JPS61293132A - Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine - Google Patents

Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine

Info

Publication number
JPS61293132A
JPS61293132A JP13341685A JP13341685A JPS61293132A JP S61293132 A JPS61293132 A JP S61293132A JP 13341685 A JP13341685 A JP 13341685A JP 13341685 A JP13341685 A JP 13341685A JP S61293132 A JPS61293132 A JP S61293132A
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
machine
hydrogen gas
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13341685A
Other languages
Japanese (ja)
Other versions
JPH0744805B2 (en
Inventor
Mikio Kumagai
熊谷 幹夫
Yutaka Watanabe
裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60133416A priority Critical patent/JPH0744805B2/en
Publication of JPS61293132A publication Critical patent/JPS61293132A/en
Publication of JPH0744805B2 publication Critical patent/JPH0744805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To enable a load to cope with sudden fluctuation, by setting the hydrogen balanced pressure of hydrogen storage alloy contained in a case connected to the outer section of a hydrogen-gas-cooled rotary electric machine, to be the highest limit or more/ the lowest limit or less of regulated pressure in the machine. CONSTITUTION:The headers 8a, 8b at the both ends of stator coils 2 formed with hollow conductors are connected to out-of-machine pipings 10a, 10b to organize water- cooled system consisting of a tank 11, a pump 12, and a cooler 13. The tank 11 is by-passed with valves 22a, 22b and pipings 21, and current is returned to the tank 11 via the valve 22a, a case 14, and a pipe 18b. Hydrogen storage alloy 17 is contained in the case 14 and is heated/cooled with circulation water, and is set, for example, at the temperature of 60-80 deg.C and the hydrogen pressure of 5.2kg/cm<2>, or at the temperature of 40-45 deg.C and the hydrogen pressure of 1.0kg/cm<2>. In accordance with the fluctuation of a load, a valve 22c is opened or closed to communicate with or intercept a space section 4 in the machine. As a result, the device can cope with the sudden increment of the load, and the windage loss of a self-fan on a low load is reduced, and operation efficiency can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水素冷却回転電機において、特に水素貯蔵合金
を用いて機内の水素ガス圧力を負荷変動に応じて調整可
能にした水素冷却回転電機の水素圧力調整方法に関する
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a hydrogen-cooled rotating electric machine, and particularly to a hydrogen-cooled rotating electric machine that uses a hydrogen storage alloy to adjust the hydrogen gas pressure inside the machine according to load fluctuations. Related to pressure adjustment method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

回転型機、例えばタービン発電機においてはその冷却媒
体として水素ガスを用いたものがある。
Some rotary machines, such as turbine generators, use hydrogen gas as a cooling medium.

この場合、機内の水素ガスはタービン発電機の単機容量
が上がるに従ってその熱容量、即ち(比重量)×(比熱
)を増加して冷却効果を上げる必要があり、特に大容量
機では機内の水素ガス圧力を例えば5.2atmにして
いるものもある。
In this case, it is necessary to increase the heat capacity of the hydrogen gas in the aircraft as the capacity of the turbine generator increases, i.e., (specific weight) x (specific heat) to increase the cooling effect. Especially in large capacity aircraft, the hydrogen gas in the aircraft Some have a pressure of 5.2 atm, for example.

しかるに、近年タービン発電機の使用は多用化し、常に
100%負荷だけでなく部分負荷で使用されることがあ
る。この部分負荷時は発電機の電気損が少なく、冷却上
水素ガス圧を5.2atmのままにしておく必要がない
。部分負荷時に機内の水素ガス圧力を5.2atmのま
まにしておくと、回転子の風損、ファン動力が100%
負荷時と変わらないため、発電機の効率が低下する。そ
こで、このような場合には機内の水素ガス圧力を下げる
ことにより回転子の風損、ファン動力が減少し、部分負
荷時の発電機の効率を向上させることができる。また、
水素圧力を負荷の如何にかかわらず、一定にしておくと
、部分負荷時は過冷却になり、負荷に応じたヒートサイ
クルが回転電機構成部品、例えば絶縁物などにかかるが
、負荷に応じて水素圧力を変えると回転電機の温度が常
に一定となり、回転電機の寿命が増すメリットもある。
However, in recent years, turbine generators have been used more frequently, and are sometimes used not only at 100% load but also at partial load. During this partial load, the electrical loss of the generator is small, and there is no need to keep the hydrogen gas pressure at 5.2 atm for cooling purposes. If the hydrogen gas pressure inside the machine is left at 5.2 atm during partial load, the windage loss of the rotor and the fan power will be reduced to 100%.
Since it is the same as when under load, the efficiency of the generator decreases. Therefore, in such a case, by lowering the hydrogen gas pressure inside the machine, the windage loss of the rotor and the fan power can be reduced, and the efficiency of the generator at partial load can be improved. Also,
If the hydrogen pressure is kept constant regardless of the load, supercooling will occur at partial load, and a heat cycle depending on the load will be applied to the components of the rotating electrical machine, such as insulators. Changing the pressure keeps the temperature of the rotating electrical machine constant, which has the advantage of extending the life of the rotating electrical machine.

そこで、従来では機内の水素ガスを負荷の変動に応じて
大気に放出したり、高圧の水素ガスボンベより再注入し
たりして回転電機の機内の水素ガス圧力を調整するよう
にしていた。しかしこの方式は水素ガスの注入や放出の
ための操作が繁雑であると共に水素ガスを取扱う上で安
全対策を十分に施しておく必要があり、また水素ガスの
消耗量が多大なものとなるため、エネルギーの有効利用
と言う観点から見ても問題がある。
Therefore, in the past, the hydrogen gas pressure inside the rotating electric machine was adjusted by releasing the hydrogen gas inside the machine to the atmosphere or reinjecting it from a high-pressure hydrogen gas cylinder depending on load fluctuations. However, this method requires complicated operations for injecting and discharging hydrogen gas, requires sufficient safety measures when handling hydrogen gas, and consumes a large amount of hydrogen gas. There are also problems from the perspective of effective energy use.

また、かかる問題を解決するものとして、例えば実開昭
55−12720号公報に記載された発明のようにター
ビン発電機の機内の水素ガス圧力を負荷の変動に応じて
圧力調整制御機構により調整できるようにしたものがあ
る。
In addition, as a solution to this problem, for example, as in the invention described in Japanese Utility Model Application Publication No. 12720/1983, the hydrogen gas pressure inside the turbine generator can be adjusted by a pressure adjustment control mechanism according to load fluctuations. There is something like this.

第10図はこのような従来の水素冷却タービン発電機に
おける水素ガス圧力調整系を示すものである。すなわち
、第10図に示すように外部負荷系統に接続されたター
ビン発電機31において、その機内32には水素ガスボ
ンベ33に充填された水素ガスが圧力調整弁34を介し
て供給可能にしてあり、また機内の水素ガス圧力の調整
制御系としては機内に圧力調整弁35を介して連通ずる
レリーフ水素リザーブ室36、このリザーブ室36の容
積を調整して機内32の水素ガスを流出入させるピスト
ン37、このピストン37を駆動するピストン駆動機構
38及びタービン発電131の出力により負荷の大きさ
を検出しその負荷変動に応じてピストン駆動機構38に
駆動指令を与えると共に圧力調整弁35に対しては開閉
指令を与える負荷追従制御機構39から構成されている
FIG. 10 shows a hydrogen gas pressure adjustment system in such a conventional hydrogen-cooled turbine generator. That is, as shown in FIG. 10, in a turbine generator 31 connected to an external load system, hydrogen gas filled in a hydrogen gas cylinder 33 can be supplied to the interior 32 of the turbine generator 31 via a pressure regulating valve 34. Also, as a control system for adjusting the hydrogen gas pressure inside the machine, there is a relief hydrogen reserve chamber 36 that communicates with the inside of the machine via a pressure regulating valve 35, and a piston 37 that adjusts the volume of this reserve chamber 36 and allows hydrogen gas in and out of the machine interior 32 to flow in and out. The size of the load is detected by the output of the piston drive mechanism 38 that drives the piston 37 and the turbine power generator 131, and a drive command is given to the piston drive mechanism 38 according to the load fluctuation, and the pressure regulating valve 35 is opened/closed. It is composed of a load following control mechanism 39 that gives commands.

