy does not flow into the machine together with the gas flow, and does not adhere to the insulating material to lower the electrical withstand voltage, resulting in high reliability.

以上のように本実施例では筒体の周面のほぼ中央部に上
部ヘッダ15を有するケース14の内部に複数個の伝熱管16
を筒体の長手方向に沿って配設する共にこれら各伝熱管
16相互間に形成される管外スペースに粉末状の水素貯蔵
合金17を充填したケース14を機外に設けてその内部に設
けられた伝熱管16に発電機の固定子巻線冷却水系から冷
却水を流出入せしめ、またケース14を機内のガス通気空
間部に連通させて冷却水の温度変化により水素貯蔵合金
17から水素ガスを機内へ放出したり、あるいは機内の水
素ガスを水素貯蔵合金に吸着したりするようにしたの
で、機内の水素ガス圧力を負荷の変動に応じて自動的に
調整することができる。すなわち、固定子巻線の冷却水
の温度は負荷に敏感なので、負荷変動があると機内の水
素ガス圧力はスピーディに自動的に調整され、負荷が増
加した時には機内発熱部を効果的に冷却でき、また負荷
が減少した時には回転子表面の風損やファン動力を少な
くして発電機の効率を向上させることができる。またケ
ース14内に充填された水素貯蔵合金17を発電機の固定子
巻線冷却水系から冷却水を流出入せしめて加熱したり、
冷却したりするようにしているので、特に加熱器や冷却
器を用いなくてよく、エネルギーの有効利用を図ること
ができる。さらにケース14に有する上部ヘッダー15の水
素ガス流通路にはフィルタ19が設けられているので、水
素貯蔵合金17が粉末状であってもその粉状体がガス流に
よって機内に侵入することを防止でき、信頼性の高いも
のとなる。またケース14を機外に設けているので、交換
等の必要がある場合には発電機を停止することなく実施
することが可能であり、そのメンテナンスが容易であ
る。
As described above, in this embodiment, a plurality of heat transfer tubes 16 are provided inside the case 14 having the upper header 15 at the substantially central portion of the peripheral surface of the cylindrical body.
Are arranged along the longitudinal direction of the cylindrical body and each of these heat transfer tubes
16 A case 14 in which powdered hydrogen storage alloy 17 is filled in an outer space formed between each other is provided outside the machine, and a heat transfer tube 16 provided inside the case 14 is cooled from a stator winding cooling water system of a generator. Water is allowed to flow in and out, and the case 14 is made to communicate with the gas ventilation space inside the machine to change the temperature of the cooling water and the hydrogen storage alloy.
Since hydrogen gas is released from 17 into the machine or hydrogen gas inside the machine is adsorbed to the hydrogen storage alloy, the hydrogen gas pressure inside the machine can be automatically adjusted according to the fluctuation of the load. . In other words, the temperature of the cooling water in the stator windings is sensitive to the load, so the hydrogen gas pressure inside the machine will be adjusted automatically and speedily when the load fluctuates, and the heat generating part inside the machine can be cooled effectively when the load increases. Moreover, when the load is reduced, the windage on the rotor surface and the fan power can be reduced to improve the efficiency of the generator. Also, the hydrogen storage alloy 17 filled in the case 14 is heated by letting cooling water flow in and out from the stator winding cooling water system of the generator,
Since it is cooled, it is not necessary to use a heater or a cooler, and energy can be effectively used. Further, since the filter 19 is provided in the hydrogen gas flow passage of the upper header 15 of the case 14, even if the hydrogen storage alloy 17 is in powder form, its powdery substance is prevented from entering the machine by the gas flow. It is possible and reliable. Further, since the case 14 is provided outside the machine, it can be carried out without stopping the generator when it needs to be replaced, and the maintenance thereof is easy.

