JPS6145395B2 - - Google Patents

Info

Publication number
JPS6145395B2
JPS6145395B2 JP54076834A JP7683479A JPS6145395B2 JP S6145395 B2 JPS6145395 B2 JP S6145395B2 JP 54076834 A JP54076834 A JP 54076834A JP 7683479 A JP7683479 A JP 7683479A JP S6145395 B2 JPS6145395 B2 JP S6145395B2
Authority
JP
Japan
Prior art keywords
region
semiconductor
semiconductor substrate
conductivity type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076834A
Other languages
Japanese (ja)
Other versions
JPS562667A (en
Inventor
Susumu Murakami
Yoshio Terasawa
Saburo Oikawa
Tsutomu Yao
Masahiro Okamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7683479A priority Critical patent/JPS562667A/en
Publication of JPS562667A publication Critical patent/JPS562667A/en
Publication of JPS6145395B2 publication Critical patent/JPS6145395B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate

Description

【発明の詳細な説明】 本発明は半導体装置に係り、特に電界効果型半
導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a field effect semiconductor device.

電界効果型半導体装置は、ゲートに所定の電圧
を印加することにより半導体装置内部に所定の空
乏領域を形成し、この空乏領域を制御することに
よつて半導体装置の主電流を制御するものであ
る。この種半導体装置の代表例としてはこれまで
に電界効果型トランジスタ、電界効果型サイリス
タが知られている。電界効果型半導体装置におい
て重要な点はいかに低ゲート電圧でいかに高電
圧・大電流を制御できるかという点にある。この
ことは特にこの種装置を電力分野においてスイツ
チング装置として使用する場合に重要である。本
発明者等は先に、これらの用途に適する構造を有
する電界効果型スイツチング素子を提案した(特
願昭52−66648号他)。
A field effect semiconductor device forms a predetermined depletion region inside the semiconductor device by applying a predetermined voltage to the gate, and controls the main current of the semiconductor device by controlling this depletion region. . Field effect transistors and field effect thyristors are known as representative examples of this type of semiconductor device. An important point in field-effect semiconductor devices is how high voltage and large current can be controlled with a low gate voltage. This is particularly important when devices of this type are used as switching devices in the power sector. The inventors of the present invention previously proposed a field effect switching element having a structure suitable for these uses (Japanese Patent Application No. 66648/1984, etc.).

しかしながら最近、電界効果型サイリスタに寄
せられる期待は日増に高まつており、pnpn積層
構造を持つ従来型サイリスタと同様KV級の高電
圧、100A級の大電流を単独で制御できるものが
要望されている。このように大電力を制御するに
特有な問題点がいくつか挙げられる。第1には、
ゲート・カソード間の耐圧を向上させる点であ
る。空乏層によつてしや断されるべきチヤンネル
を狭めれば机上計算では比較的低ゲート電圧(数
十V以下)で足りるが、実際にこの種半導体装置
を使用する場合にはターンオフ時に制御回路の誘
導成分により発生する逆誘起電圧に耐える必要が
ある。逆誘起電圧はスイツチング時間を短くする
程高くなるので、特にスイツチング時間が短いと
いう電界効果型サイリスタの特徴を生かす上で問
題となる。
However, recently, expectations for field-effect thyristors have been increasing day by day, and there is a demand for something that can independently control high voltages in the KV class and large currents in the 100A class, similar to conventional thyristors with a pnpn stacked structure. ing. There are several problems unique to controlling such large amounts of power. Firstly,
The purpose is to improve the breakdown voltage between the gate and cathode. If the channel to be cut off by the depletion layer is narrowed, a relatively low gate voltage (several tens of V or less) is sufficient in theoretical calculations, but when this type of semiconductor device is actually used, the control circuit at turn-off is required. It is necessary to withstand the reverse induced voltage generated by the induced component. Since the reverse induced voltage increases as the switching time becomes shorter, this becomes a problem, especially when taking advantage of the short switching time, which is the characteristic of field-effect thyristors.