したがって、このような構成のタービン発電機の水素ガ
ス圧力調整系において、通常は圧力調整弁34によって
水素ガスボンベ33の圧力を減圧して一定になるように
制御され、また負荷変動がある時は負荷追従制御機構3
9からの指令に基いてピストン37を駆動してリザーブ
室36の容積を調整すると共に圧力調整弁35の開成を
制御することによりタービン発電機32の機内水素ガス
圧力を負荷変動に応じて調整することができる。
Therefore, in the hydrogen gas pressure adjustment system of a turbine generator with such a configuration, the pressure in the hydrogen gas cylinder 33 is normally controlled to be constant by reducing the pressure by the pressure adjustment valve 34, and when there is a load change, the pressure in the hydrogen gas cylinder 33 is controlled to be constant. Follow-up control mechanism 3
Based on the command from 9, the piston 37 is driven to adjust the volume of the reserve chamber 36, and the opening of the pressure regulating valve 35 is controlled to adjust the in-machine hydrogen gas pressure of the turbine generator 32 according to load fluctuations. be able to.

しかし、かかるタービン発電機の水素ガス圧力調整系で
はリザーブ室36の容積をリザーブ室内周面を摺動する
ピストン37より調整するようにしているため、このピ
ストン37とリザーブ室内周面との間のシールが十分な
されていないと機内と連通している側の高圧状態にある
水素ガスが大気状態にあるピストン背部側へリークして
爆発につながる恐れがある。
However, in the hydrogen gas pressure adjustment system of such a turbine generator, the volume of the reserve chamber 36 is adjusted by a piston 37 that slides on the circumferential surface of the reserve chamber. If the seal is not adequate, there is a risk that hydrogen gas, which is under high pressure on the side communicating with the inside of the machine, may leak to the back of the piston, which is in atmospheric conditions, leading to an explosion.

そこで、最近では前述したようなレリーフ水素リザーブ
室及びこのリザーブ室の容積を調整するピストン等の駆
動装置を用いずに機内の水素ガス圧力を簡便に、しかも
水素ガスの消耗をなくして調整可能な水素貯蔵合金の使
用が考えられている。
Therefore, recently, a method has been developed that allows the hydrogen gas pressure inside the aircraft to be easily adjusted without using the relief hydrogen reserve chamber described above or a driving device such as a piston that adjusts the volume of this reserve chamber, and without the consumption of hydrogen gas. The use of hydrogen storage alloys is being considered.

この水素貯蔵合金は水素を非常によく吸収する性質を有
するチタンやミツシュメタルなどの金属原子を絹合わせ
たもので、温度を下げるか圧力を上げると水素ガスを吸
収して発熱し、逆に温度を上げるか圧力を下げると吸収
した水素ガスを放出して周囲から熱をうばう性質があり
、また送込む水素ガスの圧力値によって合金自体の温度
も変化し、逆に合金自体の温度を変えることによって発
生する水素ガスの圧力も異なるという相関関係を有して
いるものである。
This hydrogen storage alloy is made by combining metal atoms such as titanium and Mitsushi metal, which have the property of absorbing hydrogen very well, and when the temperature is lowered or the pressure is increased, it absorbs hydrogen gas and generates heat, and vice versa. When the pressure is raised or lowered, the absorbed hydrogen gas is released and heat is taken away from the surroundings.Also, the temperature of the alloy itself changes depending on the pressure value of the hydrogen gas being sent; conversely, by changing the temperature of the alloy itself, There is a correlation in that the pressure of the generated hydrogen gas is also different.

第7図は水素貯蔵合金の特性例を示すものである。すな
わち、水素貯蔵合金の特性は第7図に示すように中央に
ほぼ平坦部を持つ右上がりの特性で、この特性の左側の
右上がり部分は水素貯蔵合金の結晶隙間に水素原子が入
る水素の固溶段階、中央の平坦部は水素化反応による金
属水素化物の形成段階、特性右側の右上がり部分はすべ
ての金属が水素化してさらに格子間に水素が過飽和に入
ろ過飽和固溶段階である。
FIG. 7 shows an example of the characteristics of a hydrogen storage alloy. In other words, as shown in Figure 7, the characteristics of the hydrogen storage alloy are upward-sloping characteristics with an almost flat part in the center. The solid solution stage, the flat part in the center is the stage where metal hydrides are formed by a hydrogenation reaction, and the upward-sloping part on the right side of the characteristics is the solid solution stage where all the metals are hydrogenated and hydrogen enters the interstitial spaces to become supersaturated.

この中で最も水素を吸収するのは水素化合物形成段階で
、はぼ一定の圧力で反応が進ことからこの部分を平衡部
と言い、その圧力を平衡圧力と言う。この平衡圧力は水
素貯蔵合金の温度によって異なり、また水素貯蔵合金の
種類によっても異なる。この平衡圧力と温度の関係の一
例を示すと第8図の通りである。
Of these, the most hydrogen is absorbed during the hydrogen compound formation stage, and because the reaction proceeds at a nearly constant pressure, this part is called the equilibrium zone, and the pressure at this stage is called the equilibrium pressure. This equilibrium pressure varies depending on the temperature of the hydrogen storage alloy and also varies depending on the type of hydrogen storage alloy. An example of the relationship between equilibrium pressure and temperature is shown in FIG. 8.

このような特性を有する水素貯蔵合金を密閉容器内に入
れて加熱冷却すると、容器内の水素ガス圧力は次式のよ
うに変化する。
When a hydrogen storage alloy having such characteristics is placed in a closed container and heated and cooled, the hydrogen gas pressure in the container changes as shown in the following equation.

容器の容積をV (m3)、容器内の初期圧力PO(K
fl/c#り、水素貯蔵合金の水素含有能力k(m3/
Kg大気圧換算)とし、水素ガスを吸収、放出のために
十分な冷却、加熱を行なうと容器内の圧力Pは P=Pa±KM/V ここで、+は放出、−は吸収の場合を示す。
Let the volume of the container be V (m3) and the initial pressure inside the container PO (K
fl/c#, hydrogen storage capacity k(m3/
When sufficient cooling and heating are performed to absorb and release hydrogen gas, the pressure inside the container is P = Pa ± KM/V, where + indicates release and - indicates absorption. show.

以上述べたような水素貯蔵合金の特性を利用すれば静止
形にして回転電機内の水素圧力を調整することができる
が、この場合水素貯蔵合金を加熱、冷却する必要がある
。この水素貯蔵合金を加熱、冷却するにあたっては、で
きれば回転電機で用いられている冷却媒体の排熱を利用
することが可能であればエネルギ的には有利である。
By utilizing the above-mentioned characteristics of the hydrogen storage alloy, it is possible to adjust the hydrogen pressure within the rotating electric machine by making it stationary, but in this case, it is necessary to heat and cool the hydrogen storage alloy. In heating and cooling this hydrogen storage alloy, it would be advantageous in terms of energy if possible to utilize the exhaust heat of the cooling medium used in the rotating electric machine.

そこで、回転電機の負荷が大きい時は水素貯蔵合金を加
熱して水素ガスを放出させることにより機内圧力を高め
、また負荷が減った時は水素貯蔵合金を冷却して水素ガ
スを吸着させることにより機内圧力を低下すれば良いが
、その場合負荷の変動に応じて温度変化する回転電機の
冷却媒体である固定子巻線冷却水を用いることが考えら
れる。
Therefore, when the load on the rotating electric machine is large, the internal pressure is increased by heating the hydrogen storage alloy and releasing hydrogen gas, and when the load is reduced, the hydrogen storage alloy is cooled and hydrogen gas is adsorbed. It is sufficient to reduce the pressure inside the machine, but in that case, it is conceivable to use stator winding cooling water, which is a cooling medium for the rotating electric machine whose temperature changes according to changes in load.

一方、回転電機の負荷と水素ガス圧力の関係には許容圧
力というものがあり、負荷が減少した場合の電気損と減
圧された水素ガス冷却による回転電機の部材の温度上昇
が100%負荷時の湿度上昇と同じであると言う条件か
ら許容水素ガス圧力が決定される。
On the other hand, there is a permissible pressure in the relationship between the load of a rotating electric machine and hydrogen gas pressure, and the electrical loss when the load decreases and the temperature rise of the rotating electric machine parts due to cooling of the reduced pressure hydrogen gas at 100% load. The allowable hydrogen gas pressure is determined based on the condition that it is the same as the humidity increase.

