JPS61227651A - Hydrogen pressure regulator of hydrogen-cooled rotary electric machine - Google Patents

Hydrogen pressure regulator of hydrogen-cooled rotary electric machine

Info

Publication number
JPS61227651A
JPS61227651A JP6676285A JP6676285A JPS61227651A JP S61227651 A JPS61227651 A JP S61227651A JP 6676285 A JP6676285 A JP 6676285A JP 6676285 A JP6676285 A JP 6676285A JP S61227651 A JPS61227651 A JP S61227651A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
machine
storage alloy
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6676285A
Other languages
Japanese (ja)
Inventor
Mikio Kumagai
熊谷 幹夫
Yutaka Watanabe
裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6676285A priority Critical patent/JPS61227651A/en
Publication of JPS61227651A publication Critical patent/JPS61227651A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/24Protection against failure of cooling arrangements, e.g. due to loss of cooling medium or due to interruption of the circulation of cooling medium

Abstract

PURPOSE:To eliminate operations for filling and discharging hydrogen gas by automatically regulating the hydrogen gas pressure in a machine of cooling medium in response to a variation in a load. CONSTITUTION:A plurality of racks 18 are formed in a hydrogen gas circulating path in a hydrogen-cooled rotary electric machine, cases 17 for containing powder hydrogen storage alloy 19 filled in a housing are held on the racks 18. Hydrogen gas 15 circulated in the machine is freely passed through the cases 17 to rise or fall the temperature of the alloy 19, thereby automatically regulating the hydrogen pressure in the machine in response to the magnitude of a load. Thus, the efficiency of the rotary electric machine can be improved. Since the case 17 containing the alloy 19 is provided in the hydrogen gas circulating passage in the machine, the absorbing and discharging phenomenon of the hydrogen of the alloy 19 for the temperature change of the gas in the machine can be effectively utilized.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水素冷却回転電機において、特に水素貯蔵合金
を水素ガス循環系に設けて機内の水素ガス圧力を負荷変
動に応じて調整可能にした水素冷却回転電機の水素圧力
調整装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a hydrogen-cooled rotating electric machine, in particular a hydrogen storage alloy installed in a hydrogen gas circulation system so that the hydrogen gas pressure inside the machine can be adjusted according to load fluctuations. This invention relates to a hydrogen pressure adjustment device for a cooling rotary electric machine.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

回転電機、例えばタービン発電機においてはその冷却媒
体として水素ガスを用いたものがある。
Some rotating electric machines, such as turbine generators, use hydrogen gas as a cooling medium.

この場合、機内の水素ガスはタービン発電機の単機容量
が上がるに従ってその熱容量、即ち(比重量)×(比熱
)を増加して冷却効果を上げる必要があり、特に大容壷
機では機内の水素ガス圧力を例えば5.2at−にして
いるものもある。
In this case, it is necessary to increase the heat capacity of the hydrogen gas in the aircraft as the capacity of the turbine generator increases, i.e., (specific weight) x (specific heat) to improve the cooling effect. Some have a gas pressure of, for example, 5.2 at-.

しかるに、近年タービン発電機の使用は多用化し、常に
100%負荷だけでなく部分負荷で使用されることがあ
る。この部分負荷時は発電機の電気損が少なく、冷却上
水素ガス圧を5.2atlのままにしておく必要がない
。部分負荷時に機内の水素ガス圧力を5.2atlBの
ままにしておくと、回転子の風損、ファン動力が100
%負荷時と変わらないため、発電機の効率が低下する。
However, in recent years, turbine generators have been used more frequently, and are sometimes used not only at 100% load but also at partial load. During this partial load, the electrical loss of the generator is small, and there is no need to keep the hydrogen gas pressure at 5.2 atl for cooling purposes. If the hydrogen gas pressure inside the machine is kept at 5.2 atlB during partial load, the windage loss of the rotor and the fan power will decrease by 100%.
% load, so the efficiency of the generator decreases.

そこで、このような場合には機内の水素ガス圧力を下げ
ることにより回転子の風損、ファン動力が減少し、発電
機の効率を向上させることができる。
Therefore, in such a case, by lowering the hydrogen gas pressure inside the machine, the windage loss of the rotor and the fan power can be reduced, and the efficiency of the generator can be improved.

ところで、従来の水素冷却回転電機においては機内の水
素ガスを高圧の水素ガスボンベにより注入するようにし
ており、従って機内の水素ガス圧力を負荷の変動に応じ
て調整するには機内から水素ガスを放出させたり、高圧
の水素ガスボンベより再注入する方式を用いていた。し
かしこの方式は水素ガスの注入や放出のための操作が繁
雑であり、また水素ガスの消耗量が多大になると言う欠
点があった。
By the way, in conventional hydrogen-cooled rotating electric machines, the hydrogen gas inside the machine is injected using a high-pressure hydrogen gas cylinder. Therefore, in order to adjust the hydrogen gas pressure inside the machine according to load fluctuations, it is necessary to release hydrogen gas from inside the machine. The hydrogen gas was then re-injected from a high-pressure hydrogen gas cylinder. However, this method has the disadvantage that the operations for injecting and discharging hydrogen gas are complicated and that a large amount of hydrogen gas is consumed.