第2に、製法上の問題がある。第1図に示すよ
うに、従来、半導体基体1のベース領域12に埋
め込まれたゲート領域13を半導体基体1の一方
の主表面100に連絡させゲート電極(図示せ
ず)に接続させるために比較的高濃度の拡散領域
131を形成する必要があつた。この領域131
は例えばSiO2膜からなるマスク15を用いて選
択拡散法により形成される。ところが、マスク1
5を例えば公知のホトエツチング法により形成す
るときに塵埃等により予期せぬピンホールを生じ
る場合がある。仮にこのようなピンホール151
が存在したとすると、ここから拡散領域131と
同じ深さに異常拡散領域132が生じる。この異
常拡散領域がカソード領域14に接触すると、ゲ
ート電極とカソード電極(図示せず)の間に拡散
領域131、ゲート領域13、異常拡散領域13
2、カソード領域14とで構成されるp+n+接合
ダイオードが形成され、この部分でゲート・カソ
ード間耐圧が低下するという問題点があつた。
Second, there is a problem with the manufacturing method. As shown in FIG. 1, conventionally, a gate region 13 embedded in a base region 12 of a semiconductor substrate 1 is connected to one main surface 100 of a semiconductor substrate 1 and connected to a gate electrode (not shown). It was necessary to form a diffusion region 131 with a high concentration. This area 131
is formed by selective diffusion using a mask 15 made of, for example, a SiO 2 film. However, mask 1
When forming 5 by, for example, a known photo-etching method, unexpected pinholes may occur due to dust or the like. If a pinhole like this 151
If there is, an abnormal diffusion region 132 is generated from here at the same depth as the diffusion region 131. When this abnormal diffusion region contacts the cathode region 14, a diffusion region 131, a gate region 13, and an abnormal diffusion region 13 are formed between the gate electrode and the cathode electrode (not shown).
2. A p + n + junction diode consisting of the cathode region 14 is formed, and there is a problem in that the breakdown voltage between the gate and the cathode is lowered in this part.

第3に、半導体装置の均一性が重要である。大
電流化のために、同一半導体基体内に多数の単位
素子を並設し、それぞれの単位素子の電極を共通
とする方法は公知である。この場合、各単位素子
の構造は同一となることが望ましい。特に第1図
に示す如く微細なゲート構造を有する電界効果型
半導体装置においてはチヤンネル幅dを均一とす
ることが要求されている。幅dは通常数μm〜数
10μmと微小であるので、これまでの製造法では
幅dの精密な調整に難があつた。
Thirdly, uniformity of semiconductor devices is important. In order to increase the current, a method of arranging a large number of unit elements in parallel within the same semiconductor substrate and using a common electrode for each unit element is known. In this case, it is desirable that the structures of each unit element be the same. Particularly in a field effect semiconductor device having a fine gate structure as shown in FIG. 1, it is required that the channel width d be made uniform. The width d is usually several μm to several
Since it is as small as 10 μm, it has been difficult to precisely adjust the width d using conventional manufacturing methods.

本発明の目的は以上の問題点を解決した改良さ
れた電界効果型半導体装置およびその製造方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an improved field effect semiconductor device that solves the above problems and a method for manufacturing the same.

かかる目的を達成するために本発明の特徴とす
るところは、第1に、半導体基体中のベース領域
内に埋め込まれたゲート領域を有する電界効果型
半導体装置において、半導体基体の一方の主表面
から上記ゲート領域に達する溝を形成し、この溝
底部にゲート電極を形成した点にある。
In order to achieve such an object, the present invention is characterized in that, firstly, in a field effect semiconductor device having a gate region embedded in a base region in a semiconductor substrate, from one main surface of the semiconductor substrate; A trench reaching the gate region is formed, and a gate electrode is formed at the bottom of the trench.

第2にの第1の点に加えて、ゲート領域とこれ
を取囲む反対導電型の半導体領域とで形成される
pn接合が上記溝の側面に正ベベルとなるように
終端する点にある。
Second, in addition to the first point, it is formed by a gate region and a surrounding semiconductor region of the opposite conductivity type.
It is at the point where the p-n junction terminates in a positive bevel on the side surface of the groove.

第3に、一方の主表面に露出する一方導電型の
カソード領域、他方導電型のゲート領域、一方導
電型のベース領域、他方の主表面に露出する他方
導電型のアノード領域を有する半導体構造を形成
するのに、一方導電型の半導体基体を用意し、こ
の半導体基体にまず他方導電型のアノード領域を
形成し、それと同時あるいはそれに引続いてゲー
ト領域を形成するようにした点にある。
Third, a semiconductor structure has a cathode region of one conductivity type exposed on one main surface, a gate region of the other conductivity type, a base region of one conductivity type, and an anode region of the other conductivity type exposed on the other main surface. In order to form a semiconductor substrate, a semiconductor substrate of one conductivity type is prepared, an anode region of the other conductivity type is first formed on this semiconductor substrate, and a gate region is formed at the same time or subsequently.