したがって、水素貯蔵合金の加熱、冷却を回転電機の冷
却媒体の排熱を利用する場合には回転電機の負荷に対す
る許容水素圧力と負荷によって生じた冷却媒体の排熱温
度に対する水素貯蔵合金の水素平衡圧力が等しいと、そ
のまま排熱を利用して水素貯蔵合金を加熱、冷却すれば
、回転電機の負荷に応じた水素ガス圧力の調整を完全に
自動的に行なうことが可能である。
Therefore, when heating and cooling a hydrogen storage alloy using the exhaust heat of the cooling medium of a rotating electric machine, the hydrogen storage alloy's hydrogen balance is determined by the allowable hydrogen pressure for the load of the rotating electric machine and the exhaust heat temperature of the cooling medium generated by the load. If the pressures are equal, if the hydrogen storage alloy is heated and cooled using the exhaust heat, it is possible to completely automatically adjust the hydrogen gas pressure according to the load of the rotating electric machine.

しかしながら、例えば固定子巻線冷却水の排熱を利用し
た場合、第9図に示すように水素貯蔵合金の特性(a)
、(b)、(c)、(d)と負荷に対する排熱温度と許
容水素ガス圧力(A>の関係は一致していない。また水
素貯蔵合金は一般に粉末状で粒子と粒子との間に水素ガ
スが存在し、熱伝導が固形状金属に比べて悪く、冷却又
は加熱してから水素貯蔵合金の水素平衡圧力になるまで
、タイムラグがある。特に急激に負荷が上昇した場合、
水素ガス圧力の上昇遅れは回転電機の構成部材の加熱に
つながるので、タイムラグは避けなければならない。
However, for example, when exhaust heat of stator winding cooling water is used, the characteristics of the hydrogen storage alloy (a) as shown in Figure 9.
, (b), (c), and (d) do not match the relationship between the exhaust heat temperature and the allowable hydrogen gas pressure (A>) for the load. Also, hydrogen storage alloys are generally in powder form and there is a gap between the particles. Due to the presence of hydrogen gas, heat conduction is poor compared to solid metals, and there is a time lag between cooling or heating until the hydrogen equilibrium pressure of the hydrogen storage alloy is reached, especially when the load increases rapidly.
A delay in the rise of hydrogen gas pressure leads to heating of the components of the rotating electrical machine, so time lags must be avoided.

このように水素貯蔵合金を回転電機の水素ガス 、圧力
調整のために使用する場合には水素貯蔵合金の特性の不
一致とタイムラグが問題となる。
In this way, when hydrogen storage alloys are used to adjust hydrogen gas and pressure in rotating electric machines, problems arise such as inconsistency in the characteristics of the hydrogen storage alloys and time lag.

〔発明の目的) 本発明はこれらの問題を解決するためになされたもので
、水素貯蔵合金の選択を容易にして冷却又は加熱してか
ら水素貯蔵合金が水素平衡圧力になるまでのタイムラグ
を少なくでき、負荷が急激に変化しても機内の水素ガス
の圧力を速やかに調整することができる水素冷却回転電
機の水素圧力調整方法を提供することを目的とする。
[Object of the Invention] The present invention was made to solve these problems, and it facilitates the selection of a hydrogen storage alloy and reduces the time lag between cooling or heating until the hydrogen storage alloy reaches hydrogen equilibrium pressure. An object of the present invention is to provide a hydrogen pressure adjustment method for a hydrogen-cooled rotating electrical machine, which can quickly adjust the pressure of hydrogen gas inside the machine even if the load changes rapidly.

〔発明の概要〕[Summary of the invention]

本発明はかかる目的を達成するため、水素ガスにより冷
却される回転電機の外部に、温度変化により水素ガスを
放出または吸着する水素貯蔵合金を収納したケースを設
け、このケースに回転電機の冷却媒体を導入する配管を
機内と連通させて接続すると共に機内の水素ガス循環系
に水素ガスを流出入する配管を接続してそれぞれの配管
の中途に弁を設ける構成とし、前記ケース内に形成され
た流通路に回転電機の冷m媒体を流出入せしめて前記水
素貯蔵合金を冷却又は加熱することにより機内水素ガス
圧力を負荷変動に応じて調整するに際し、前記水素貯蔵
合金として前記回転電機の冷却媒体の排出温度で水素平
衡圧力が機内の調整圧力最上限以上で且つ前記回転電機
の冷却媒体の供給温度で水素貯蔵合金の水素平衡圧力が
機内の調整圧力最下限以下である水素貯蔵合金を選定し
て前記ケース内のガス圧力を調整圧力最上限以上か最下
限以下にしておき、負荷の変動に応じて前記弁を開閉し
て水素ガスを機内へ放出又は機内の水素ガスを吸着せし
めて機内の水素ガス圧力を調整することを特徴とするも
のである。
In order to achieve such an object, the present invention provides a case housing a hydrogen storage alloy that releases or adsorbs hydrogen gas in response to temperature changes outside a rotating electrical machine that is cooled by hydrogen gas. A pipe for introducing hydrogen into the machine is connected to communicate with the inside of the machine, and a pipe for flowing hydrogen gas into and out of the hydrogen gas circulation system inside the machine is connected, and a valve is provided in the middle of each pipe, and a valve is provided in the middle of each pipe. When adjusting the in-machine hydrogen gas pressure according to load fluctuations by cooling or heating the hydrogen storage alloy by flowing a cold medium of the rotating electrical machine into and out of the flow path, the cooling medium of the rotating electrical machine is used as the hydrogen storage alloy. Select a hydrogen storage alloy whose hydrogen equilibrium pressure is above the maximum regulated pressure inside the machine at the discharge temperature, and whose hydrogen equilibrium pressure is below the minimum regulated pressure inside the machine at the supply temperature of the cooling medium of the rotating electric machine. The gas pressure in the case is kept above the maximum adjustment pressure limit or below the minimum adjustment pressure limit, and the valve is opened and closed according to load fluctuations to release hydrogen gas into the aircraft or to adsorb hydrogen gas inside the aircraft. It is characterized by adjusting the hydrogen gas pressure.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による水素冷却回転NI!Iの水素圧力
調整装置の構成例を示すものである。第1図において、
1は回転電機、例えばタービン発電機の固定子フレーム
で、その内周面には冷却水が流出入可能な中空導体から
なる固定子巻線2を備えた固定子鉄心3が取付けられる
と共にその背部にガス通気空間部4が形成されている。
Figure 1 shows the hydrogen cooling rotation NI! according to the present invention! This figure shows an example of the structure of the hydrogen pressure regulating device of I. In Figure 1,
Reference numeral 1 denotes a stator frame of a rotating electrical machine, for example, a turbine generator.A stator core 3 having a stator winding 2 made of a hollow conductor through which cooling water can flow in and out is attached to the inner peripheral surface of the stator frame, and a stator core 3 is attached to the back of the stator frame. A gas ventilation space 4 is formed therein.

5は軸受に支承された回転子で、この回転子5には自己
ファン6が取付けられており、機内に大気圧以上の圧力
で封入された水素ガス7を強制循環させるためのもので
ある。また8a、8bは固定子巻線2の中空導体に冷却
水を通すためのヘッダーであり、これらヘッダー8a、
8bには機外に設けられた純水供給装置9が配管10a
、10bを介して接続されている。この純水供給装置9
はタンク11゜ポンプ12.クーラ13及び図示しない
イオン交換樹脂から構成されている。一方、14は機外
に設けられたケースで、このケース14は筒体の周面の
ほぼ中央部に上部ヘッダー15を有し、また内部には複
数個の伝熱管16を筒体の長手方向に沿って配設する共
にこれら各伝熱管16相互間に形成される管外スペース
には粉末状の水素貯蔵合金17を充填したものである。
Reference numeral 5 denotes a rotor supported by a bearing, and a self-supporting fan 6 is attached to the rotor 5 to forcefully circulate hydrogen gas 7 sealed inside the machine at a pressure higher than atmospheric pressure. Further, 8a and 8b are headers for passing cooling water through the hollow conductor of the stator winding 2, and these headers 8a,
A pure water supply device 9 provided outside the machine is connected to the pipe 10a in 8b.
, 10b. This pure water supply device 9
Tank 11° Pump 12. It is composed of a cooler 13 and an ion exchange resin (not shown). On the other hand, 14 is a case provided outside the machine, and this case 14 has an upper header 15 at approximately the center of the circumferential surface of the cylinder, and a plurality of heat exchanger tubes 16 are arranged inside the cylinder in the longitudinal direction of the cylinder. A powdered hydrogen storage alloy 17 is filled in the extra-tube space formed between the heat transfer tubes 16 along the heat exchanger tubes 16 .

