JPS6150348A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6150348A
JPS6150348A JP60161859A JP16185985A JPS6150348A JP S6150348 A JPS6150348 A JP S6150348A JP 60161859 A JP60161859 A JP 60161859A JP 16185985 A JP16185985 A JP 16185985A JP S6150348 A JPS6150348 A JP S6150348A
Authority
JP
Japan
Prior art keywords
bonded
semiconductor
semiconductor chip
semiconductor device
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60161859A
Other languages
Japanese (ja)
Inventor
Takehisa Nitta
雄久 新田
Katsumi Ogiue
荻上 勝巳
Kanji Otsuka
寛治 大塚
Shinji Onishi
大西 新二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60161859A priority Critical patent/JPS6150348A/en
Publication of JPS6150348A publication Critical patent/JPS6150348A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • H01L23/556Protection against radiation, e.g. light or electromagnetic waves against alpha rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To prevent any erroneous operation due to alpha ray irradiation from happening by a method wherein, after bonding a alpha ray shielding sheet such as silicon and quartz etc. on the surface of active region of semiconductor element, separated individual chips are bonded on a substrate while electrodes are connected to corresponding external conductive means before they are sealed by an insulating cap. CONSTITUTION:A semiconductor chip 14 is bonded on the surface of a ceramics- made insulating base 10 through the intermediary of an adhesive layer 13 and then multiple electrodes are electrically connected to corresponding leads 12 by bonding wires. A alpha ray shielding sheet 17 made of high purity (preferably exceeding 5-9) silicon several 100mum thick including the thickness of another adhesive layer 16 is bonded on the surface of active region of semiconductor chip 14 before or after wire bonding process while a ceramics-made insulating cap 18 is bonded on the base 10 through the intermediary of a low melting point glass layer 19.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法、特にダイナミックメモ
リ等の半導体素子を封止して成る半導体装置の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device in which a semiconductor element such as a dynamic memory is sealed.

一般に、半導体素子は通常セラミ、り、ガラス若しくは
プラスチ、り(樹脂)等から成る封止体により封止され
る。これらの封止体(以下、パッケージと称す。)のう
ちとくにセラミックパッケージにおけるセラミック材料
には数ppm程度のウラニウム(U)やトリウム(Th
)等が含まれている。これらの不純物は、例えば16 
th proc−ecdings of reliab
iiity physics(1978) 。
In general, semiconductor elements are usually sealed with a sealing body made of ceramic, resin, glass, plastic, resin, or the like. Among these sealed bodies (hereinafter referred to as packages), the ceramic materials of ceramic packages in particular contain several ppm of uranium (U) and thorium (Th).
) etc. are included. These impurities are, for example, 16
th proc-ecdings of relief
IIIity Physics (1978).

p88 K述べられているように、α線を放出し、この
α線によってメモリ素子が誤動作してしまうことが知ら
れている。このために、半導体素子の信頼性が著しく低
下する場合がある。
As stated on page 88 K, it is known that alpha rays are emitted and memory devices malfunction due to these alpha rays. For this reason, the reliability of the semiconductor device may be significantly reduced.

U及びThの自然崩壊のエネルギー分布は4〜9MeV
であるがパッケージ材料中で発生したα線はその材料表
面に出るまで((分子との衝突でエネルギーを失うので
パッケージから放射されるα線のエネルギー分布はO〜
9MeVとなる。
The energy distribution of spontaneous decay of U and Th is 4 to 9 MeV
However, until the alpha rays generated in the package material reach the surface of the material (((because they lose energy due to collisions with molecules, the energy distribution of the alpha rays emitted from the package is O ~
It becomes 9MeV.