(発明の目的) 本発明は上記のような欠点を除去するためになされたも
ので、その目的は水素ガスの注入や放出のための操作の
必要がなく、しかも水素ガスの消耗をなくしてエネルギ
ーの有効利用を図ることができる水素冷却回転電機の水
素圧力調整装置を提供するにある。
(Object of the Invention) The present invention was made to eliminate the above-mentioned drawbacks, and its purpose is to eliminate the need for operations for injecting and releasing hydrogen gas, and to save energy by eliminating the consumption of hydrogen gas. An object of the present invention is to provide a hydrogen pressure regulating device for a hydrogen-cooled rotating electric machine that can effectively utilize hydrogen.

〔発明の概要〕[Summary of the invention]

本発明はかかる目的を達成するため、水素ガスを冷却媒
体として冷却器を介し機内発熱を放出する回転電機にお
いて、機内の水素ガスが循環する水素ガス循環系の一部
に温度変化により機内に水素ガスを放出または機内の水
素ガスを吸着する粉末状水素貯蔵合金を設けて負荷変動
に応じて機内水素ガス圧力を自動的に調整できるように
したものである。
In order to achieve such an object, the present invention is an electric rotating machine that uses hydrogen gas as a cooling medium and releases heat inside the machine via a cooler. It is equipped with a powdered hydrogen storage alloy that releases gas or adsorbs hydrogen gas inside the machine, so that the hydrogen gas pressure inside the machine can be automatically adjusted in response to load fluctuations.

ここで、水素貯蔵合金とは水素を非常によく吸収する性
質を有するチタンやミツシュメタルなどの金属原子を組
合わせたもので、温度を下げるか圧力を上げると水素ガ
スを吸収して発熱し、逆に温度を上げるか圧力を下げる
と吸収した水素ガスを放出して周囲から熱をうばう性質
があり、また送込む水素ガスの圧力値によって合金自体
の濃度も変化し、逆に合金自体の温度を変えることによ
って発生する水素ガスの圧力も異なるという相関関係を
有しているものである。
Here, a hydrogen storage alloy is a combination of metal atoms such as titanium and Mitsushi metal, which have the property of absorbing hydrogen very well.When the temperature is lowered or the pressure is increased, the hydrogen storage alloy absorbs hydrogen gas and generates heat. When the temperature is raised or the pressure is lowered, the absorbed hydrogen gas is released and heat is taken away from the surroundings.Also, the concentration of the alloy itself changes depending on the pressure of the hydrogen gas being sent, and conversely the temperature of the alloy itself changes. There is a correlation in that the pressure of the hydrogen gas generated will also differ depending on the change.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

まず第1図及び第2図により本実施例の概要について説
明する。第1図において、1は回転N機で、機内には冷
却媒体として水素ガスが注入されている。2は回転電機
の鉄損、Jl損、銅損など熱として機内に発生するもの
で、模擬的にヒータとして表わしている。3はヒータ2
の熱を冷却するクーラを模擬的に表わしたものである。
First, the outline of this embodiment will be explained with reference to FIGS. 1 and 2. In FIG. 1, reference numeral 1 denotes a rotary N machine, into which hydrogen gas is injected as a cooling medium. 2 is heat generated inside the rotating electrical machine as heat such as iron loss, Jl loss, and copper loss, which are simulated as heaters. 3 is heater 2
This is a simulated representation of a cooler that cools down the heat.

また5は機内の冷却ガス系に配管4を介して連繋された
ケースで、このケース5内には粉末状の水素貯蔵合金が
充填され、機内との間で水素ガスが流れるようになって
いる。
In addition, 5 is a case connected to the cooling gas system inside the aircraft via piping 4. This case 5 is filled with a powdered hydrogen storage alloy, so that hydrogen gas flows between it and the inside of the aircraft. .

次にこのように構成された水素冷却回転電機の水素圧力
調整装置の作用を第2図を参照しながら述べる。第2図
はケース5内に充填された粉末状の水素貯蔵合金の特性
例を示すものである。すなわち、回転電機の負荷が10
0%である時、冷却媒体である水素ガスの温度が50°
Cとすると機内のガス圧力は5.2atmで平衡状態に
ある。この状態から負荷が下がってヒータ2よる発熱が
少なくなるとクーラ3により冷却媒体である水素ガスが
冷却される。そして水素ガスの温度が40℃になったと
すると水素貯蔵合金に水素ガスが吸着され、機内の圧力
は4.Qat■に減圧される。厳密には機内圧力の減圧
により水素ガスの冷却能力が減少し、ガス温度低下が抑
制されたり風損、ファン動力の減少による水素ガス濃度
低下等の要因がバランスして機内圧力の減圧が決定され
る。このように回転電機の回転子の風損やファン動力が
減少するので、回転電機の効率を向上させることができ
る。
Next, the operation of the hydrogen pressure regulating device for the hydrogen-cooled rotating electric machine constructed as described above will be described with reference to FIG. FIG. 2 shows an example of the characteristics of the powdered hydrogen storage alloy filled in the case 5. In other words, the load on the rotating electric machine is 10
When it is 0%, the temperature of hydrogen gas, which is a cooling medium, is 50°
C, the gas pressure inside the machine is in equilibrium at 5.2 atm. When the load decreases from this state and the heat generated by the heater 2 decreases, the cooler 3 cools the hydrogen gas that is the cooling medium. If the temperature of the hydrogen gas reaches 40°C, the hydrogen gas will be adsorbed by the hydrogen storage alloy, and the pressure inside the aircraft will rise to 40°C. The pressure is reduced to Qat■. Strictly speaking, reducing the cabin pressure reduces the cooling capacity of hydrogen gas, suppressing the drop in gas temperature, and reducing the hydrogen gas concentration due to wind damage and reduced fan power. Ru. Since the windage loss of the rotor of the rotating electric machine and the fan power are reduced in this way, the efficiency of the rotating electric machine can be improved.