上記第1の特徴により拡散マスクのピンホール
による異常拡散が防止でき、第2の特徴によりゲ
ート・カソード間の高耐圧化が達成できる。ま
た、第3の特徴によれば、熱処理時間が長く、半
導体基体の濃度プロフイールに影響を及びしやす
いアノード領域を最初に形成してしまうので、以
後半導体基体にはその濃度プロフイールに影響が
及ぶような熱処理が施こされない。従つて、微細
な構造が要求されるゲート領域の形状を変化させ
ることなく電界効果型半導体装置を製造すること
ができる。
The first feature makes it possible to prevent abnormal diffusion due to pinholes in the diffusion mask, and the second feature makes it possible to achieve a high breakdown voltage between the gate and the cathode. Furthermore, according to the third feature, since the anode region, which takes a long time to heat and tends to affect the concentration profile of the semiconductor substrate, is formed first, the concentration profile of the semiconductor substrate is subsequently formed. Heat treatment is not performed. Therefore, a field effect semiconductor device can be manufactured without changing the shape of the gate region, which requires a fine structure.

次に、本発明の実施例を説明する。第2図は本
発明の一実施例の断面構造である。シリコン半導
体基体100はp+アノード領域111、n-型ベ
ース領域112、p型埋込みゲート領域113、
p+型ゲート領域114、n+型カソード領域11
5、n型カソード領域116からなる。200は
アノード電極、300はゲート電極、400はカ
ソード電極であり、500は表面保護用SiO2
である。また401はカソード電極400に隣接
されているタングステン板である。次に本実施例
半導体装置の動作について説明する。アノード電
極200とタングステン板401との間にJ1接合
が順バイアスとなる主電圧VAが印加された状態
でカソード・ゲート間のSWを開くと111,1
12,116,115で示される各領域からなる
p+n-nn+ダイオードに電流が流れる。続いて、1
11,112,113,116,115で示され
る各領域からなるp+n-pnn+サイリスタが導通す
る。この場合、カソード電流iKはカソード電極
400、タングステン板401を通つて流れる
が、カソード電極400は非常に薄いのでここで
の電圧降下は小さく、電圧降下による温度上昇は
少なくなる。また体積の大きいタングステン板が
接触しているため、熱放散が良く大電流を通電す
るのに適した構造である。また、この電流をしや
断するにはSWを閉じてゲート電極300とタン
グステン板401との間にJ3接合が逆バイアスと
なるようなゲート電圧VGを印加する。この電圧
によりチヤンネル部117が空乏層によりピンチ
オフされ、同時にn-ベース層112内に残存し
ているキヤリヤは埋込みゲート領域113を通り
ゲート電極300に流れ、主電流はターンオフさ
れる。高速でターンオフさせるためには、チヤン
ネル部117のピンチオフに要する電圧よりも大
きなゲート電圧を印加することが望ましい。
Next, examples of the present invention will be described. FIG. 2 shows a cross-sectional structure of one embodiment of the present invention. The silicon semiconductor substrate 100 includes a p + anode region 111, an n - type base region 112, a p type buried gate region 113,
p + type gate region 114, n + type cathode region 11
5, consisting of an n-type cathode region 116. 200 is an anode electrode, 300 is a gate electrode, 400 is a cathode electrode, and 500 is a surface protection SiO 2 film. Further, 401 is a tungsten plate adjacent to the cathode electrode 400. Next, the operation of the semiconductor device of this embodiment will be explained. When the SW between the cathode and the gate is opened with the main voltage V A that makes the J 1 junction forward biased between the anode electrode 200 and the tungsten plate 401, 111,1
Consisting of areas indicated by 12, 116, and 115
Current flows through the p + n - nn + diode. Next, 1
The p + n - pnn + thyristors consisting of regions 11, 112, 113, 116, and 115 become conductive. In this case, the cathode current i K flows through the cathode electrode 400 and the tungsten plate 401, but since the cathode electrode 400 is very thin, the voltage drop there is small, and the temperature rise due to the voltage drop is small. Furthermore, since the large-volume tungsten plates are in contact with each other, the structure has good heat dissipation and is suitable for passing large currents. Further, in order to cut off this current, SW is closed and a gate voltage V G is applied between the gate electrode 300 and the tungsten plate 401 so that the J 3 junction becomes reverse biased. This voltage causes the channel portion 117 to be pinched off by the depletion layer, and at the same time, carriers remaining in the n - base layer 112 flow through the buried gate region 113 to the gate electrode 300, and the main current is turned off. In order to turn off at high speed, it is desirable to apply a gate voltage higher than the voltage required to pinch off the channel portion 117.