尚、上記実施例では1セットのケースを機外に設ける場
合について説明したが、これを2セット設けてその一方
のセットに寿命が来たら他方のセットに切換え、寿命の
来たセットに対しては水素貯蔵合金を交換してこれを予
備として待機させるようにしてもよい。
In the above embodiment, the case where one set of cases is provided outside the machine has been described. However, when two sets are provided and one of the sets reaches the end of its life, the other set is switched to the other set. May replace the hydrogen storage alloy and use this as a standby.

次に本発明の他の実施例をについて説明する。Next, another embodiment of the present invention will be described.

第3図は水素冷却回転電機の水素圧力調整装置の他の構
成例を示すもので、第1図と同一部分には同一記号を付
してその説明を省略し、ここでは異なる部分についての
み述べる。本実施例では第3図に示すように冷却水流出
側ヘッダー8aと純水供給装置9のタンク11間を結ぶ固定
子巻線冷却水系からケース14の一方の開口部に冷却水を
流入せしめる配管18aの中途に冷却水再加熱器22を設け
ると共に純水供給装置9の配管10bと冷却水再加熱器22
より上流側の配管18aとの間を配管23により接続してク
ーラ13の出口側の温度の低い冷却水の一部をバイパスさ
せる構成としたものである。尚、24a及び24b,24cは配管
23及び10a,10bの中途に設けられたバルブである。
FIG. 3 shows another example of the configuration of the hydrogen pressure adjusting device for a hydrogen-cooled rotary electric machine. The same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. Here, only different parts will be described. . In this embodiment, as shown in FIG. 3, a pipe for allowing cooling water to flow into one opening of the case 14 from the stator winding cooling water system that connects between the cooling water outflow side header 8a and the tank 11 of the pure water supply device 9. A cooling water reheater 22 is provided in the middle of 18a, and the pipe 10b of the pure water supply device 9 and the cooling water reheater 22 are provided.
A pipe 23 is connected between the pipe 18a on the more upstream side and a part of the cooling water having a low temperature on the outlet side of the cooler 13 is bypassed. Pipes 24a, 24b, and 24c
The valves 23 and 10a and 10b are provided midway.

ここで、上記構成の作用を述べるにあたり、先ず配管18
aの中途に冷却水再加熱器22を設け、且つその上流側の
配管18aにクーラ13の出口側の温度の低い冷却水の一部
をバイパスさせる理由について述べる。ケース14におい
て、その内部に充填された水素貯蔵合金17の温度と水素
平衡圧力の関係が負荷を基準とした冷却水出口温度と機
内許容水素ガス圧力とが一致していれば、冷却水出口温
度により水素貯蔵合金17を加熱,冷却することで外部よ
り冷却,加熱の熱量を付加することなく完全に負荷の変
動に応じて機内水素ガス圧を自動的に調整することが可
能である。
Here, in describing the operation of the above configuration, first, the pipe 18
The reason for providing the cooling water reheater 22 in the middle of a and bypassing a part of the cooling water having a low temperature on the outlet side of the cooler 13 to the pipe 18a on the upstream side will be described. In Case 14, if the relationship between the temperature of the hydrogen storage alloy 17 filled inside and the hydrogen equilibrium pressure is the same as the cooling water outlet temperature based on the load and the allowable hydrogen gas pressure inside the machine, the cooling water outlet temperature Thus, by heating and cooling the hydrogen storage alloy 17, it is possible to completely adjust the hydrogen gas pressure inside the machine according to the fluctuation of the load without adding heat quantity for cooling and heating from the outside.