このα線がSiベン、ト内に侵入すると電子を励起し、
少しづつエネルギーを失いながら走行する。従って、物
質中のα線の飛程は物質の密度に反比例し、初期エネル
キーに比例する。Si中では3,5eVの電子を励起し
5Me Vのとき飛程は約25μmである。又、Si中
で電子が励起されると、ホールも発生することになり、
電子−ホールのベアがα線の軌跡に沿って発生すること
Kな1           る・ここで励起さまた電
子数1はa線”ネ“ギ一が5 M e Vとすると、 Ne : 5MeV/ 8.6eV =1−4 X I
 O’ 個となる。これは0.22pグロンの電気量と
なる。
When this alpha ray enters the Si vent, it excites electrons,
It runs while losing energy little by little. Therefore, the range of alpha rays in a material is inversely proportional to the density of the material and proportional to its initial energy. In Si, when electrons are excited at 3.5 eV and 5 Me V, the range is about 25 μm. Also, when electrons are excited in Si, holes are also generated,
Electron-hole bears are generated along the locus of α rays. If the number of excited electrons is 1 and the a-ray energy is 5 M e V, then Ne: 5 MeV/8 .6eV = 1-4 X I
There are O' pieces. This amounts to an amount of electricity of 0.22 pgrons.

以後濃度勾配による拡散と共に再結合により消滅するが
、この電荷がバイアスにより捕捉され、ペレットのある
境界条件の電荷量に比して無視できない値であった時、
誤動作するわけである。この誤動作は素子の物理的性質
をそこなわずに起るためソフト・エラー(5oft  
Error)と呼ばれている。
Thereafter, the charge disappears due to diffusion and recombination due to the concentration gradient, but when this charge is captured by the bias and has a value that cannot be ignored compared to the amount of charge under a certain boundary condition of the pellet,
It will malfunction. This malfunction occurs without damaging the physical properties of the device, so it is a soft error (5of
Error).

のレジンコーティングを施すことがすでに提案されてい
る。しかしながら、この場合には、列えば70μm以上
の所望の厚さで均一にレジンコーティングを施すのが困
難なこと、ワイヤボンディング後に半導体チップにレジ
/コーティングを施すと組立歩留や信頼性を低下させや
すいことなどの欠点がある。
It has already been proposed to apply a resin coating. However, in this case, it is difficult to uniformly apply a resin coating to the desired thickness of 70 μm or more, and applying a resin coating to the semiconductor chip after wire bonding reduces assembly yield and reliability. It has drawbacks such as being easy to use.

高純度材料を半導体チップの活性領域を含む表面に直接
コートしてα線を防ぐ半導体装置の製造方法については
、特開昭55−088356に記載しである。
A method for manufacturing a semiconductor device that protects against alpha rays by directly coating the surface of a semiconductor chip, including the active region, with a high-purity material is described in Japanese Patent Laid-Open No. 55-088356.

本発明の目的は、このような欠点を伴うことなく活性領
域でのα線照射による誤動作を防止した半導体装置の製
造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device that prevents malfunctions due to alpha ray irradiation in the active region without having such drawbacks.

本発明による半導体装置の製造方法は、半導体素子の活
性領域表面にシリコンや石英などの高純度材料からなる
α線遮蔽板を貼付した後1個々のチップに分断し、この
チップを基体に固着し、チップ上の電極と対応する鷹考
オ考##ミ外部との導通手段とを接続し封止することを
特徴とするもので、以下、添付図面に示す実施例につい
て詳述する。
The method for manufacturing a semiconductor device according to the present invention involves attaching an α-ray shielding plate made of a high-purity material such as silicon or quartz to the surface of the active region of a semiconductor element, cutting it into individual chips, and fixing the chips to a substrate. It is characterized by connecting and sealing the electrodes on the chip and the corresponding conduction means with the outside.Hereinafter, the embodiments shown in the accompanying drawings will be described in detail.