また、逆に負荷が上がり冷却媒体である水素ガスの温度
が上昇すると水素貯蔵合金より水素ガスが放出されるの
で、機内圧力が上昇し冷却効果を増大させることができ
る。
Conversely, when the load increases and the temperature of hydrogen gas, which is a cooling medium, rises, hydrogen gas is released from the hydrogen storage alloy, so the internal pressure increases and the cooling effect can be increased.

このように水素貯蔵合金の特性を利用して回転電機の負
荷の変動に応じて機内の水素ガスを吸着又は機内へ水素
ガスを放出させるだけで機内の水素ガス圧力を自動的に
調整できるので、機械的な機構は一切不要となり信頼性
の高いものとなり、また機内の水素ガス圧力の調節のた
めに水素ガスを大気放出する必要もなくなる。
In this way, the hydrogen gas pressure inside the machine can be automatically adjusted by simply adsorbing hydrogen gas in the machine or releasing hydrogen gas into the machine in response to changes in the load of the rotating electric machine by using the characteristics of the hydrogen storage alloy. There is no need for any mechanical mechanism, resulting in high reliability, and there is no need to release hydrogen gas into the atmosphere to adjust the hydrogen gas pressure inside the aircraft.

次に第3図により本実施例の具体的な構成について説明
する。
Next, the specific configuration of this embodiment will be explained with reference to FIG.

第3図に示すようにケース5は筒体の周面のほぼ中央部
に上部ヘッダ5aを設けるように構成したもので、その
内部には複数個の伝熱管6が筒体の長手方向に沿って配
設されると共にこれら各伝熱管6相互間に形成される管
外スペースには前述した粉末状の水素貯蔵合金7が充填
されている。
As shown in FIG. 3, the case 5 is constructed such that an upper header 5a is provided at approximately the center of the circumferential surface of the cylinder, and inside the case 5, a plurality of heat transfer tubes 6 are arranged along the longitudinal direction of the cylinder. The space outside the heat transfer tubes 6 formed between the heat transfer tubes 6 is filled with the above-mentioned powdered hydrogen storage alloy 7.

そしてこのケース5の両端開口部には回転電機1の機内
に連通させて配設された配管4a、4bが接続され、機
内の水素ガス循環系の一部のガスが各伝熱管6を通して
流れるようにしである。またケース5の上部ヘッダ5a
には通気性を有するフィルタ8が設けられると共に機内
に連通させて配設された配管4Cが接続され、この配管
4Cを通して水素貯蔵合金7から放出されたり、水素貯
蔵合金7に吸着されたりする水素ガスを機内との間で流
通できるようにしである。
The openings at both ends of the case 5 are connected to pipes 4a and 4b which are arranged to communicate with the inside of the rotating electric machine 1, so that part of the gas in the hydrogen gas circulation system inside the machine flows through each heat transfer tube 6. It's Nishide. Also, the upper header 5a of the case 5
is provided with a filter 8 having air permeability, and is connected to a pipe 4C that communicates with the interior of the machine, through which hydrogen is released from the hydrogen storage alloy 7 or adsorbed by the hydrogen storage alloy 7. This allows gas to flow to and from the cabin.

尚、9a、9b、9cはケース5と回転電機1の機内と
を結ぶ各配管4a、4b、4Cの中途に設けられたバル
ブで、これらはケース5を回転電機1側から取外す時に
機内の水素ガスが大気に放出しないようにするためのも
のである。
In addition, 9a, 9b, and 9c are valves installed in the middle of each pipe 4a, 4b, and 4C that connect the case 5 and the inside of the rotating electrical machine 1, and these valves are used to remove the hydrogen inside the machine when the case 5 is removed from the rotating electrical machine 1 side. This is to prevent gas from being released into the atmosphere.

次に上記のように構成された水素冷却回転電機の水素圧
力l1M装置の作用について述べる。今、ケース5と回
転電機1の機内とを結ぶ配管4aが機内の水素ガス循環
用自己ファンの吐出ガス系統に接続され、また配管4b
が吸込ガス系統に接続されているものとすると、水素ガ
スは機内とケース5との間を図示矢印のように流れる。
Next, the operation of the hydrogen pressure 11M device for the hydrogen-cooled rotating electric machine constructed as described above will be described. Now, the pipe 4a connecting the case 5 and the inside of the rotating electric machine 1 is connected to the discharge gas system of the hydrogen gas circulation fan inside the machine, and the pipe 4b
is connected to the suction gas system, hydrogen gas flows between the inside of the machine and the case 5 as shown by the arrow.