しかし、実際には冷却水出口温度と機内許容水素ガス圧
力とが完全に一致するような水素貯蔵合金は実在してい
ない。第4図は固定子巻線冷却水出口温度と許容機内水
素圧力の関係と水素貯蔵合金の温度と水素平衡圧力の関
係を示す特性図で、実線(A)は負荷と固定子巻線冷却
水出口温度の関係と負荷と許容水素圧力の関係から導い
た固定子巻線冷却水出口温度の特性例を示しており、二
点鎖線(a),点線(b),一点鎖線(c)及び(d)
はそれぞれ種類の異なる水素貯蔵合金の温度と水素平衡
圧力の関係を示す特性例である。かかる特性図からも分
るように水素冷却回転電機の運転に必要な実線Aなる特
性,つまり負荷(冷却水出口温度)と許容機内水素圧力
に対して、水素貯蔵合金の特性は二点鎖線(a),点線
(b),一点鎖線(c)及び(d)に示すように数ケー
スある。いま、水素圧力の調整範囲を4.2〜2Kg/cm2の間
とすると、二点鎖線(a)のように実線(A)より右上
にある特性の水素貯蔵合金の場合には常に固定子巻線の
出口冷却水をさらに冷やして使用しなければならず、ま
た一点鎖線(c)のように実線Aより左下にある特性の
水素貯蔵合金の場合には常に固定子巻線の出口冷却水を
加熱して使用する必要があり、エネルギ的には損であ
る。これに対して点線(b),一点鎖線(d)特性の水
素貯蔵合金の場合は圧力調整範囲で実線(A)と交鎖し
ており、エネルギ的には有利であり、望ましい水素貯蔵
合金と言える。しかし、このような特性の水素貯蔵合金
を使用しても実線(A)の特性と一致しているわけでは
ないので、実際には固定子巻線冷却水の温度の微調整が
必要である。すなわち、点線(b)に示す特性の水素貯
蔵合金を使用する場合は負荷100%で固定子巻線冷却水
出口温度が80℃になるとすると、その時の水素平衡圧力
は約5Kg/cm2になり、100%負荷時の必要水素圧力4.2Kg/
cm2を上回るので、この時点で固定子巻線冷却水を少し
冷却して図示“X"点に来るようにする必要がある。また
75%負荷時の固定子巻線冷却水出口温度65℃で水素貯蔵
合金を加熱すると、水素平衡圧力は約1.00Kg/cm2とな
り、この時点で固定子巻線冷却水を加熱して図示“Y"点
に来るようにする必要がある。
However, in reality, there is no hydrogen storage alloy in which the cooling water outlet temperature and the allowable hydrogen gas pressure in the machine completely match. Fig. 4 is a characteristic diagram showing the relationship between the stator winding cooling water outlet temperature and the allowable hydrogen pressure inside the machine, and the hydrogen storage alloy temperature and hydrogen equilibrium pressure. The solid line (A) shows the load and the stator winding cooling water. It shows an example of the characteristics of the stator winding cooling water outlet temperature derived from the relationship between the outlet temperature and the relationship between the load and the allowable hydrogen pressure. The two-dot chain line (a), the dotted line (b), the one-dot chain line (c) and ( d)
Is a characteristic example showing the relationship between temperature and hydrogen equilibrium pressure of different types of hydrogen storage alloys. As can be seen from the characteristic diagram, the characteristic of the solid line A necessary for the operation of the hydrogen-cooled rotating electric machine, that is, the characteristic of the hydrogen storage alloy with respect to the load (cooling water outlet temperature) and the allowable hydrogen pressure inside the aircraft is the two-dot chain line ( There are several cases as shown in a), dotted line (b), alternate long and short dash line (c) and (d). Now, assuming that the adjustment range of hydrogen pressure is between 4.2 and 2 Kg / cm 2 , the stator winding is always used in the case of the hydrogen storage alloy with the characteristics on the upper right of the solid line (A) as indicated by the chain double-dashed line (a). The outlet cooling water of the above must be further cooled and used, and in the case of the hydrogen storage alloy of the characteristic located at the lower left of the solid line A as indicated by the chain line (c), the outlet cooling water of the stator winding is always heated. Therefore, it is energy-consuming. On the other hand, in the case of the hydrogen storage alloy having the characteristics of the dotted line (b) and the one-dot chain line (d), it intersects with the solid line (A) in the pressure adjustment range, which is advantageous in terms of energy, I can say. However, even if a hydrogen storage alloy having such characteristics is used, it does not match the characteristics indicated by the solid line (A), so that it is actually necessary to finely adjust the temperature of the stator winding cooling water. That is, when using a hydrogen storage alloy having the characteristics shown by the dotted line (b), assuming that the stator winding cooling water outlet temperature is 80 ° C at a load of 100%, the hydrogen equilibrium pressure at that time will be about 5 kg / cm 2 . , Required hydrogen pressure at 100% load 4.2Kg /
Since it exceeds cm 2 , it is necessary to slightly cool the stator winding cooling water at this point so that it reaches the “X” point in the figure. Also
When the hydrogen storage alloy is heated at the stator winding cooling water outlet temperature of 65 ° C at 75% load, the hydrogen equilibrium pressure becomes approximately 1.00 Kg / cm 2 , and at this point the stator winding cooling water is heated to Need to come to the Y "point.