第1図は、本発明の一実施例に係る半導体装置を示すも
ので、セラミックス製の絶縁性ベース10の上面中央の
凹部底面上にはAuフォイル又はAu メタライズ層な
どからなる接着層13′t−介して半導体チップ14が
固着されている。この半導体チップ14は、例えばシリ
コンからなり、その表面には後述するメモリセル等を含
むα線照射により誤動作しやすい活性領域が通常4〜5
μmの深さにわたって形成されている。そして、半導体
チップ14上の多数の電極は、多数のボンディングワイ
ヤにより対応するり一ド12に電気的に接続される。
FIG. 1 shows a semiconductor device according to an embodiment of the present invention, in which an adhesive layer 13't made of an Au foil or an Au metallized layer is provided on the bottom surface of a recess at the center of the upper surface of an insulating base 10 made of ceramics. - A semiconductor chip 14 is fixed thereto. The semiconductor chip 14 is made of, for example, silicon, and typically has 4 to 5 active regions on its surface that are prone to malfunction due to alpha ray irradiation, including memory cells, etc., which will be described later.
It is formed over a depth of μm. A large number of electrodes on the semiconductor chip 14 are electrically connected to corresponding leads 12 by a large number of bonding wires.

半導体テップ14の活性領域表面には、ワイヤポンディ
ングの前又は後に、911えばり/ケイ酸ガラスおるい
は鉛ガラス等の接着層16により、数100μmの厚さ
の高純度(好ましくはファイブ・ナイン以上)シリコン
からなるα線遮蔽板17が貼付される。
The active region surface of the semiconductor chip 14 is coated with a high purity (preferably five-fiber) adhesive layer 16 of several hundred μm thick, such as 911 burr/silicate glass or lead glass, before or after wire bonding. 9 or more) An α-ray shielding plate 17 made of silicon is attached.

第2図は、遮蔽板17を貼付した後の半導体チップ14
の表面状態を示すもので、14aはボ/デ1ングパッド
(電極)である。このンリコン製のα線遮蔽板17はそ
の表面VC前もって表面酸化処理を施し、絶縁性を付与
しておぐのが好ましい。
FIG. 2 shows the semiconductor chip 14 after the shielding plate 17 has been attached.
14a is a board/board pad (electrode). It is preferable that the α-ray shielding plate 17 made of NRICON is subjected to surface oxidation treatment in advance to impart insulation properties.

なお、α線遮蔽板17としては、この他にも表面酸化し
たアルミニウム板、石英板、テフロ/(商品名)等のフ
ッ素樹脂又はポリイミド・インインドロ・キナゾリンデ
ィオy(PIポリマーと称す)等のポリイミド系樹脂か
らなる板材などを用いることができる。ここで、テフロ
ン板は、ノビ/オン法で被着したガラス又はPIポリマ
ーで貼付するのがよい。1だ、接着層16として、乾燥
が必要な接着材を使用した場合VCは、α線遮蔽板17
に予め多数の小孔を設け、メツシー状等圧加工しておい
てもよく、このようにすれば、乾燥が容易になる効果が
ある。
In addition, the α-ray shielding plate 17 may be made of an aluminum plate with an oxidized surface, a quartz plate, a fluororesin such as Teflo/(trade name), or a polyimide such as polyimide-indo-quinazolindioy (referred to as PI polymer). A plate material made of resin can be used. Here, the Teflon plate is preferably attached with glass or PI polymer applied by the Novi/On method. 1. If an adhesive that requires drying is used as the adhesive layer 16, the VC will be the α-ray shielding plate 17.
A large number of small holes may be provided in advance and a mesh-like isopressure process is performed.This has the effect of facilitating drying.

一方、セラミック製の絶縁性キャップ18は一方の主面
の中央部に凹部18aを有し、この凹部18aを半導体
チップ14に対向させるようにしてベース10に重ね合
わされるものである。キャップ18のベースlOとの対
向接合面には予め低融点ガラス層19が被着されており
、ベース10にキャップ18を重ね合わせた後、封止用
ガラス層19の融点まで加熱し、冷却すること罠よりベ
ース10とキャップ18とが相互に接着される。
On the other hand, the ceramic insulating cap 18 has a recess 18a in the center of one main surface, and is placed over the base 10 with the recess 18a facing the semiconductor chip 14. A low melting point glass layer 19 is previously attached to the joint surface of the cap 18 facing the base 10, and after the cap 18 is superimposed on the base 10, it is heated to the melting point of the sealing glass layer 19 and then cooled. The base 10 and the cap 18 are bonded together.