このようなケース14において、その筒体の一方の開口
部に固定子、巻線2の冷却水流出側ヘッダー8aと純水
供給装置9のタンク11との間を結ぶ配管10aの中途
に接続された配管18aを接続すると共にこの配管18
aとクーラ13の出口近傍の配管1’Obとの間を配管
21により接続し、また筒体の他方の開口部に冷却水を
純水供給装置9のタンク11へ戻す配管18bを接続し
て冷却水の一部をバイパスするバイパス路を形成する。
In such a case 14, a stator is connected to one opening of the cylindrical body, and a pipe 10a connecting the cooling water outlet header 8a of the winding 2 and the tank 11 of the pure water supply device 9 is connected to the middle of the stator. At the same time as connecting the pipe 18a
A and a pipe 1'Ob near the outlet of the cooler 13 are connected by a pipe 21, and a pipe 18b for returning the cooling water to the tank 11 of the pure water supply device 9 is connected to the other opening of the cylinder. A bypass path is formed to bypass a portion of the cooling water.

さらにケース14に有する上部ヘッダー15にはダスト
や微粒子が機内へ浮遊あるいは飛散しないようにするた
めの通気性のフィルタ19が設けられると共にこの部分
を配管20を介して機内のガス通気空間部4に連通させ
て接続し、水素貯蔵合金17から放出または水素貯蔵合
金17に吸着される水素ガスを機内との間で流通できる
ようになっている。さらに、22a、22b、22cは
ケース14の一方の開口部に接続された冷却水バイパス
路を形成する配管18a、この配管18aとクーラ13
の出口近傍の配管10bとを結ぶ配管21及び上部ヘッ
ダー15と機内とを結ぶ水素ガス流通路となる配管20
の適宜箇所にそれぞれ設けられた電磁弁である。
Furthermore, the upper header 15 of the case 14 is provided with a breathable filter 19 to prevent dust and particulates from floating or scattering into the cabin, and this part is connected to the gas ventilation space 4 of the cabin via piping 20. They are connected in communication so that hydrogen gas released from or adsorbed by the hydrogen storage alloy 17 can flow between the hydrogen storage alloy 17 and the inside of the machine. Further, 22a, 22b, and 22c are a pipe 18a that forms a cooling water bypass path connected to one opening of the case 14, and a cooler 13 connected to the pipe 18a.
A pipe 21 that connects the pipe 10b near the outlet of the pipe 21 and a pipe 20 that serves as a hydrogen gas flow path that connects the upper header 15 and the inside of the machine.
These are solenoid valves installed at appropriate locations.

このように構成された水素冷却タービン発電機の水素圧
力調整系において、ケース14内に充填された水素貯蔵
合金として例えば80°〜60℃の温度で水素平衡圧力
が5 、2 K’i/ cr1以上で、冷却水の低温側
温度45°〜40℃で水素平衡圧力が1.0Kfl/c
M以下になるものが選択されているものとする。このよ
うな条件下において、今電磁弁22aが開、電磁弁22
b、22cが閉状態にあると冷却水は純粋供給袋N9の
タンク11から固定子巻線2の中空導体に配管10b、
流入側ヘッダー8bを通して流入し、流出側ヘッダー8
aから配管10aを通して純水供給装置9のタンク11
へ戻る固定子巻線冷却水循環系により固定子巻線2が冷
却され、この時固定子巻線冷却水は巻線の電気損による
熱により昇温して排熱水となる。
In the hydrogen pressure adjustment system of the hydrogen-cooled turbine generator configured as described above, the hydrogen storage alloy filled in the case 14 has a hydrogen equilibrium pressure of 5.2 K'i/cr1 at a temperature of, for example, 80° to 60°C. With the above, the hydrogen equilibrium pressure is 1.0 Kfl/c when the cooling water temperature on the low temperature side is 45° to 40°C.
It is assumed that the one that is equal to or less than M is selected. Under these conditions, the solenoid valve 22a is now open, and the solenoid valve 22a is now open.
b, 22c are in the closed state, the cooling water flows from the tank 11 of the pure supply bag N9 to the hollow conductor of the stator winding 2 through the piping 10b,
Inflow through the inflow side header 8b, and the outflow side header 8
Tank 11 of pure water supply device 9 through pipe 10a from a
The stator winding 2 is cooled by the stator winding cooling water circulation system, and at this time, the temperature of the stator winding cooling water rises due to heat due to electrical loss in the windings, and becomes waste hot water.

この排熱水はさらにバイパス配管18a及び電磁弁22
aを通ってケース14に流入し、ここで水素貯蔵合金1
7を加熱した後配管18bを通してタンク11に戻る。
This waste hot water is further transferred to the bypass pipe 18a and the solenoid valve 22.
a into the case 14, where the hydrogen storage alloy 1
After heating 7, it returns to tank 11 through piping 18b.

したがって、電磁弁22cは閉じているので、ケース1
4内は水素貯蔵合金17から発生する水素ガスにより排
出熱水温度の水素平衡圧力にまで昇圧する。
Therefore, since the solenoid valve 22c is closed, case 1
4 is pressurized by the hydrogen gas generated from the hydrogen storage alloy 17 to the hydrogen equilibrium pressure at the temperature of the discharged hot water.

一方、電磁弁22aと22bを閉じ、電磁弁22Cを開
にすると、ケース14にはクーラ13の出口から流出す
る低温の冷却水が配管21を通して流入し、ケース14
内の水素貯蔵合金17を冷却してタンク11に戻る。し
たがって、この場合はケース14内の水素ガスが水素貯
蔵合金17に吸着されるので、ケース14内の水素ガス
圧力はその冷却水の温度の水素平衡圧力にまで低下する
On the other hand, when the solenoid valves 22a and 22b are closed and the solenoid valve 22C is opened, the low-temperature cooling water flowing out from the outlet of the cooler 13 flows into the case 14 through the pipe 21.
The hydrogen storage alloy 17 inside is cooled and returned to the tank 11. Therefore, in this case, the hydrogen gas in the case 14 is adsorbed by the hydrogen storage alloy 17, so the hydrogen gas pressure in the case 14 is reduced to the hydrogen equilibrium pressure at the temperature of the cooling water.

ここで、第2図に示す負荷パターンに基いてその具体的
な作用を説明する。
Here, its specific effect will be explained based on the load pattern shown in FIG.

第2図において、夜間(D−A間に示す)のように低負
荷の場合には第1図の電磁弁22aを開にし、電磁弁2
2b、22cを閉状態にしておく。
In FIG. 2, when the load is low such as at night (as shown between D and A), the solenoid valve 22a in FIG.
2b and 22c are kept closed.

このようにすれば、前述したように固定子巻線2の冷却
水流出側ヘッダー8aから流出する排熱水がケース14
内を通して純水供給装置9のタンク11へ流れることに
より、ケース14内に充填された水素貯蔵合金17が暖
められ、水素貯蔵合金17から発生する水素ガスにより
ケース14内は100%負荷時の回転電機の許容水素圧
力5.2atm以上になる。このような状態にある時、
朝方(A−8間を示す)になり、負荷が上昇するとその
負荷に応じて電磁弁22Cの開度を調節するとケース1
4から水素ガスが配管20を通して機内へ放出される。
In this way, as described above, the hot water flowing out from the header 8a on the cooling water outflow side of the stator winding 2 can be transferred to the case 14.
The hydrogen storage alloy 17 filled in the case 14 is warmed by flowing through the tank 11 of the pure water supply device 9, and the hydrogen gas generated from the hydrogen storage alloy 17 causes the inside of the case 14 to rotate at 100% load. The allowable hydrogen pressure for electrical equipment is 5.2 atm or more. When you are in a situation like this,
In the morning (shown between A and 8), when the load increases, the opening degree of the solenoid valve 22C is adjusted according to the load. Case 1
4, hydrogen gas is released into the machine through piping 20.

したがって、機内の水素ガス圧力は負荷に対する許容水
素ガス圧力まで上昇する。
Therefore, the hydrogen gas pressure inside the machine increases to the permissible hydrogen gas pressure for the load.