また、一点鎖線(d)に示す特性の水素貯蔵合金を使用
する場合は上記(b)の特性とは逆になり、100%負荷
時で固定子巻線冷却水を加熱し、75%負荷時では固定子
巻線冷却水を冷却して水素貯蔵合金を冷却する必要があ
る。
When using a hydrogen storage alloy with the characteristics indicated by the alternate long and short dash line (d), it is the opposite of the characteristics described in (b) above, heating the stator winding cooling water at 100% load, and at 75% load Then, it is necessary to cool the stator winding cooling water to cool the hydrogen storage alloy.

このように固定子巻線冷却水により水素貯蔵合金を加
熱、冷却するに際して、水素貯蔵合金の温度微調整用に
最小限の外部熱量を冷却水再加熱器22とクーラ13の出口
側の温度の低い冷却水の一部を配管23によりバイパスさ
せるようにしたものである。
In this way, when heating and cooling the hydrogen storage alloy with the stator winding cooling water, the minimum amount of external heat for fine adjustment of the temperature of the hydrogen storage alloy is adjusted to the temperature of the outlet side of the cooling water reheater 22 and the cooler 13. A part of the low cooling water is bypassed by the pipe 23.

以上の如く構成された水素冷却タービン発電機の水素圧
力調整装置において、前述した実施例と同様に固定子巻
線冷却水循環系により固定子巻線2が冷却され、またこ
の時ケース14内に充填された水素貯蔵合金17がその時の
固定子巻線冷却水循環系からバイパスされる冷却水によ
り回転電機の負荷に対する冷却上の許容水素圧力に対応
した温度に調整されているものとする。このような状態
にある時、発電機の負荷が大きくなると固定子巻線2に
流れる電流が増加し、その導体には電流の2乗に比例す
る熱が発生するため、固定子巻線2の中空導体を通して
流出側ヘッダー8aに流出される冷却水の温度が上昇す
る。この温度上昇した冷却水の一部は前述した固定子巻
線冷却水循環系から冷却水再加熱器22に流入し、ここで
その戻り冷却水を適宜温度に加熱した後ケース14内を通
して純水供給装置9のタンク11へ流れる。したがって、
ケース14内に充填された水素貯蔵合金17は冷却水再加熱
器22により加熱された戻り冷却水によって暖められるの
で、水素貯蔵合金17から機内への水素ガスの放出が促進
される。これにより機内を循環している水素ガスの圧力
が増加して負荷に対する許容水素ガス圧力となるので、
機内発熱部の冷却が向上することになる。この場合、冷
却水再加熱器22に対して通電が行なわれ、また配管23に
設けられているバルブ24aは閉路されている。
In the hydrogen pressure adjusting device for the hydrogen-cooled turbine generator configured as described above, the stator winding 2 is cooled by the stator winding cooling water circulation system as in the above-described embodiment, and the case 14 is filled at this time. It is assumed that the hydrogen storage alloy 17 thus prepared is adjusted to a temperature corresponding to the allowable hydrogen pressure for cooling the load of the rotating electric machine by the cooling water bypassed from the stator winding cooling water circulation system at that time. In such a state, when the load of the generator increases, the current flowing in the stator winding 2 increases, and heat proportional to the square of the current is generated in the conductor, so that the stator winding 2 The temperature of the cooling water flowing out to the outflow side header 8a through the hollow conductor rises. A part of the cooling water whose temperature has risen flows into the cooling water reheater 22 from the above-described stator winding cooling water circulation system, where the returning cooling water is heated to an appropriate temperature and then pure water is supplied through the case 14. It flows to the tank 11 of the device 9. Therefore,
Since the hydrogen storage alloy 17 filled in the case 14 is warmed by the return cooling water heated by the cooling water reheater 22, the release of hydrogen gas from the hydrogen storage alloy 17 into the machine is promoted. As a result, the pressure of the hydrogen gas circulating inside the machine increases and becomes the allowable hydrogen gas pressure for the load.
The cooling of the heat generating part in the machine is improved. In this case, the cooling water reheater 22 is energized, and the valve 24a provided in the pipe 23 is closed.