上記構成において、α線はベース10及びキヤl   
  y 7.18゜−4g 5 i 、 、2よ、。□
ヵ9−X!1it19のガラスとか5放射されるが、こ
のうち、ベースIOから放射されるα線は半導体チップ
14が150〜500μInの厚さを有するためチップ
表面の活性領域に到達するまでにはその誤動作を生じさ
せえない程度に弱められているので殆ど問題にならない
。そこで、問題となるのは、キャップ18及び封止ガラ
ス層11,19からのα線であるが、キャップ18から
のα線は遮蔽板17で十分器められると共に、封止ガラ
ス/fall、17からのα線もチップ表面の活性領域
に対する入射角が比較的大きいものは遮蔽板17で十分
器められる。そして、封止ガラス層11.19から放射
されたα線のうち、遮蔽板17を経由しないようにチッ
プ14の側方から活性領域罠入射するα線は、入射角が
浅いことから活性領域に対する作用力が本来あまり強く
ないので殆ど問題にならない場合が多い。
In the above configuration, α rays are transmitted to the base 10 and the carrier l.
y 7.18°-4g 5 i, ,2. □
Ka9-X! Of these, the alpha rays emitted from the base IO cause malfunctions before reaching the active region on the chip surface because the semiconductor chip 14 has a thickness of 150 to 500 μIn. Since it has been weakened to the point where it cannot be caused, it is hardly a problem. Therefore, the problem is the α rays from the cap 18 and the sealing glass layers 11 and 19, but the α rays from the cap 18 are sufficiently contained by the shielding plate 17, and the sealing glass/fall, 17 The shielding plate 17 can sufficiently block alpha rays from the active region of the chip surface that have a relatively large angle of incidence with respect to the active region. Of the α rays emitted from the sealing glass layer 11.19, the α rays enter the active region trap from the side of the chip 14 without passing through the shielding plate 17, because the angle of incidence is shallow. Since the acting force is originally not very strong, it is often not a problem.

従って、上記した本発明の半導体装置の製造方法によれ
ば、α線による活性領域での誤動作を効果的に防止する
ことができる。また、遮蔽板17は予め成形されている
ので、厚さのばらつきは従来の単なるレジン塗布の場合
に比へて非常に少ない利点がある。その上、遮蔽板17
はチップ表面を保護する作用もはたすので、例えば半導
体チップ14の取扱いにあたって真空チャック等で遮蔽
板17を直接に吸着することができ、チップ14の取扱
いが容易になる利点もある。なお、遮蔽板17のチップ
14への貼付けは、チップ14がウェハの一領域をなし
ているウェハ状態においてもこれを行うことができ、ウ
ェハ検査において良品と判定されたチップ領域にのみ遮
蔽板17を選択的に貼付け、しかる後、ウェハを分断し
て個々のチップを得るようにしてもよい、この場合の作
業においても遮蔽板17はチップ領域又はチップを外界
から化学的ないし物理的に保護することができるもので
ある。
Therefore, according to the method of manufacturing a semiconductor device of the present invention described above, malfunctions in the active region due to α rays can be effectively prevented. Furthermore, since the shielding plate 17 is pre-formed, there is an advantage that variations in thickness are much smaller than in the conventional case of mere resin coating. Moreover, the shielding plate 17
Since it also functions to protect the chip surface, for example, when handling the semiconductor chip 14, the shielding plate 17 can be directly adsorbed with a vacuum chuck or the like, which has the advantage of making the chip 14 easier to handle. Note that the shielding plate 17 can be attached to the chip 14 even in a wafer state where the chip 14 forms one area of the wafer, and the shielding plate 17 can be attached only to the chip area determined to be good in the wafer inspection. The wafer may be selectively pasted and then the wafer may be divided to obtain individual chips. In this case also, the shielding plate 17 chemically or physically protects the chip area or chips from the outside world. It is something that can be done.