尚、電磁弁22Gは必要な時のみ開いて常時は閉じられ
ている。
Note that the solenoid valve 22G is opened only when necessary and is normally closed.

負荷上昇が完了し、負荷が安定する8点に達すると電磁
弁22a、22Cを閉じ、電磁弁22bを開としてケー
ス14にクーラ13から流出する低温の冷却水が流入す
る。したがって、ケース14内の水素貯蔵合金17が冷
却されるので、ケース14内の水素ガス圧力は1.C1
/m以下になり、夕方の負荷減少時に備える。
When the load increase is completed and the load reaches the eight stable points, the solenoid valves 22a and 22C are closed, the solenoid valve 22b is opened, and the low temperature cooling water flowing out from the cooler 13 flows into the case 14. Therefore, since the hydrogen storage alloy 17 inside the case 14 is cooled, the hydrogen gas pressure inside the case 14 is 1. C1
/m or less, in preparation for the evening load reduction.

夕方になり、図示C−D間のように負荷の減少時にはそ
の時の負荷に応じて電磁弁19cを開にすると共にその
開度を調節して機内の水素ガスをケース14内に流入し
て水素貯蔵合金17に吸着させ、負荷に対する許容水素
ガス圧力に調整する。
In the evening, when the load decreases as shown between C and D in the figure, the electromagnetic valve 19c is opened according to the load at that time, and its opening degree is adjusted to allow the hydrogen gas inside the aircraft to flow into the case 14 and to release hydrogen. It is adsorbed onto the storage alloy 17 and adjusted to an allowable hydrogen gas pressure for the load.

そして負荷の減少が完了し、負荷が安定する図示り点に
達した時点で今度は逆に電磁弁22aを開き、電磁弁2
2b、22cを閉じて熱交換器14に固定子巻線2の冷
却水流出側ヘッダー8aから流出する排熱水を前述同様
にケース14に流入してケース14内の水素貯蔵合金1
7を加熱し、ケース14内の水素ガス圧を5.2Kg/
cd以上にしておき、朝方の負荷上昇に備える。
Then, when the load reduction is completed and the load reaches the stable point shown in the figure, the solenoid valve 22a is opened in the opposite direction.
2b and 22c are closed, and the waste hot water flowing out from the cooling water outflow side header 8a of the stator winding 2 flows into the case 14 in the same manner as described above, and the hydrogen storage alloy 1 in the case 14 is transferred to the heat exchanger 14.
7 and increase the hydrogen gas pressure in the case 14 to 5.2 kg/
Keep it above CD to prepare for the rise in load in the morning.

以上述べたように本実施例によれば、水素貯蔵合金17
の特性は80°〜60℃で水素平衡圧力が5.2Kg/
cil1以上、456〜40℃で水素平衡圧力が1.C
1/CIj以下と条件が緩やかで、水素貯蔵合金の選択
が容易となり、また水素貯蔵合金は粉末状であるため熱
電導が悪く、加熱、冷却が開始されてから所定の圧力に
なるまでのタイムラグがあったが、あらかじめ負荷の安
定した時点で次の負荷対応に備えるようにしているので
、負荷の変動に対して圧力調整が速やかに行なうことが
可能となる。また、水素貯蔵合金の加熱は固定子巻線冷
却後の排熱水を使用しているのでエネルギー的にも極め
て有利である。さらに、水素貯蔵合金は粉末状であるた
めケース14から水素ガスを放出する際、機内に粉塵と
なって侵入し電気的耐電圧を劣化させる恐れがあるが、
ケース14の上部ヘッダー15にフィルタ19が設けら
れているので、その心配がなく、信頼性を向上させるこ
とができる。
As described above, according to this embodiment, the hydrogen storage alloy 17
The characteristics of the hydrogen equilibrium pressure are 5.2Kg/80° to 60°C.
cil1 or more, hydrogen equilibrium pressure at 456-40°C is 1. C
The conditions are less than 1/CIj, which makes it easy to select a hydrogen storage alloy, and since hydrogen storage alloys are in powder form, they have poor thermal conductivity, which reduces the time lag between when heating and cooling start until the specified pressure is reached. However, since the system prepares for the next load once the load has stabilized, it is possible to quickly adjust the pressure in response to load fluctuations. Furthermore, since the hydrogen storage alloy is heated using waste hot water after cooling the stator windings, it is extremely advantageous in terms of energy. Furthermore, since the hydrogen storage alloy is in powder form, when hydrogen gas is released from the case 14, there is a risk that it may enter the machine as dust and deteriorate the electrical withstand voltage.
Since the filter 19 is provided on the upper header 15 of the case 14, there is no need to worry about this, and reliability can be improved.

勿論、負荷に応じて機内の水素ガス圧力を調整するよう
にしているので、部分負荷時の風損やファン動力が減っ
て回転電機の効率が向上すると共に回転電機構成部材の
ヒートサイクルが少なくなるので、回転電機の寿命が長
くなり、信頼性も増すことになる。また、水素ガス圧力
の調整が水素ガスの消耗なしで可能となり、回転Nl1
iIIの定期点検時にはすべての水素ガスを大気に放出
することなく、水素貯蔵合金に回収することができるの
で、エネルギの有効利用を図ることができる。
Of course, since the hydrogen gas pressure inside the machine is adjusted according to the load, wind loss and fan power during partial loads are reduced, improving the efficiency of the rotating electrical machine and reducing heat cycles of the rotating electrical machine components. Therefore, the life of the rotating electric machine becomes longer and reliability increases. In addition, it is possible to adjust the hydrogen gas pressure without consuming hydrogen gas, and the rotation Nl1
During periodic inspection of the III, all hydrogen gas can be recovered in the hydrogen storage alloy without being released into the atmosphere, so energy can be used effectively.

次に本発明の他の実施例をについて説明する。Next, another embodiment of the present invention will be described.

第3図は水素冷却回転電機の水素圧力調整系の他の構成
例を示すもので、第1図と同一部分には同一記号を付し
てその説明を省略し、ここでは異なる部分についてのみ
述べる。本実施例では第3図に示すように2個のケース
14A、14Bを設けると共にその筒体のそれぞれ一方
の開口部を冷却水流出側ヘッダー88と純粋供給袋M9
のタンク11間を結ぶ配管10aの中途に配管18a1
゜18a2を介して接続すると共にその配管18a1.
18a2の中途に電磁弁23.24を設け、また他方の
開口部に冷却水を純粋供給袋M9のタンク11へ戻す配
管18b1,18b2を接続し、さらにケース14A、
14Bの一方の開口部近傍の配管18a1.18a2を
分岐した分岐管路の中途に電磁弁25.26を設けてこ
れらを共通に接続し、その共通接続部を配管21により
クーラ13の出口近傍の配管10bに接続する。またケ
ース14A、14Bの上部ヘッダーをそれぞれ配管20
a、’20bにより機内に連通させて接続すると共にこ
れら配管20a、20bの中途に電磁弁27.28をそ
れぞれ設け、さらに上部ヘッダー間を配管2つにより共
通に接続すると共にその中途に電磁弁30を設ける構成
とするものである。
Figure 3 shows another configuration example of the hydrogen pressure adjustment system of a hydrogen-cooled rotating electric machine. The same parts as in Figure 1 are given the same symbols and their explanations are omitted, and only the different parts will be described here. . In this embodiment, as shown in FIG. 3, two cases 14A and 14B are provided, and one opening of each of the cylinders is connected to a cooling water outlet header 88 and a pure supply bag M9.
A pipe 18a1 is placed in the middle of the pipe 10a connecting the tanks 11.
18a2 and its piping 18a1.
A solenoid valve 23, 24 is provided in the middle of 18a2, and piping 18b1, 18b2 for returning the cooling water to the tank 11 of the pure supply bag M9 is connected to the other opening, and the case 14A,
Solenoid valves 25 and 26 are provided in the middle of the branch pipes branching off from the pipes 18a1 and 18a2 near one opening of the cooler 14B, and these are commonly connected. Connect to piping 10b. In addition, the upper headers of cases 14A and 14B are connected to piping 20, respectively.
A and '20b are connected to the inside of the machine, and solenoid valves 27 and 28 are provided in the middle of these pipings 20a and 20b, and furthermore, the upper header is commonly connected by two pipings, and a solenoid valve 30 is installed in the middle of the piping. The configuration is such that the following is provided.