一方、発電機の負荷が小さくなると固定子巻線2に流れ
る電流も減少するので、固定子巻線2の中空導体を通し
て流出側ヘッダー8aに流出される冷却水の温度が低下す
る。この温度低下した冷却水の一部はクーラ13の出口側
の温度の低い冷却水の一部と合流してケース14内を通し
て純水供給装置9のタンク11へ流れ、ケース14内に充填
された水素貯蔵合金17が冷却される。したがって、機内
の水素ガスが水素貯蔵合金17に吸着され、機内を循環し
ている水素ガスの圧力がその時の負荷に対する許容水素
ガス圧力となるように低下するので、回転子5の表面の
風損やファン動力が少なくなり、発電機の効率を向上さ
せることができる。この場合、冷却水再加熱器22に対す
る通電は行なわれず、また配管23に設けられているバル
ブ24aが開放されている。
On the other hand, when the load of the generator decreases, the current flowing through the stator winding 2 also decreases, so the temperature of the cooling water that flows out to the outflow header 8a through the hollow conductor of the stator winding 2 decreases. A part of the cooling water having the lowered temperature merges with a part of the cooling water having a low temperature on the outlet side of the cooler 13, flows through the case 14 to the tank 11 of the pure water supply device 9, and is filled in the case 14. The hydrogen storage alloy 17 is cooled. Therefore, the hydrogen gas in the machine is adsorbed by the hydrogen storage alloy 17, and the pressure of the hydrogen gas circulating in the machine decreases to the allowable hydrogen gas pressure for the load at that time, so that the windage on the surface of the rotor 5 is reduced. The fan power is reduced and the efficiency of the generator can be improved. In this case, the cooling water reheater 22 is not energized, and the valve 24a provided in the pipe 23 is opened.

このように本実施例では冷却水流出側ヘッダー8aと純水
供給装置9のタンク11間を結ぶ固定子巻線冷却水系から
ケース14の一方の開口部に冷却水を流入せしめる配管18
aの中途に冷却水再加熱器22を設けると共に純水供給装
置9の配管10bと冷却水再加熱器22より上流側の配管18a
との間を配管23により接続してクーラ13の出口側の温度
の低い冷却水の一部をバイパスさせる構成としたので、
負荷上昇時や負荷減少時には機内水素ガス圧力を最小の
エネルギによる微調整で負荷に対する許容水素ガス圧力
にできる。また、予め負荷が上昇する前に冷却水再加熱
器で水素貯蔵合金を加熱して機内水素圧力を上昇時にお
ける負荷の許容水素圧力まで上げておくことにより、負
荷上昇時の圧力調整に要するタイムラグを無くして機内
の水素圧力を調整することができる。
As described above, in this embodiment, the pipe 18 for allowing the cooling water to flow from the stator winding cooling water system connecting the cooling water outflow side header 8a and the tank 11 of the pure water supply device 9 to one opening of the case 14 is provided.
A cooling water reheater 22 is provided in the middle of a, and a pipe 10b of the pure water supply device 9 and a pipe 18a upstream of the cooling water reheater 22 are provided.
Since a part of the cooling water having a low temperature on the outlet side of the cooler 13 is bypassed by connecting the pipe 23 with the pipe 23,
When the load increases or decreases, the hydrogen gas pressure inside the machine can be adjusted to the allowable hydrogen gas pressure for the load by fine adjustment with the minimum energy. Also, before the load increases, the cooling water reheater heats the hydrogen storage alloy to raise the in-machine hydrogen pressure to the allowable hydrogen pressure of the load when the load rises, so that the time lag required for pressure adjustment when the load rises. It is possible to adjust the hydrogen pressure inside the machine by eliminating.