本実施例の特徴をより明確にするために、第2
図の実施例の要部拡大図を第3図に示す。第3図
において第2図と同じ部分は第2図におけると同
符号で示す。第3図において、埋込みゲート領域
113とカソード領域116とで形成されるpn
接合J3の端部はメサ101の肩部に露出されてお
りかつp型埋込みゲート領域113の不純物濃度
の方がn型カソード領域116の不純物濃度より
も大きい。従つて上記pn接合J3の露出端部は正
ベベルとなつている。その結果、後述するように
ゲート・カソード間の耐圧が向上した。
In order to make the characteristics of this embodiment more clear, the second
An enlarged view of the main part of the embodiment shown in the figure is shown in FIG. In FIG. 3, the same parts as in FIG. 2 are indicated by the same symbols as in FIG. In FIG. 3, a pn formed by a buried gate region 113 and a cathode region 116
The end of junction J 3 is exposed at the shoulder of mesa 101, and the impurity concentration of p-type buried gate region 113 is higher than that of n-type cathode region 116. Therefore, the exposed end of the pn junction J3 has a positive bevel. As a result, the breakdown voltage between the gate and the cathode was improved, as will be described later.

高不純物濃度のカソード領域115はプレーナ
構造を有しており、メサ101の肩部には露出し
ていない。このような構造により、ゲート・カソ
ード間が逆バイアスされた時にカソード領域11
6内に形成される空乏層がメサ101肩部に沿つ
て広がり易いのでこの部分での表面電界が緩和さ
れ、ゲート・カソード間耐圧が向上するという効
果がある。欠乏層の拡がり方の一例を第3図、第
4図中に点線で示した。
The cathode region 115 with high impurity concentration has a planar structure and is not exposed at the shoulder of the mesa 101. With this structure, when the gate and cathode are reverse biased, the cathode region 11
Since the depletion layer formed in the mesa 101 tends to spread along the shoulder portion of the mesa 101, the surface electric field in this portion is relaxed, and the breakdown voltage between the gate and the cathode is improved. An example of how the deprived layer spreads is shown by dotted lines in Figures 3 and 4.

高不純物濃度のゲート領域114は、ゲート領
域113とゲート電極300とのオーミツクコン
タクトを形成するために選択拡散法により形成さ
れる。従来例と異なり、拡散深さが極めて浅い。
従つて、仮に拡散マスクに予期せぬピンホールが
あり、そこから予期せぬ箇所にp+拡散領域が生
じたとしても、ゲート・カソード間の耐圧が低下
する恐れはない。
High impurity concentration gate region 114 is formed by selective diffusion to form ohmic contact between gate region 113 and gate electrode 300. Unlike the conventional example, the diffusion depth is extremely shallow.
Therefore, even if there is an unexpected pinhole in the diffusion mask and a p + diffusion region is generated at an unexpected location, there is no fear that the withstand voltage between the gate and the cathode will decrease.

第4図は本発明の他の実施例の要部拡大図であ
る。第3図のものとカソード領域115の構造が
異なる。すなわち、第4図においてはカソード領
域115はメサ101の頂部全面に形成されてい
る。このような構造により、主電流導通面積が大
きくなり順方向電圧降下を低減することができ
る。また第3図に示したようなn+型カソード領
域115を選択拡散する場合のホトエツチングプ
ロセスが不要となるので、製造工程が簡略される
利点を有する。第3図のような構造を採用しゲー
ト・カソード間耐圧向上を第1に考えるか、ある
いは第4図のような構造を採用し順方向電圧降下
低減を第1に考えるかは用途に応じ適宜選択され
るべき事項である。
FIG. 4 is an enlarged view of main parts of another embodiment of the present invention. The structure of the cathode region 115 is different from that of FIG. That is, in FIG. 4, the cathode region 115 is formed on the entire top surface of the mesa 101. With such a structure, the main current conduction area becomes large and the forward voltage drop can be reduced. Further, since the photoetching process for selectively diffusing the n + -type cathode region 115 as shown in FIG. 3 is not necessary, there is an advantage that the manufacturing process is simplified. Depending on the application, it is appropriate to decide whether to adopt the structure shown in Figure 3 and prioritize improving the breakdown voltage between the gate and cathode, or adopt the structure shown in Figure 4 and prioritize reducing the forward voltage drop. This is a matter that should be selected.