この場合、配管4aからケース5内に流入した水素ガス
は各伝熱管6を通して流れ、管外スペースに充填されて
いる水素貯蔵合金7を暖めたり、冷却した後、ケース5
から配管4bへ流出することになる。また伝熱管6を通
して流れる水素ガスにより水素貯蔵合金7が暖められる
とこの水素貯蔵合金7から放出される水素ガスは上部ヘ
ッダ5aよりフィルタ8及び配管4Cを通して機内に導
入され、これとは逆に水素貯蔵合金7が冷却されると機
内から配管4C及びフィルタ8を通して上部ヘッダ5a
内に導入される水素ガスは水素貯蔵合金7に吸着される
In this case, the hydrogen gas that has flowed into the case 5 from the pipe 4a flows through each heat transfer tube 6, warms or cools the hydrogen storage alloy 7 filled in the space outside the tube, and then flows into the case 5.
It will flow out from the pipe 4b. Furthermore, when the hydrogen storage alloy 7 is warmed by the hydrogen gas flowing through the heat transfer tube 6, the hydrogen gas released from the hydrogen storage alloy 7 is introduced into the machine from the upper header 5a through the filter 8 and the piping 4C; When the storage alloy 7 is cooled, it is passed from the inside of the machine through the pipe 4C and the filter 8 to the upper header 5a.
Hydrogen gas introduced into the hydrogen storage alloy 7 is adsorbed by the hydrogen storage alloy 7.

従って、回転電機の負荷の増加や減少により機内の水素
ガスの温度が第1図及び第2図で述べたようにように上
昇したり、低下したりすると水素貯蔵合金7から機内に
水素ガスが放出されたり、機内の水素ガスが水素貯蔵合
金7に吸着されるので、機内の水素ガス圧力は負荷変動
に応じて自動的に調整されることになる。
Therefore, when the temperature of hydrogen gas inside the machine increases or decreases as shown in Figures 1 and 2 due to an increase or decrease in the load on the rotating electric machine, hydrogen gas flows from the hydrogen storage alloy 7 into the machine. Since the hydrogen gas inside the machine is adsorbed by the hydrogen storage alloy 7, the hydrogen gas pressure inside the machine is automatically adjusted according to load fluctuations.

以上のように本実施例ではケース5内に複数個の伝熱管
6を設けてその管外スペースに水素貯蔵合金7を充填し
、各伝熱管6を通して機内の水素ガスを循環させるよう
にしたので、水素貯蔵合金7との熱交換が良好なものと
なる。また、ケース5の上部ヘッダ5aにはフィルタ8
が設けられているので、水素貯蔵合金7から放出される
水素ガスが上部ヘッダ5aより機内へ向かって流入して
も粉末状の水素貯蔵合金が飛散して機内へ侵入する恐れ
がない。さらにケース5と回転型g11の機内とを結ぶ
各配管4a〜4Cにはバルブ98〜9Cが設けられてい
るので、水素貯蔵合金7に寿命がきた時バルブ9a〜9
Cにより機内の水素ガスを封じ込むことで回転電機の運
転を停止することなく、ケース5を取外して新たなもの
に交換することができる。
As described above, in this embodiment, a plurality of heat transfer tubes 6 are provided inside the case 5, and the space outside the tubes is filled with hydrogen storage alloy 7, so that the hydrogen gas inside the machine is circulated through each heat transfer tube 6. , heat exchange with the hydrogen storage alloy 7 becomes good. In addition, a filter 8 is attached to the upper header 5a of the case 5.
is provided, so even if hydrogen gas released from the hydrogen storage alloy 7 flows into the interior of the machine from the upper header 5a, there is no fear that the powdered hydrogen storage alloy will scatter and enter the interior of the machine. Further, since valves 98 to 9C are provided in each of the pipes 4a to 4C connecting the case 5 and the interior of the rotary type g11, when the hydrogen storage alloy 7 reaches the end of its life, the valves 9a to 9
By sealing in the hydrogen gas inside the machine, the case 5 can be removed and replaced with a new one without stopping the operation of the rotating electric machine.

尚、上記実施例ではケース5の上部ヘッダ5aを回転N
機1の機内へ直接配管4Cにより接続するようにしたが
、この配管4Cを第4図に示すようにケース5から流出
する水素ガスを機内へ導入する配管4b側へ接続しても
よく、また機内からの水素ガスをケース5へ導入する配
管4a側に接続してもよい。また上記実施例では各配管
48〜4Cにそれぞれ1個のバルブ9a〜9Cを設ける
場合について示したが、第5図に示すように各配管4a
〜4Cにそれぞれ2個のバルブ9a〜9C。
In the above embodiment, the upper header 5a of the case 5 is rotated N.
Although the pipe 4C is connected directly to the inside of the machine 1, the pipe 4C may be connected to the pipe 4b side that introduces the hydrogen gas flowing out from the case 5 into the machine, as shown in FIG. It may be connected to the piping 4a side that introduces hydrogen gas from inside the machine into the case 5. Further, in the above embodiment, each pipe 48 to 4C is provided with one valve 9a to 9C, but as shown in FIG.
~4C with two valves 9a~9C each.