尚、本実施例では戻り冷却水の温度を下げるためクーラ
13の出口側の温度の低い冷却水の一部を配管23によりバ
イパスさせる構成としたが、第5図に示すように固定子
巻線冷却系からケース14に戻り冷却水を流入する配管18
aに冷却水再加熱器22と直列にクーラ25を設けるように
してもよい。
In this embodiment, the cooler is used to reduce the temperature of the return cooling water.
Although a part of the cooling water having a low temperature on the outlet side of 13 is bypassed by the pipe 23, as shown in FIG. 5, the pipe 18 for returning the cooling water from the stator winding cooling system to the case 14 flows in.
A cooler 25 may be provided in a in series with the cooling water reheater 22.

前述した各実施例では水素貯蔵合金を冷却,加熱する媒
体として固定子巻線水冷却系を用いる場合について述べ
たが、回転軸孔を通して回転子巻線を水冷却するように
した回転子巻線水冷却系を用いるようにしても良い。
In each of the above-mentioned embodiments, the case where the stator winding water cooling system is used as a medium for cooling and heating the hydrogen storage alloy has been described, but the rotor winding is water-cooled through the rotation shaft hole. A water cooling system may be used.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、機内に水素ガスを冷
却媒体として充填し且つ冷却水が流出入可能な中空導体
により形成された固定子巻線に冷却水循環系を接続して
なる回転電機において、温度変化により水素ガスを放出
または吸着する水素貯蔵合金を収納したケースを機内の
水素ガス循環系に水素ガスが流出入可能に接続すると共
に前記ケース内に形成された冷却水流通路と前記回転電
機の固定子巻線に冷却水供給装置より冷却水を循環させ
て固定子巻線を冷却する冷却水循環系とを接続して前記
冷却水流通路に前記固定子巻線の冷却水出側から前記冷
却水供給装置に戻る冷却水の一部を流出入せしめて前記
水素貯蔵合金を冷却又は加熱するようにしたので、爆発
の危険のない静止形にして機内に対して水素ガスの注入
や排出を行うことができると共に、機内水素ガス圧力を
負荷変動に応じて自動的に調整することが可能となり、
機内の水素ガス圧を自動的に決定する自己調整作用が得
られ、もってエネルギの有効利用を図ることができる水
素冷却回転電機の水素圧力調整装置を提供できる。
As described above, according to the present invention, a rotating electric machine in which a cooling water circulation system is connected to a stator winding formed by filling the interior of a machine with hydrogen gas as a cooling medium and forming a hollow conductor through which cooling water can flow in and out. In, a case containing a hydrogen storage alloy that releases or adsorbs hydrogen gas due to temperature change is connected to the hydrogen gas circulation system in the machine so that hydrogen gas can flow in and out, and the cooling water flow passage formed in the case and the rotation The stator winding of the electric machine is connected to a cooling water circulation system that circulates cooling water from a cooling water supply device to cool the stator winding, and the cooling water flow passage is connected to the cooling water outlet side from the cooling water outlet side of the stator winding. Since a part of the cooling water returning to the cooling water supply device is made to flow in and out to cool or heat the hydrogen storage alloy, a stationary type that does not pose a risk of explosion can be used to inject and discharge hydrogen gas into the machine. What to do Is possible, it is possible to adjust automatically depending flight hydrogen gas pressure to load variation,
It is possible to provide a hydrogen pressure adjusting device for a hydrogen-cooled rotary electric machine, which can obtain a self-adjusting action of automatically determining the hydrogen gas pressure inside the machine and thus can effectively use energy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による水素冷却回転電機の一実施例を示
す構成説明図、第2図は同実施例で用いられる水素貯蔵
合金の特性図、第3図は本発明の他の実施例を示す構成
説明図、第4図は固定子巻線冷却水出口温度と許容機内
水素圧力の関係及び水素貯蔵合金と水素平衡圧力の関係
を示す特性図、第5図は本発明のさらに異なる他の実施
例の要部を示す構成図、第6図は従来のタービン発電機
の水素圧力調整系を示す構成図である。 1……固定子フレーム、2……固定子巻線、3……固定
子鉄心、4……空間部、5……回転子、6……自己フア
ン、7……水素ガス、8a,8b……ヘッダ、9……純水装
置、10a,10b……配管、11……タンク、12……ポンプ、1