とdろで、本発明の適用対象となる半導体装置は、前述
したようにα線照射により誤動作することのある活性領
域が形成された半導体チップを有するものでちるが、次
にその具体例をいくつか説明する。
As described above, the semiconductor device to which the present invention is applied includes a semiconductor chip in which an active region is formed that may malfunction due to alpha ray irradiation. Let me explain a few things.

第3図は、MO8O8型ダイアミRAM(ランダム・ア
クセス・メモリ)のメモリセル構造を示すもので、その
等価回路は第4図に示されている。
FIG. 3 shows the memory cell structure of an MO8O8 type diami RAM (random access memory), and its equivalent circuit is shown in FIG.

20はP型シリコン基板で、その表面には厚いンイール
ドSiO□膜21が形成されると共に、この5in2膜
21の開口部内には薄いSin、膜21Aが形成されて
いる。22はN+型拡散領域、23は第1の低抵抗ポリ
7リコン層、24はす//リケードガラスからなる眉間
絶縁膜、25は第2の低抵抗ポリンリコン層、26はリ
ンシリケートガラスからなるパノ7ペーション膜である
。5102膜21A上に配置された第2ポリンリコン層
25の一部分は、N+型拡散領域22をソース領域とす
るMO8型トランジスタQのゲートとして作用するもの
でちり、N+型ノース領域22はデジット線DGに接続
される一方、第2ポリンリコ/層25はワード線Wに接
続される。トランジスタQのドレイン領域に相当する基
板表面部分20Aは、Sin、膜21Aを介してその上
に位置する第1ポリンリコン層23の一部分と共に情報
蓄積用コンデンサCを形成するもので、ポリンリコン層
23は電位源■に接続される。コンデンサCへの情報電
荷の書込みないしコンデンサCからの情報電荷の読出し
はトラ7ジスタQのスイッチング作用によ)制御される
20 is a P-type silicon substrate, on the surface of which a thick unyield SiO□ film 21 is formed, and within the opening of this 5in2 film 21 a thin Sin film 21A is formed. 22 is an N+ type diffusion region, 23 is a first low-resistance poly 7 silicon layer, 24 is a glabellar insulating film made of licade glass, 25 is a second low-resistance poly 7 silicon layer, and 26 is a pan 7 made of phosphorus silicate glass. Pation membrane. A part of the second polyrecon layer 25 disposed on the 5102 film 21A acts as a gate of an MO8 type transistor Q whose source region is the N+ type diffusion region 22, and the N+ type north region 22 is connected to the digit line DG. On the other hand, the second polyline/layer 25 is connected to the word line W. The substrate surface portion 20A corresponding to the drain region of the transistor Q forms an information storage capacitor C together with a portion of the first polyrecon layer 23 located thereon via the Sin film 21A. Connected to source ■. The writing of information charges into the capacitor C and the reading of information charges from the capacitor C are controlled by the switching action of the transistor Q.

上記構成のメモリセルは、前述した半導体チップ内に多
数個形成されてRAMを構成するようになっており、R
A kiの記憶容量が大きくなるほど集積密度が増し、
セルサイズが小さくなる。このため、列えは記憶容量が
16にビット以上のMO8O8型ダイアミRAMでは、
コンデンサCのキャバ/タンスは非常に小さく、α線が
基板表面領域20Aに入射した際の電子−ホールペアの
生成により容易に記憶情報が反転する事態が生じ、これ
がいわゆるソフト・エラーとなるわけである。
A large number of memory cells having the above configuration are formed in the semiconductor chip described above to constitute a RAM.
As the storage capacity of A ki increases, the integration density increases,
Cell size becomes smaller. For this reason, in MO8O8 type diami RAM with a storage capacity of 16 bits or more,
The capacitor C has a very small capacitance/tance, and the generation of electron-hole pairs when α rays enter the substrate surface area 20A easily causes stored information to be reversed, resulting in a so-called soft error. be.