10a〜10.cを設けてケース5の取外し時機内とケ
ース内の水素ガスを封じ込むようにしてもよい。さらに
上記実施例では回転電機1に水素貯蔵合金7を充填した
1個のケース5を接続する構成について示したが、第6
図に示すように2個のケース5を設けてこれらを回転型
l111に対して配管により並列的にそれぞれバルブを
介して接続し、その一方を予備として使用できるように
してもよい。
10a-10. c may be provided to seal in the hydrogen gas inside the machine and the case when the case 5 is removed. Further, in the above embodiment, a configuration is shown in which one case 5 filled with hydrogen storage alloy 7 is connected to the rotating electrical machine 1, but the sixth embodiment
As shown in the figure, two cases 5 may be provided and connected to the rotary mold 111 in parallel by piping through valves, so that one of them can be used as a spare.

尚、本実施例では管外に水素貯蔵合金を充填する構成と
してその効果を述べたが、管内に水素貯蔵合金を充填し
管外を機内循環水素ガスが通過するように構成しても同
様の効果が得られることは言うまでもない。
In this example, the effect was described with a configuration in which the hydrogen storage alloy is filled outside the tube, but the same effect can be obtained even if the hydrogen storage alloy is filled inside the tube and the in-machine circulating hydrogen gas passes through the outside of the tube. Needless to say, it is effective.

次に第7図及び第8図により本発明の他の実施例を説明
する。
Next, another embodiment of the present invention will be described with reference to FIGS. 7 and 8.

第7図は水素貯蔵合金が収納されたケースを水素冷却回
転電機の機内水素ガス循環系の一部に設ける場合の構成
例を示すものである。第7図において、11は回転電機
の固定子フレームで、その内周面には固定子鉄心12が
取付けられると共にその背面にガス通気路が形成されて
いる。13は図示しない軸受に支承された回転子で、こ
の回転子13には自己ファン14が取付けられており、
機内に大気圧以上の圧力で封入された水素ガス15を強
制循環させるためのものである。また16は機内に形成
された水素ガス循環路の適宜箇所に設けられた冷却器で
、この冷却器16は固定子鉄心121回転子13等から
発生する熱にって暖められた水素ガス15を冷却してそ
の温度を低下させるためのものである。
FIG. 7 shows an example of a configuration in which a case containing a hydrogen storage alloy is provided as part of an in-machine hydrogen gas circulation system of a hydrogen-cooled rotating electric machine. In FIG. 7, reference numeral 11 denotes a stator frame of a rotating electric machine, and a stator core 12 is attached to the inner peripheral surface of the stator frame 11, and a gas ventilation path is formed on the back surface of the stator frame. 13 is a rotor supported by a bearing (not shown), and a self-fan 14 is attached to this rotor 13.
This is for forced circulation of hydrogen gas 15 sealed inside the machine at a pressure higher than atmospheric pressure. Reference numeral 16 denotes a cooler installed at an appropriate location in the hydrogen gas circulation path formed inside the machine. This is for cooling and lowering the temperature.

このような構成の水素冷却回転電機において、本実施例
では機内の水素ガス循環路の適宜位置。
In the hydrogen-cooled rotating electric machine having such a configuration, in this embodiment, the hydrogen gas circulation path inside the machine is located at an appropriate position.

図では固定子フレーム11の軸方向両端部近傍に設けら
れた冷却器16の上流側に粉末状の水素貯蔵合金を収納
したケース17を取付けるものである。このケース17
は第8図に示すように筒状に形成されその両端開口部を
通して水素ガスが流れるようにしたもので、このケース
17の内部には複数段の棚18が形成されている。そし
てこれら各棚18上にはフィルタを兼ねた通気性を有す
る高熱伝導性の筐体内に充填された粉末状の水素貯蔵合
金19が保持された状態で設けられている。
In the figure, a case 17 containing a powdered hydrogen storage alloy is attached to the upstream side of a cooler 16 provided near both ends of the stator frame 11 in the axial direction. This case 17
As shown in FIG. 8, the case 17 is formed into a cylindrical shape through which hydrogen gas flows through openings at both ends, and a plurality of shelves 18 are formed inside the case 17. On each of these shelves 18, a powdered hydrogen storage alloy 19 filled in a highly thermally conductive housing with air permeability that also serves as a filter is provided.

このように構成された水素冷却回転電機の水素圧力調整
装置において、今様内の水素ガス15が自己ファン14
により図示矢印のようにガス循環路を通して循環してい
るものとすれば、水素貯蔵合金19はケース17内を通
過する水素ガスの温度とほぼ同一温度になっている。こ
のような状態にある時回転電機の負荷が低下すると機内
の発熱量が少なくなるため、水素ガスの温度もこれに伴
い低下する。この時水素貯蔵合金19は循環する水素ガ
ス15により冷却され合金自体の温度が低下する。従っ
て、機内の水素ガス15は水素貯蔵合金19に吸着され
るので、機内を循環している水素ガスの総量が減少し、
機内の水素ガス圧力が低下する。
In the hydrogen pressure regulating device for the hydrogen-cooled rotating electric machine configured as described above, the hydrogen gas 15 in the current is transferred to the self-fan 14.
Assuming that the hydrogen gas is circulating through the gas circulation path as indicated by the arrow in the figure, the hydrogen storage alloy 19 has approximately the same temperature as the hydrogen gas passing through the case 17. In such a state, if the load on the rotating electric machine decreases, the amount of heat generated inside the machine decreases, and the temperature of the hydrogen gas also decreases accordingly. At this time, the hydrogen storage alloy 19 is cooled by the circulating hydrogen gas 15, and the temperature of the alloy itself decreases. Therefore, the hydrogen gas 15 inside the machine is adsorbed by the hydrogen storage alloy 19, so the total amount of hydrogen gas circulating inside the machine decreases.
Hydrogen gas pressure inside the aircraft decreases.