次に上記構成の作用を第4図に示す負荷パターンに基い
て説明する。
Next, the operation of the above configuration will be explained based on the load pattern shown in FIG.

今、第4図において、朝方の図示F点では一方のケース
14Aが高圧状態にあり、他方のケース14Bが低圧状
態になっているものとする。このような状態で朝、昼、
夕の図示E〜Fまでの負荷変動に対する圧力調整は次の
ようにして行なわれる。先ず、負荷上昇時はケース14
A側の電磁弁27を開放すると共にその開度を調節して
水素ガスを機内へ放出し機内の水素ガス圧力を高める。
In FIG. 4, it is assumed that at point F in the morning in the drawing, one case 14A is in a high pressure state and the other case 14B is in a low pressure state. In this state, morning, afternoon,
Pressure adjustment for load fluctuations from E to F in the evening is performed as follows. First, case 14 occurs when the load increases.
The solenoid valve 27 on the A side is opened and its opening degree is adjusted to release hydrogen gas into the machine and increase the hydrogen gas pressure inside the machine.

一方、負荷減少時はケース14B側の電磁弁28を開放
すると共にその開度を調節して機内の水素ガスを吸着し
、機内の水素ガス圧力を減少させる。
On the other hand, when the load is reduced, the electromagnetic valve 28 on the case 14B side is opened and its opening degree is adjusted to adsorb hydrogen gas inside the machine and reduce the hydrogen gas pressure inside the machine.

この場合、第1図の実施例と同様に電磁弁23゜26が
開で、24.25が閉状態にあり、また電磁弁3oも閉
じている。
In this case, as in the embodiment of FIG. 1, solenoid valves 23 and 26 are open, solenoid valves 24 and 25 are closed, and solenoid valve 3o is also closed.

以上のような日中の操作によりケース14Aは水素ガス
をある量放出し、ケース14Bは機内の水素ガスを吸着
している。ここで、その状態を第5図に示す水素貯蔵合
金の特性曲線図を参照しながら説明する。即ち、ケース
14A、14B内の水素貯蔵合金中の水素量と水素平衡
圧力との関係を示す第5図において、今負荷が第4図の
1点にあるとすれば、ケース14Aは第5図の点1にあ
り、負荷がF点にあるとすれば水素ガスの放出で点2に
移る。また、ケース14Bは負荷が1点の時は点4にあ
り、F点の時は水素ガスの吸収で点5に移る。負荷が第
4図のF点を過ぎて夜間に入り、低負荷で安定してきた
らそのままにした状態で、電磁弁3oを開いて熱交換器
14A、14B相互間を連通させ、水素貯蔵合金が充填
されている室内で水素ガスが流出入できるようにする。
As a result of the above daytime operations, case 14A releases a certain amount of hydrogen gas, and case 14B adsorbs hydrogen gas inside the aircraft. Here, this state will be explained with reference to the characteristic curve diagram of the hydrogen storage alloy shown in FIG. That is, in FIG. 5 showing the relationship between the amount of hydrogen in the hydrogen storage alloy in cases 14A and 14B and the hydrogen equilibrium pressure, if the load is now at one point in FIG. If the load is at point F, it will move to point 2 due to the release of hydrogen gas. Further, in case 14B, when the load is at one point, it is at point 4, and when it is at point F, it moves to point 5 due to absorption of hydrogen gas. When the load passes point F in Figure 4 and enters the night, and the load becomes stable at a low level, the solenoid valve 3o is opened to communicate between the heat exchangers 14A and 14B, and the hydrogen storage alloy is filled. Allow hydrogen gas to flow in and out of the room.

この場合、電磁弁26.27が閉じていることは勿論の
ことである。このようにすると、第5図に示す水素貯蔵
合金の特性曲線において、ケース14A、14Bの水素
ガス圧力は同じになり、その値はP= (Pa+Pb)
/2となる。つまり、ケース14Aは水素ガスをケース
14Bへ放出し、ケース14Bは水素ガスを吸着してケ
ース14Aは点3へ、ケース14Bは点6へ移動する。
In this case, it goes without saying that the solenoid valves 26 and 27 are closed. In this way, in the characteristic curve of the hydrogen storage alloy shown in Fig. 5, the hydrogen gas pressures in cases 14A and 14B will be the same, and the value will be P = (Pa + Pb)
/2. That is, case 14A releases hydrogen gas to case 14B, case 14B adsorbs hydrogen gas, and case 14A moves to point 3 and case 14B moves to point 6.

したがって、ケース14Aは水素ガスの含有量が少なく
なり、ケース14Bは水素ガスの含有量が多くなるので
、水素含有量では第4図に示す負荷パターンでE点の時
点と全く逆転する。この状態が平衡状態になったら電磁
弁30を閉じ、さらに電磁弁23.26を閉じる共に電
磁弁24.25を開いて水素貯蔵合金を加熱、冷却する
冷却水の温度を逆にする。この場合、電磁弁25.27
は閉状態にあることは勿論である。このようにすれば、
ケース14Aは低圧、ケース14.8は高圧状態になり
、朝方の負荷変動に備えることになる。
Therefore, the hydrogen gas content in case 14A is small, and the hydrogen gas content in case 14B is large, so that the hydrogen content is completely reversed from point E in the load pattern shown in FIG. When this state reaches an equilibrium state, the solenoid valve 30 is closed, and the solenoid valves 23 and 26 are further closed and the solenoid valves 24 and 25 are opened to reverse the temperature of the cooling water that heats and cools the hydrogen storage alloy. In this case, the solenoid valve 25.27
Of course, it is in a closed state. If you do this,
Case 14A is at low pressure and case 14.8 is at high pressure in preparation for morning load fluctuations.

尚、上記実施例において夜間の負荷が極めて低く、固定
子巻線冷却水の排熱温度が低い場合には水素貯蔵合金が
排熱温度で調整最上限圧力1例えば5.2Kg/crd
以上にならない場合には第6図に示すように冷却水排出
側ヘラグーに接続された配管10aに冷却水再加熱器3
1を設けて排熱温度を上昇させることも考えられる。
In the above embodiment, when the load at night is extremely low and the exhaust heat temperature of the stator winding cooling water is low, the hydrogen storage alloy adjusts the maximum pressure 1 at the exhaust heat temperature, for example, 5.2 Kg/crd.
If the above does not occur, as shown in Figure 6, a cooling water reheater 3 is connected to the pipe 10a connected to the cooling water discharge side Hellagu.
1 may be provided to increase the exhaust heat temperature.

また、負荷パターンが昼夜とも極めて変動頻度が高い場
合には高圧状態にあるケース、低圧状態にあるケースを
予め切替える時間がないため、このような場合には高圧
、低圧ケースの対を2組用意して対応させるようにして
もよい。
In addition, if the load pattern fluctuates extremely frequently day and night, there is no time to switch between the high-pressure case and the low-pressure case in advance, so in such cases, two sets of high-pressure and low-pressure cases are prepared. You may also make it correspond by doing so.

このようにケースを複数個(上記実施例では2個)備え
ることにより、負荷パターンが変わった時でも迅速に回
転電機の機内水素ガス圧を負荷に対応させて調整するこ
とが可能となる。
By providing a plurality of cases (two in the above embodiment) in this manner, it is possible to quickly adjust the in-machine hydrogen gas pressure of the rotating electrical machine in accordance with the load even when the load pattern changes.

前述した第1図及び第3図に示す実施例では水素貯蔵合
金を冷却、加熱する媒体として固定子巻線水冷却系を用
いる場合であるが、回転電機の冷却媒体である水素ガス
を用いるようにしてもよい。
In the embodiments shown in FIGS. 1 and 3 described above, a stator winding water cooling system is used as the medium for cooling and heating the hydrogen storage alloy, but it is also possible to use hydrogen gas, which is the cooling medium of the rotating electric machine. You can also do this.