従って、活性領域であるコンデンサ部に入射す1   
      ″°線量I減−t−x員″′き″隷翳1記
0よう7′1.MO8型ダイナミックRAMに適用すれ
ば、かようなソフト・エラーを防止することができるも
のである。
Therefore, the 1
If applied to the MO8 type dynamic RAM, such soft errors can be prevented.

第5図は、本発明の他の適用対象としてのBCL(エミ
ッタ・力、プルド・ロジック)型式のバイポーラ・ダイ
ナミックRAMのメモリセル構造を等価回路で示したも
のである。図示のメモリセルは、マルチエミッタトラン
ジスタQ1. Q2 及ヒ抵抗R,,R,でフリップフ
ロップを構成したもので、■ooは電位源、ADはアド
レス線、D、Dはそれぞれデータ線を示す。このような
メモリセル構造を有するバイポーラRAMにおいても、
特に大容量・高集積度のものにおいては、α線照射によ
り生じた電子−ホールペアが容易にフリップフロ、プの
状態を反転させ、ソフト・エラーをひき起こす。
FIG. 5 shows an equivalent circuit diagram of a memory cell structure of a BCL (emitter power, pulled logic) type bipolar dynamic RAM to which the present invention is applied. The illustrated memory cell includes multi-emitter transistors Q1. Q2 and resistors R, , R, constitute a flip-flop, where oo is a potential source, AD is an address line, and D and D are data lines, respectively. Even in a bipolar RAM having such a memory cell structure,
Particularly in large-capacity, highly integrated devices, electron-hole pairs generated by α-ray irradiation easily reverse the flip-flop state, causing soft errors.