また回転電機の負荷が増加する場合には機内の水素ガス
15の温度が上昇するため、水素貯蔵合金19の温度も
上昇し、今まで吸着していた水素ガスの放出が開始され
る。従って、機内の水素ガスの圧力が増加する。
Further, when the load on the rotating electric machine increases, the temperature of the hydrogen gas 15 inside the machine increases, so the temperature of the hydrogen storage alloy 19 also increases, and the hydrogen gas that has been adsorbed thus far starts to be released. Therefore, the pressure of hydrogen gas inside the aircraft increases.

このように本実施例では水素冷却回転電機の機内の水素
ガス循環路に、複数段の棚18が形成され且つこの棚1
8上に筐体の中に充填された粉末状の水素貯蔵合金19
を保持させて収納したケース17を設けて機内を循環す
る水素ガス15が自由にこのケース17内を通過させて
水素貯蔵合金19の温度を上昇させたり、下降させたり
して機内の水素圧力を負荷の大きさに応じて自動的に調
整できるようにしたので、回転電機の効率を改善するこ
とができる。また本実施例では水素貯蔵合金19を収納
したケース17を機内の水素ガス循環路に設けるように
しているので、機内の水素ガスの温度変化に対する水素
貯蔵合金19の水素ガスの吸着、放出現象を効果的に利
用することができる。
As described above, in this embodiment, a plurality of shelves 18 are formed in the hydrogen gas circulation path inside the hydrogen-cooled rotating electric machine, and the shelves 18 are
Powdered hydrogen storage alloy 19 filled in the housing on top of 8
The hydrogen gas 15 circulating inside the machine is freely passed through the case 17 to raise or lower the temperature of the hydrogen storage alloy 19, thereby controlling the hydrogen pressure inside the machine. Since it can be automatically adjusted according to the size of the load, the efficiency of the rotating electric machine can be improved. Furthermore, in this embodiment, the case 17 containing the hydrogen storage alloy 19 is installed in the hydrogen gas circulation path inside the aircraft, so that the phenomenon of adsorption and release of hydrogen gas by the hydrogen storage alloy 19 due to temperature changes in the hydrogen gas inside the aircraft can be prevented. Can be used effectively.

尚、上記実施例ではケース17内に形成された複数段の
1118上に筐体の中に充填された水素貯蔵合金19を
直接設けるようにしたが、これを第9図に示すように各
棚18上にヒータ20を組込んでおき、回転電機の負荷
が増大する場合にはこのヒータ20により水素貯蔵合金
19を予め電気的に加熱して機内の水素ガスの圧力を高
めることにより、急激な犬侍に回転電機の一時的な温度
上昇の幅を低く抑制することが可能となる。また、上記
実施例ではケース17を水素ガスの流れ方向に沿って水
平状態に設けるようにしたが、ケース17が垂直方向に
設けられる場合には水素ガスがジグザグ状に流れるよう
に棚の取付は位置を1段置きに、あるいは複数段置きに
ずらせてそれぞれ設ける配列構成としてもよい。
In the above embodiment, the hydrogen storage alloy 19 filled in the casing was directly provided on the multiple stages 1118 formed in the casing 17, but this was installed on each shelf as shown in FIG. A heater 20 is installed on the rotating electrical machine 18, and when the load on the rotating electric machine increases, the heater 20 electrically heats the hydrogen storage alloy 19 in advance to increase the pressure of hydrogen gas inside the machine. Inu Samurai is able to suppress the temporary temperature rise of the rotating electric machine to a low level. In addition, in the above embodiment, the case 17 is installed horizontally along the flow direction of hydrogen gas, but if the case 17 is installed vertically, the shelves should be installed so that the hydrogen gas flows in a zigzag pattern. It is also possible to have an array configuration in which the positions are shifted every other row or every multiple rows.