この場合、水素貯蔵合金の加熱用としては機内に設けら
れている水素ガス冷却器の入口よりも手前の温度の高い
水素ガスをケースに導き、また水素ガス冷却器の出口の
温度の低い水素ガスを冷却用としてケースに導くことに
より実施することができる。
In this case, for heating the hydrogen storage alloy, high-temperature hydrogen gas is introduced into the case before the inlet of the hydrogen gas cooler installed in the machine, and low-temperature hydrogen gas is introduced into the case at the outlet of the hydrogen gas cooler. This can be carried out by introducing the liquid into the case for cooling.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明では、水素ガスにより冷却され
る回転電機の外部に、温度変化により水素ガスを放出ま
たは吸着する水素貯蔵合金を収納したケースを設け、こ
のケースに回転電機の冷却媒体を導入する配管を機内と
連通させて接続すると共に機内の水素ガス循環系に対し
て水素ガスを流出入する配管を接続してそれぞれの配管
の中途に弁を設ける構成とし、前記ケース内に形成され
た流通路に回転電機の冷却媒体を流出入せしめて前記水
素貯蔵合金を冷却又は加熱することにより機内水素ガス
圧力を負荷変動に応じて調整するに際し、前記水素貯蔵
合金として前記回転電機の冷却媒体の排出温度で水素平
衡圧力が機内の調整圧力最上限以上で且つ前記回転電機
の冷却媒体の供給温度で水素貯蔵合金の水素平衡圧力が
機内の調整圧力最下限以下となる水素貯蔵合金を選定し
て前記ケース内のガス圧力を調整圧力最上限以上か最下
限以下にしておき、負荷の変動に応じて前記弁を開閉し
て水素ガスを機内へ放出又は機内の水素ガスを吸着せし
めて機内の水素ガス圧力を調整するようにしたものであ
る。したがって、水素貯蔵合金の選定条件は極めて緩や
かになるので、水素貯蔵合金の選択が容易になり、また
予め水素貯蔵合金を加熱又は冷却しておき、ケース内の
水素ガス圧力を調整圧力最上限以上又は最下限以下にな
るようにしであるので、負荷が急激に変化しても機内の
水素ガス循環系に対して水素ガスを流出入する配管の中
途に設けられた電磁弁を開くことにより機内の水素ガス
圧力を速やかに調整することができる水素冷却回転電機
の水素圧力調整方法を提供することができる。
As described above, in the present invention, a case containing a hydrogen storage alloy that releases or adsorbs hydrogen gas according to temperature changes is provided outside the rotating electrical machine that is cooled by hydrogen gas, and the cooling medium for the rotating electrical machine is installed in this case. The pipe to be introduced is connected to communicate with the inside of the machine, and the pipes for flowing hydrogen gas into and out of the hydrogen gas circulation system inside the machine are connected, and a valve is provided in the middle of each pipe. When the in-machine hydrogen gas pressure is adjusted in accordance with load fluctuations by letting the cooling medium of the rotating electrical machine flow in and out of the flow path to cool or heat the hydrogen storage alloy, the cooling medium of the rotating electrical machine is used as the hydrogen storage alloy. Select a hydrogen storage alloy whose hydrogen equilibrium pressure is equal to or higher than the maximum regulated pressure inside the machine at the discharge temperature, and whose hydrogen equilibrium pressure is below the minimum regulated pressure inside the machine at the supply temperature of the cooling medium of the rotating electric machine. The gas pressure in the case is kept above the maximum adjustment pressure limit or below the minimum adjustment pressure limit, and the valve is opened and closed according to load fluctuations to release hydrogen gas into the aircraft or to adsorb hydrogen gas inside the aircraft. It is designed to adjust the hydrogen gas pressure. Therefore, the conditions for selecting a hydrogen storage alloy are extremely relaxed, making it easy to select a hydrogen storage alloy.Also, by heating or cooling the hydrogen storage alloy in advance, the hydrogen gas pressure inside the case can be adjusted to exceed the maximum pressure limit. or below the minimum limit, so even if the load suddenly changes, the inside of the aircraft can be maintained by opening the solenoid valve installed in the middle of the pipe that flows hydrogen gas into and out of the hydrogen gas circulation system inside the aircraft. It is possible to provide a hydrogen pressure adjustment method for a hydrogen-cooled rotating electrical machine that can quickly adjust hydrogen gas pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を説明するための一実施例を示す水
素冷却回転電機の水素圧力調整系統の構成図、第2図は
同実施例の作用を説明するための回転電機の負荷パター
ン図、第3図は本発明の他の実施例を説明するための水
素冷却回転電機の水素圧力調整系統の構成図、第4図は
同実施例の作用を説明するための回転電機の負荷パター
ン図、26一 第5図は第4図の負荷パターンに対する水素貯蔵合金の
水素ガスの吸着、放出の状態図、第6図は第3図におい
て熱交換器に固定子巻線冷却水を導入する冷却水導入系
の変形例を示す部分的な構成図、第7図及び第8図は水
素貯蔵合金の特性の一例を説明するための図、第9図は
水素貯蔵合金の特性と固定子巻線冷却水出口温度と許容
機内水素ガス圧力の関係図、第10図は従来のタービン
発電機の水素圧力調整系を示す構成図である。 1・・・・・・固定子フレーム、2・・・・・・固定子
巻線、3・・・・・・固定子鉄心、4・・・・・・空間
部、5・・・・・・回転子、6・・・・・・自己ファン
、7・・・・・・水素ガス、8a、3b・・・・・・ヘ
ッダー、10a11ob・・・・・・配管、11・・・
・・・タンク、12・・・・・・ポンプ、13・・・・
・・クーラ、14.14A、14B・・・・・・ケース
、15・・・・・・ケースの上部ヘッダー、16・・・
・・・伝熱管、17・・・・・・水素貯蔵合金、18a
、18a1,18a2゜18b、18bl、18b2・
・・・・・配管、19・・・・・・フィルタ、20.2
0a、20b・・・・・・配管、22a〜22c、23
〜30・・・・・・電磁弁。 第4図 第5図 第6図 シ杵壱e、to厘B尊 蒋申/)7に散↑ 心士ジA残 第8図 令 金 りに 第9図 第7図 第10図
Fig. 1 is a configuration diagram of a hydrogen pressure adjustment system of a hydrogen-cooled rotating electric machine showing an example for explaining the method of the present invention, and Fig. 2 is a load pattern diagram of the rotating electric machine for explaining the operation of the same embodiment. , FIG. 3 is a configuration diagram of a hydrogen pressure adjustment system of a hydrogen-cooled rotating electrical machine for explaining another embodiment of the present invention, and FIG. 4 is a load pattern diagram of the rotating electrical machine for explaining the operation of the same embodiment. , 26- Fig. 5 is a state diagram of adsorption and release of hydrogen gas by the hydrogen storage alloy for the load pattern shown in Fig. 4, and Fig. 6 is a cooling diagram in which stator winding cooling water is introduced into the heat exchanger in Fig. 3. A partial configuration diagram showing a modified example of the water introduction system, Figures 7 and 8 are diagrams for explaining an example of the characteristics of the hydrogen storage alloy, and Figure 9 shows the characteristics of the hydrogen storage alloy and the stator winding. FIG. 10 is a diagram illustrating the relationship between cooling water outlet temperature and allowable in-machine hydrogen gas pressure, and is a configuration diagram showing a hydrogen pressure adjustment system of a conventional turbine generator. 1...Stator frame, 2...Stator winding, 3...Stator core, 4...Space, 5...・Rotor, 6... Self-fan, 7... Hydrogen gas, 8a, 3b... Header, 10a11ob... Piping, 11...
... Tank, 12 ... Pump, 13 ...
... Cooler, 14.14A, 14B ... Case, 15 ... Upper header of case, 16 ...
... Heat exchanger tube, 17 ... Hydrogen storage alloy, 18a
, 18a1, 18a2゜18b, 18bl, 18b2・
...Piping, 19...Filter, 20.2
0a, 20b...Piping, 22a-22c, 23
~30...Solenoid valve. Fig. 4 Fig. 5 Fig. 6 Shikiichi e, to R B Son Chiang Shen/) 7 ↑ Shinshi Ji A Zan Fig. 8 Reikin ri Fig. 9 Fig. 7 Fig. 10

Claims (4)