3……クーラ、14……ケース、15……ケースの上部ヘッ
ダー、16……伝熱管、17……水素貯蔵合金、18a,18b…
…配管、19……上部ヘッダ、20……配管、21a〜21c……
バルブ、22……冷却水再加熱器、23……配管、24a〜24c
……バルブ、25……クーラ。
FIG. 1 is a structural explanatory view showing an embodiment of a hydrogen-cooled rotary electric machine according to the present invention, FIG. 2 is a characteristic diagram of a hydrogen storage alloy used in the same embodiment, and FIG. 3 is another embodiment of the present invention. 4 is a characteristic diagram showing the relationship between the stator winding cooling water outlet temperature and the allowable hydrogen pressure inside the machine and the relationship between the hydrogen storage alloy and the hydrogen equilibrium pressure. FIG. 5 shows another difference of the present invention. FIG. 6 is a configuration diagram showing a main part of the embodiment, and FIG. 6 is a configuration diagram showing a hydrogen pressure adjusting system of a conventional turbine generator. 1 ... Stator frame, 2 ... Stator winding, 3 ... Stator core, 4 ... Space part, 5 ... Rotor, 6 ... Self fan, 7 ... Hydrogen gas, 8a, 8b ... … Header, 9 …… Pure water device, 10a, 10b …… Piping, 11 …… Tank, 12 …… Pump, 1
3 …… cooler, 14 …… case, 15 …… case upper header, 16 …… heat transfer tube, 17 …… hydrogen storage alloy, 18a, 18b…
… Piping, 19 …… Upper header, 20 …… Piping, 21a-21c ……
Valve, 22 …… Cooling water reheater, 23 …… Piping, 24a-24c
…… Valve, 25 …… cooler.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機内に水素ガスを冷却媒体として充填し且
つ冷却水が流出入可能な中空導体により形成された固定
子巻線に冷却水循環系を接続してなる回転電機におい
て、温度変化により水素ガスを放出または吸着する水素
貯蔵合金を収納したケースを機内の水素ガス循環系に水
素ガスが流出入可能に接続すると共に前記ケース内に形
成された冷却水流通路と前記回転電機の固定子巻線に冷
却水供給装置より冷却水を循環させて固定子巻線を冷却
する冷却水循環系とを接続して前記冷却水流通路に前記
固定子巻線の冷却水出側から前記冷却水供給装置に戻る
冷却水の一部を流出入せしめて前記水素貯蔵合金を冷却
又は加熱することにより機内水素ガス圧力を負荷変動に
応じて自動的に調整するようにしたことを特徴とする水
素冷却回転電機の水素圧力調整装置。
1. A rotating electric machine in which a cooling water circulation system is connected to a stator winding formed of a hollow conductor capable of filling hydrogen gas as a cooling medium into the machine and allowing cooling water to flow in and out, and hydrogen A case containing a hydrogen storage alloy that releases or adsorbs gas is connected to a hydrogen gas circulation system in the machine so that hydrogen gas can flow in and out, and a cooling water flow passage formed in the case and a stator winding of the rotating electric machine. Is connected to a cooling water circulation system that circulates cooling water from a cooling water supply device to cool the stator winding, and returns to the cooling water supply device from the cooling water outlet side of the stator winding in the cooling water flow passage. Water for a hydrogen-cooled rotating electric machine characterized in that the hydrogen gas pressure in the machine is automatically adjusted according to load fluctuations by flowing in and out a part of cooling water to cool or heat the hydrogen storage alloy. Pressure regulating device.
JP60133417A 1985-06-19 1985-06-19 Hydrogen pressure regulator for hydrogen-cooled rotating electric machine Expired - Lifetime JPH07101978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60133417A JPH07101978B2 (en) 1985-06-19 1985-06-19 Hydrogen pressure regulator for hydrogen-cooled rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60133417A JPH07101978B2 (en) 1985-06-19 1985-06-19 Hydrogen pressure regulator for hydrogen-cooled rotating electric machine