尚、本発明の実施例においては粉末状の水素貯蔵合金を
用いて説明したが、通気性を有する多孔質形状の水素貯
蔵合金を用いても同様の効果を有することは言うまでも
ない。
Although the embodiments of the present invention have been described using a powdered hydrogen storage alloy, it goes without saying that the same effect can be obtained even if a porous hydrogen storage alloy with air permeability is used.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、水素ガスを冷却媒体
として冷却器を介し機内発熱を放出する回転電機におい
て、機内の水素ガスが循環する水素ガス循環系の一部に
温度変化により機内に水素ガスを放出または機内の水素
ガスを吸着する水素貯蔵合金を設けて負荷変動に応じて
機内水素ガス圧力を自動的に調整できるようにしたので
、従来のように水素ガスの注入や放出のための操作の必
要がなく、しかも水素ガスの消耗をなくしてエネルギー
の有効利用を図ることができる水素冷却回転電機の水素
圧力調整装置を提供することができる。
As described above, according to the present invention, in a rotating electric machine that uses hydrogen gas as a cooling medium and releases heat inside the machine via a cooler, temperature changes may occur in a part of the hydrogen gas circulation system in which hydrogen gas inside the machine circulates. By installing a hydrogen storage alloy that releases hydrogen gas or adsorbs hydrogen gas inside the aircraft, we have made it possible to automatically adjust the hydrogen gas pressure inside the aircraft in response to load fluctuations, so it is no longer necessary to inject or release hydrogen gas as before. It is possible to provide a hydrogen pressure regulating device for a hydrogen-cooled rotating electrical machine that does not require any additional operations and can also eliminate consumption of hydrogen gas and effectively utilize energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による水素冷却回転電機の水素圧力調整
装置の一実施例の概略構成図、第2図は同実施例で用い
られる水素貯蔵合金の特性図、第3図は同実施例の具体
的な構成説明図、第4図乃至第6図は第3図の変形例を
それぞれ示す構成説明図、第7図は本発明の他の実施例
を示す構成説明図、第8図は同実施例における水素貯蔵
合金を収納するケースの構成説明図、第9図は第8図の
変形例を示す構成説明図である。 1・・・・・・回転電機、2・・・・・・模擬的に表わ
すヒータ3・・・・・・模擬的に表わすターラ、4,4
a〜4c・・・・・・配管、5・・・・・・水素貯蔵合
金が収納されたケース、6・・・・・・伝熱管、7・・
・・・・水素貯蔵合金、8・・・・・・フィルタ、9a
〜9C,108〜10c・・・・・・バルブ、11・・
・・・・固定子フレーム、12・・・・・・固定子鉄心
、13・・・・・・回転子、14・・・・・・自己ファ
ン、15・・・・・・水素ガス、16・・・・・・冷却
器、17・・・・・・ケース、18・・・・・・棚、1
9・・・・・・水素貯蔵合金、20・・・・・・ヒータ
。 出願人代理人 弁理士 鈴江武彦 第111 $3!11 14@1 116  図
Fig. 1 is a schematic configuration diagram of an embodiment of a hydrogen pressure regulating device for a hydrogen-cooled rotating electric machine according to the present invention, Fig. 2 is a characteristic diagram of a hydrogen storage alloy used in the embodiment, and Fig. 3 is a diagram of the hydrogen storage alloy used in the embodiment. Specific configuration explanatory diagrams, FIGS. 4 to 6 are configuration explanatory diagrams showing modified examples of FIG. 3, FIG. 7 is a configuration explanatory diagram showing another embodiment of the present invention, and FIG. 8 is the same. FIG. 9 is a structural explanatory diagram of a case for housing the hydrogen storage alloy in the embodiment, and FIG. 9 is a structural explanatory diagram showing a modification of FIG. 8. 1...Rotating electric machine, 2...Heater simulated 3...Tara simulated, 4,4
a to 4c... Piping, 5... Case housing hydrogen storage alloy, 6... Heat exchanger tube, 7...
...Hydrogen storage alloy, 8...Filter, 9a
~9C, 108~10c...Valve, 11...
... Stator frame, 12 ... Stator core, 13 ... Rotor, 14 ... Self-fan, 15 ... Hydrogen gas, 16 ...Cooler, 17...Case, 18...Shelf, 1
9... Hydrogen storage alloy, 20... Heater. Applicant's agent Patent attorney Takehiko Suzue No. 111 $3!11 14@1 116 Figure

Claims (7)