【特許請求の範囲】[Claims] (1)水素ガスにより冷却される回転電機の外部に、湿
度変化により水素ガスを放出または吸着する水素貯蔵合
金を収納したケースを設け、このケースに回転電機の冷
却媒体を導入する配管を機内と連通させて接続すると共
に機内の水素ガス循環系に対して水素ガスを流出入する
配管を接続してそれぞれの配管の中途に弁を設ける構成
とし、前記ケース内に形成された流通路に回転電機の冷
却媒体を流出入せしめて前記水素貯蔵合金を冷却又は加
熱することにより機内水素ガス圧力を負荷変動に応じて
調整するに際し、前記水素貯蔵合金として前記回転電機
の冷却媒体の排出温度で水素平衡圧力が機内の調整圧力
最上限以上で且つ前記回転電機の冷却媒体の供給温度で
水素貯蔵合金の水素平衡圧力が機内の調整圧力最下限以
下である水素貯蔵合金を選定して前記ケース内のガス圧
力を調整圧力最上限以上か最下限以下にしておき、負荷
の変動に応じて前記弁を開閉して水素ガスを機内へ放出
又は機内の水素ガスを吸着せしめて機内の水素ガス圧力
を調整することを特徴とする水素冷却回転電機の水素圧
力調整方法。
(1) A case containing a hydrogen storage alloy that releases or adsorbs hydrogen gas depending on changes in humidity is installed outside the rotating electric machine that is cooled by hydrogen gas, and piping for introducing the cooling medium for the rotating electric machine into this case is connected to the inside of the machine. At the same time, pipes for inflowing and outflowing hydrogen gas are connected to the hydrogen gas circulation system inside the machine, and a valve is provided in the middle of each pipe. When adjusting the in-machine hydrogen gas pressure according to load fluctuations by cooling or heating the hydrogen storage alloy by letting the cooling medium in and out, the hydrogen storage alloy is used to maintain hydrogen equilibrium at the discharge temperature of the cooling medium of the rotating electric machine. By selecting a hydrogen storage alloy whose pressure is above the maximum regulated pressure inside the machine and whose hydrogen equilibrium pressure is below the minimum regulated pressure inside the machine at the supply temperature of the cooling medium of the rotating electric machine, the gas inside the case is The pressure is kept above the maximum adjustment pressure limit or below the minimum limit, and the hydrogen gas pressure inside the machine is adjusted by opening and closing the valve according to load changes to release hydrogen gas into the machine or adsorb hydrogen gas inside the machine. A method for adjusting hydrogen pressure in a hydrogen-cooled rotating electric machine, characterized by:
(2)ケース内に形成された流通路に流出入する回転電
機の冷却媒体は巻線の冷却水である特許請求の範囲第1
項に記載された水素冷却回転電機の水素圧力調整方法。
(2) The cooling medium of the rotating electric machine that flows in and out of the flow path formed in the case is cooling water for the windings.Claim 1
Hydrogen pressure adjustment method for hydrogen-cooled rotating electric machines described in Section 1.
(3)ケース内に形成された流通路に流出入する回転電
機の冷却媒体は機内循環系の水素ガスである特許請求の
範囲第1項に記載された水素冷却回転電機の水素圧力調
整方法。
(3) The method for adjusting hydrogen pressure in a hydrogen-cooled rotating electric machine according to claim 1, wherein the cooling medium of the rotating electric machine flowing in and out of the flow path formed in the case is hydrogen gas from an internal circulation system.
(4)機内の水素ガス循環系及び回転電機の冷却媒体の
流出入系に接続されるケースは複数個設けられ、これら
を高圧状態と低圧状態に分けて負荷変動時に対応させる
ようにした特許請求の範囲第1項乃至第3項の何れか一
つに記載された水素冷却回転電機の水素圧力調整方法。
(4) A patent claim in which a plurality of cases are provided to be connected to the hydrogen gas circulation system in the machine and the cooling medium inflow/outflow system of the rotating electric machine, and these are divided into high pressure states and low pressure states to cope with load fluctuations. A method for adjusting hydrogen pressure in a hydrogen-cooled rotating electric machine according to any one of items 1 to 3.
JP60133416A 1985-06-19 1985-06-19 Method for adjusting hydrogen pressure of hydrogen-cooled rotating electric machine Expired - Lifetime JPH0744805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60133416A JPH0744805B2 (en) 1985-06-19 1985-06-19 Method for adjusting hydrogen pressure of hydrogen-cooled rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60133416A JPH0744805B2 (en) 1985-06-19 1985-06-19 Method for adjusting hydrogen pressure of hydrogen-cooled rotating electric machine

Publications (2)

Publication Number Publication Date
JPS61293132A true JPS61293132A (en) 1986-12-23
JPH0744805B2 JPH0744805B2 (en) 1995-05-15

Family

ID=15104257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60133416A Expired - Lifetime JPH0744805B2 (en) 1985-06-19 1985-06-19 Method for adjusting hydrogen pressure of hydrogen-cooled rotating electric machine

Country Status (1)

Country Link
JP (1) JPH0744805B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097669A (en) * 1991-02-11 1992-03-24 Westinghouse Electric Corp. Control of hydrogen cooler employed in power generators
WO1994010739A1 (en) * 1992-11-04 1994-05-11 Siemens Aktiengesellschaft Process for removing hydrogen from a hydrogen-filled electric machine
JP2008011641A (en) * 2006-06-29 2008-01-17 Toshiba Corp Rotating electric machine
DE102012022421A1 (en) * 2012-11-16 2014-05-22 Rwe Generation Se Method for cooling e.g. two-pole turbogenerator, with closed cooling gas circuit, involves controlling gas pressure within cooling gas circuit in dependence of actual operating point of direct current generator-electrical machine
US20230327531A1 (en) * 2022-04-12 2023-10-12 Hamilton Sundstrand Corporation Aircraft electric motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186948A (en) * 1981-05-13 1982-11-17 Hitachi Ltd Coolant supplier for electric rotary machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186948A (en) * 1981-05-13 1982-11-17 Hitachi Ltd Coolant supplier for electric rotary machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097669A (en) * 1991-02-11 1992-03-24 Westinghouse Electric Corp. Control of hydrogen cooler employed in power generators
WO1994010739A1 (en) * 1992-11-04 1994-05-11 Siemens Aktiengesellschaft Process for removing hydrogen from a hydrogen-filled electric machine
JP2008011641A (en) * 2006-06-29 2008-01-17 Toshiba Corp Rotating electric machine
DE102012022421A1 (en) * 2012-11-16 2014-05-22 Rwe Generation Se Method for cooling e.g. two-pole turbogenerator, with closed cooling gas circuit, involves controlling gas pressure within cooling gas circuit in dependence of actual operating point of direct current generator-electrical machine
US20230327531A1 (en) * 2022-04-12 2023-10-12 Hamilton Sundstrand Corporation Aircraft electric motor

Also Published As

Publication number Publication date
JPH0744805B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US4192144A (en) Direct contact heat exchanger with phase change of working fluid
CN111749739A (en) Supercritical carbon dioxide recompression cycle power generation system and operation method
CN110165327B (en) Battery pack heat treatment device and phase-change material manufacturing method
US4000617A (en) Closed cycle gas turbine system
CN104992730A (en) Molten-salt nuclear reactor and airborne power system based on same
JPS61293132A (en) Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine
JP7334480B2 (en) HTGR system
US4257846A (en) Bi-brayton power generation with a gas-cooled nuclear reactor
CN113539530B (en) Emergency heat exporting system of solid-state reactor core nuclear reactor for deep sea underwater navigation and working method
JPS6154842A (en) Cooler of rotary electric machine
JPH0127669B2 (en)
JP6712672B1 (en) Power generation device and power generation system using supercritical CO2 gas
JP6817908B2 (en) Compressed air storage power generation equipment and method
JPS61293133A (en) Hydrogen pressure regulator for hydrogen-cooled rotary electric machine
RU2131987C1 (en) Hear-transfer apparatus using stirling-cycle principle
KR102546449B1 (en) Nuclear power load response generation system using thermal energy storage system
KR101186285B1 (en) heat exchanger system for ship with hydrogen storage tank.
US5289511A (en) Liquid-metal cooled nuclear reactor
JPS61293131A (en) Adjusting method for hydrogen pressure for hydrogen-cooled rotary electric machine
JPH04148161A (en) Room cooling/heating method with generation or supplying method for cold/hot water
JPS5815705B2 (en) Heat recovery method in power generation equipment
JPH09106830A (en) Secondary battery structure
JP3270272B2 (en) Control system for heat source system for air conditioning
JPS61227652A (en) Hydrogen pressure regulator of hydrogen-cooled rotary electric machine
WO2024064564A1 (en) System and methods for capturing carbon dioxide from a flow of exhaust gas from a combustion process