Publications (2)

Publication Number Publication Date
JPS61293133A JPS61293133A (en) 1986-12-23
JPH07101978B2 true JPH07101978B2 (en) 1995-11-01

Family

ID=15104282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60133417A Expired - Lifetime JPH07101978B2 (en) 1985-06-19 1985-06-19 Hydrogen pressure regulator for hydrogen-cooled rotating electric machine

Country Status (1)

Country Link
JP (1) JPH07101978B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667988B1 (en) * 1992-11-04 1996-05-01 Siemens Aktiengesellschaft Process for removing hydrogen from a hydrogen-filled electric machine
CN110601408B (en) * 2019-09-30 2024-04-12 长江勘测规划设计研究有限责任公司 Internal cooling circulation system for stator winding of hydroelectric generating set based on hydrogen cooling technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186948A (en) * 1981-05-13 1982-11-17 Hitachi Ltd Coolant supplier for electric rotary machine

Also Published As

Publication number Publication date
JPS61293133A (en) 1986-12-23

Similar Documents

Publication Publication Date Title
US6192687B1 (en) Uninterruptible power supply utilizing thermal energy source
US9964073B1 (en) Liquid rocket engine with hybrid electric motor driven pump
US11444346B2 (en) Battery thermal management system for hybrid and full electric vehicles using heat capacitor
JP2006087295A (en) System and method for providing cooling in compressed gas storage power supply system
CN106121753A (en) Improvement control concept for closed loop Brayton cycle
US4319149A (en) Superconducting generator with improved thermal transient response
JPH07101978B2 (en) Hydrogen pressure regulator for hydrogen-cooled rotating electric machine
JPS6154842A (en) Cooler of rotary electric machine
JP4774028B2 (en) Closed cycle plant
CN112261841A (en) Electronic equipment cooling liquid supply system and method based on phase change capsule heat storage and temperature control
US4365479A (en) Coolant replenishing system for superconducting field windings
JPS61293132A (en) Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine
US3912584A (en) LMFBR with booster pump in pumping loop
JPH0583756B2 (en)
JPS61293131A (en) Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine
JPS61227652A (en) Hydrogen pressure regulator of hydrogen-cooled rotary electric machine
JPS61227651A (en) Hydrogen pressure regulator of hydrogen-cooled rotary electric machine
JP3670328B2 (en) Water supply system for ground steam generator
JP2016219286A (en) Eddy current heating device
JP2004032845A (en) Cooling device for generator
JPH09190927A (en) Exhaust heat recovery equipment
JPH04262091A (en) Cooling water circulating facility for re-circulating pump
JPS61116091A (en) Internal circulating pump of nuclear reactor
JPH0130563Y2 (en)
JPS5915890A (en) Auxiliary cooling device for atomic power plant