【特許請求の範囲】[Claims] (1)水素ガスを冷却媒体として冷却器を介し機内発熱
を放出する回転電機において、機内の水素ガスが循環す
る水素ガス循環系の一部に、温度変化により機内に水素
ガスを放出または機内の水素ガスを吸着する水素貯蔵合
金を設けて負荷変動に応じて機内水素ガス圧力を調整す
るようにしたことを特徴とする水素冷却回転電機の水素
圧力調整装置。
(1) In a rotating electric machine that uses hydrogen gas as a cooling medium and releases heat inside the machine via a cooler, a part of the hydrogen gas circulation system in which hydrogen gas circulates inside the machine may release hydrogen gas into the machine or 1. A hydrogen pressure adjustment device for a hydrogen-cooled rotating electric machine, characterized in that a hydrogen storage alloy that adsorbs hydrogen gas is provided to adjust in-machine hydrogen gas pressure in accordance with load fluctuations.
(2)水素貯蔵合金は機内の水素ガス循環系に連通する
機外の水素ガス循環系に設けたものである特許請求の範
囲第1項に記載の水素冷却回転電機の水素圧力調整装置
(2) The hydrogen pressure regulating device for a hydrogen-cooled rotating electric machine according to claim 1, wherein the hydrogen storage alloy is provided in a hydrogen gas circulation system outside the machine that communicates with a hydrogen gas circulation system inside the machine.
(3)水素貯蔵合金から機内の水素ガス循環系に放出さ
れる水素ガスは機内の水素ガス循環系と機外の水素ガス
循環系とを結ぶ間の循環路の一部に通気性を有するフィ
ルタを設けたものである特許請求の範囲第2項に記載の
水素冷却回転電機の水素圧力調整装置。
(3) Hydrogen gas released from the hydrogen storage alloy to the hydrogen gas circulation system inside the aircraft is filtered through a filter that has air permeability in a part of the circulation path between the hydrogen gas circulation system inside the aircraft and the hydrogen gas circulation system outside the aircraft. A hydrogen pressure regulating device for a hydrogen-cooled rotating electric machine according to claim 2, which is provided with a hydrogen pressure regulating device.
(4)機内の水素ガス循環系に連通する機外の水素ガス
循環系管系の上下流部に複数個のバルブを仕切りを可能
に設けたものである特許請求の範囲第2項又は第3項に
記載の水素冷却回転電機の水素圧力調整装置。
(4) Claims 2 or 3, wherein a plurality of valves are provided upstream and downstream of the hydrogen gas circulation system outside the machine so as to be partitionable, which communicates with the hydrogen gas circulation system inside the machine. A hydrogen pressure adjustment device for a hydrogen-cooled rotating electric machine as described in 2.
(5)水素貯蔵合金は機内の水素ガス循環系に水素ガス
が流通可能に設けられたケース内に複数段の棚を形成し
てその棚上に保持させたものである特許請求の範囲第1
項に記載の水素冷却回転電機の水素圧力調整装置。
(5) The hydrogen storage alloy is held on a plurality of shelves formed in a case provided to allow hydrogen gas to flow through the hydrogen gas circulation system in the aircraft.Claim 1
A hydrogen pressure adjustment device for a hydrogen-cooled rotating electric machine as described in 2.
(6)ケース内に設置された筺体に内臓された水素貯蔵
合金を加熱する電気ヒータを設けたことを特徴とする特
許請求の範囲第5項に記載の水素冷却回転電機の水素圧
力調整装置。
(6) The hydrogen pressure regulating device for a hydrogen-cooled rotating electric machine according to claim 5, further comprising an electric heater that heats a hydrogen storage alloy built into a housing installed in the case.
(7)機内の水素ガス循環系に設けられたケース内の棚
上に設置され水素貯蔵合金を内臓する筐体はフィルタを
兼ねた通気性を有しかつ高熱伝導性のものである特許請
求の範囲第5項又は第6項に記載の水素冷却回転電機の
水素圧力調整装置。
(7) The casing installed on a shelf in a case provided in the in-flight hydrogen gas circulation system and containing the hydrogen storage alloy has air permeability that also serves as a filter and has high thermal conductivity. A hydrogen pressure adjustment device for a hydrogen-cooled rotating electric machine according to item 5 or 6.
JP6676285A 1985-03-30 1985-03-30 Hydrogen pressure regulator of hydrogen-cooled rotary electric machine Pending JPS61227651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6676285A JPS61227651A (en) 1985-03-30 1985-03-30 Hydrogen pressure regulator of hydrogen-cooled rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6676285A JPS61227651A (en) 1985-03-30 1985-03-30 Hydrogen pressure regulator of hydrogen-cooled rotary electric machine

Publications (1)

Publication Number Publication Date
JPS61227651A true JPS61227651A (en) 1986-10-09

Family

ID=13325212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6676285A Pending JPS61227651A (en) 1985-03-30 1985-03-30 Hydrogen pressure regulator of hydrogen-cooled rotary electric machine

Country Status (1)

Country Link
JP (1) JPS61227651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072980A (en) * 2002-08-09 2004-03-04 Denso Corp Vehicle-mounted flywheel battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072980A (en) * 2002-08-09 2004-03-04 Denso Corp Vehicle-mounted flywheel battery

Similar Documents

Publication Publication Date Title
JP5558780B2 (en) Equipment for electromechanical cooling
JP6441497B2 (en) Cooling device for cooling a fuel cell
JP2004281243A (en) Fuel cell system and hydrogen storage method
CN112882556A (en) Cooling system adapted to be thermally connected to a heat generating device
CN108493514A (en) A kind of heat dissipation of battery pack and heating device and control method
JP2012233698A (en) Nuclear power plant emergency cooling system
JP2018163874A (en) Fuel battery system
CN102573420A (en) Embedded cabinet air-conditioning refrigeration system
CN107885295A (en) A kind of cooling system
CN105070974A (en) Battery pack temperature regulation system
JPS61227651A (en) Hydrogen pressure regulator of hydrogen-cooled rotary electric machine
CN112261841A (en) Electronic equipment cooling liquid supply system and method based on phase change capsule heat storage and temperature control
US20150079486A1 (en) Fuel cell system
JP3979581B2 (en) Cooling water circulation supply system for fuel cell
US4365479A (en) Coolant replenishing system for superconducting field windings
JP2002329521A (en) Fuel cell system and fuel cell automobile
CN111787769A (en) Server cooling cabinet
CN218125275U (en) Rack and trackside equipment
JPS6154842A (en) Cooler of rotary electric machine
CN210724413U (en) Dehumidification device for motor cavity of helium circulator of high-temperature gas cooled reactor nuclear power station
CN206323238U (en) A kind of motor cools down auxiliary smoke discharging structure
JPS61227652A (en) Hydrogen pressure regulator of hydrogen-cooled rotary electric machine
JPS61293133A (en) Hydrogen pressure regulator for hydrogen-cooled rotary electric machine
CN219797524U (en) Self-control heating device of conduction oil system
CN110906306A (en) Solid heat storage type electrode boiler