このようなソフト・エラーも前述のMO8型RAMの場
合と同様に本発明の適用により効果的に防止することが
できるものである。
Such soft errors can also be effectively prevented by applying the present invention, as in the case of the MO8 type RAM described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る半導体装置を示す断
面図、 第2図は、α線遮蔽板を固着した単導体チップの上面図
、 第3図は、本発明の適用対象であるMO8型RAMのメ
モリセル構造を示す基板断面図、第4図は、第3図のメ
モリセルの等価回路図。 第5図は、本発明の他の適用対象としてのバイポーラ型
RA Mのメモリセル構造を示す等価回路図である。 10・・・絶縁性ベース、11.19・・・封止ガラス
層、14・・半導体チップ、16・・・α線遮蔽板、1
8・・・絶縁性キャップ。 第  1  図 第  2  図
FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention, FIG. 2 is a top view of a single conductor chip to which an α-ray shielding plate is fixed, and FIG. 3 is a cross-sectional view showing a semiconductor device to which the present invention is applied. FIG. 4 is a cross-sectional view of a substrate showing the memory cell structure of a certain MO8 type RAM, and FIG. 4 is an equivalent circuit diagram of the memory cell of FIG. 3. FIG. 5 is an equivalent circuit diagram showing a memory cell structure of a bipolar RAM to which the present invention is applied. 10... Insulating base, 11.19... Sealing glass layer, 14... Semiconductor chip, 16... α-ray shielding plate, 1
8...Insulating cap. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、(a)半導体ウェハを用意する工程と (b)上記半導体ウェハ表面に、活性領域と電極とを含
む複数の素子を形成する工程と (c)少なくとも半導体ウェハの活性領域表面に、少な
くともその表面に絶縁性を有すα線遮蔽板を貼付ける工
程と (d)上記少なくともその表面に絶縁性を有するα線遮
蔽板を貼付けた半導体ウェハから個々の半導体チップを
得る工程と (e)上記半導体チップの電極と対応する外部との導通
手段とをボンディングワイヤを用いて電気的に接続する
工程と (f)上記半導体チップ、上記外部との導通手段、そし
て、上記ボンディングワイヤの少なくとも一部を封止体
により封止する工程と からなることを特徴とする半導体装置の製造方法。 2、上記封止体は、セラミック製の絶縁性キャップとセ
ラミック製の絶縁性ベースとからなり、上記外部との導
通手段は、上記セラミック製の絶縁性キャップと上記セ
ラミック製の絶縁性ベースとの間に封止ガラス層を介し
て接着されたリードであることを特徴とする特許請求の
範囲第1項記載の半導体装置の製造方法。 3、上記少なくともその表面に絶縁性を有するポリイミ
ド系樹脂からなることを特徴とする特許請求の範囲第1
項記載の半導体装置の製造方法。
[Claims] 1. (a) A step of preparing a semiconductor wafer, (b) A step of forming a plurality of elements including an active region and an electrode on the surface of the semiconductor wafer, and (c) At least an activation of the semiconductor wafer. (d) Obtaining individual semiconductor chips from the semiconductor wafer on which the insulating α-ray shielding plate is attached at least on its surface; (e) a step of electrically connecting the electrodes of the semiconductor chip and the corresponding external conduction means using a bonding wire; and (f) the semiconductor chip, the external conduction means, and the bonding. 1. A method for manufacturing a semiconductor device, comprising the step of sealing at least a portion of a wire with a sealing body. 2. The sealing body is composed of a ceramic insulating cap and a ceramic insulating base, and the means for communicating with the outside is a connection between the ceramic insulating cap and the ceramic insulating base. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the leads are bonded with a sealing glass layer interposed therebetween. 3. Claim 1, characterized in that at least the surface thereof is made of a polyimide resin having an insulating property.
A method for manufacturing a semiconductor device according to section 1.
JP60161859A 1985-07-24 1985-07-24 Manufacture of semiconductor device Pending JPS6150348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60161859A JPS6150348A (en) 1985-07-24 1985-07-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60161859A JPS6150348A (en) 1985-07-24 1985-07-24 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3547779A Division JPS55128845A (en) 1979-03-28 1979-03-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6150348A true JPS6150348A (en) 1986-03-12

Family

ID=15743312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60161859A Pending JPS6150348A (en) 1985-07-24 1985-07-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6150348A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552251A (en) * 1978-10-11 1980-04-16 Nec Corp Semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552251A (en) * 1978-10-11 1980-04-16 Nec Corp Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US4541003A (en) Semiconductor device including an alpha-particle shield
US6118176A (en) Stacked chip assembly utilizing a lead frame
US5126286A (en) Method of manufacturing edge connected semiconductor die
EP0147151B1 (en) Semiconductor memory with stacked structure
US5146308A (en) Semiconductor package utilizing edge connected semiconductor dice
JPS6148265B2 (en)
JPS6228584B2 (en)
JPS6136709B2 (en)
JPS5845186B2 (en) semiconductor equipment
JPS6150348A (en) Manufacture of semiconductor device
US5264726A (en) Chip-carrier
US4702796A (en) Method for fabricting a semiconductor device
JPS6150349A (en) Manufacture of semiconductor device
JPS627700B2 (en)
JPS6370532A (en) Semiconductor device
JP2576496B2 (en) Semiconductor storage device
JPS5818961A (en) Alpha ray sensitive reducing device for integrated semiconductor memory
TW544821B (en) Semiconductor device
JPH0498875A (en) Semiconductor memory
US4956310A (en) Semiconductor memory device and fabricating method thereof
JPS58140151A (en) Semiconductor integrated circuit device
EP0227381A1 (en) Semiconductor memory device
JPS5923541A (en) Semiconductor device
JPS60244050A (en) Semiconductor device
JPS602780B2 (en) semiconductor equipment