次に上述の実施例半導体装置を製造するに好適
な方法について第5図を用いて説明する。まず、
抵抗率が50〜300Ω・cmのn-型シリコン基板11
2の一方の主表面から表面濃度が約1019〜1020cm
-3となるようにポロン等p型を与える不純物を拡
散し、厚さ約70μmのp+型アノード領域111
を形成した(b)。次に他方の主表面から表面濃度が
約1017〜1018cm-3となるようにボロン等p型を与
える不純物を選択的に拡散し、p型埋込みゲート
領域113を形成した(c)。このp型埋込みゲート
領域113を完全に埋没させるようリンを不純物
として含み濃度が1015〜1016cm-3の厚さ20μmの
n型カソード領域116をエピタキシヤル気相成
長法で形成した(d)。次にこのn型カソード領域1
16の露出表面からリンを不純物として含み表面
濃度が約1020cm-3、厚さが約8μmのn+型カソー
ド領域115を選択拡散法で形成した(e)。この
n+型カソード領域115はその下方にp型埋込
みゲート領域113が存在している部分(サイリ
スタ領域)と存在していない部分(ダイオード領
域)を含むようにする。その後p型埋込みゲート
領域の一部分が露出するようにn型カソード領域
116をエツチングにより除去し凹部118を形
成した(f)。この露出したp型埋込みゲート領域の
一部にゲート電極のオーミツクコンタクトを良好
にするため厚さ約3μmのp+型ゲート領域11
4を選択拡散法により形成した(g)。なおこれまで
の説明では簡単のために拡散処理中に半導体形成
される酸化膜は省略した。
Next, a method suitable for manufacturing the semiconductor device of the above embodiment will be explained with reference to FIG. first,
n - type silicon substrate 11 with resistivity of 50 to 300 Ω・cm
The surface concentration is approximately 10 19 to 10 20 cm from one main surface of 2.
-3 , p + type anode region 111 with a thickness of about 70 μm is diffused with an impurity that gives p type such as poron.
was formed (b). Next, an impurity imparting p-type, such as boron, was selectively diffused from the other main surface to a surface concentration of approximately 10 17 to 10 18 cm -3 to form a p-type buried gate region 113 (c). In order to completely bury this p-type buried gate region 113, an n-type cathode region 116 containing phosphorus as an impurity and having a thickness of 20 μm and having a concentration of 10 15 to 10 16 cm -3 was formed by epitaxial vapor deposition (d ). Next, this n-type cathode region 1
An n + -type cathode region 115 containing phosphorus as an impurity and having a surface concentration of about 10 20 cm -3 and a thickness of about 8 μm was formed from the exposed surface of No. 16 by selective diffusion (e). this
The n + -type cathode region 115 is configured to include a portion (thyristor region) where the p-type buried gate region 113 is present therebelow and a portion (diode region) where the p-type buried gate region 113 is not present. Thereafter, the n-type cathode region 116 was removed by etching to expose a portion of the p-type buried gate region, thereby forming a recess 118 (f). In order to make good ohmic contact of the gate electrode to a part of this exposed p-type buried gate region, a p + -type gate region 11 with a thickness of approximately 3 μm is provided.
4 was formed by selective diffusion method (g). Note that in the explanation so far, for the sake of simplicity, the oxide film formed as a semiconductor during the diffusion process has been omitted.

最後にp+型アノード領域111にはタングス
テン等のアノード電極200をアルミニウム−ア
ンチモン等のろう材で合金接着し、n+型カソー
ド領域115、p+型ゲート領域114の露出部
にはホトエツチング法によつてアルミニウム等の
金属を蒸着し、ゲート電極300、カソード電極
400を形成した。半導体基体の主表面のうち上
述の各電極で覆われない部分はSiO2膜500で
覆われている(h)。完成後測定したところ、ゲート
領域113の厚さは約40μm、ゲート領域113
相互の間隔dは約6μmであつた。
Finally, an anode electrode 200 made of tungsten or the like is bonded to the p + type anode region 111 using a brazing material such as aluminum-antimony, and the exposed portions of the n + type cathode region 115 and the p + type gate region 114 are etched using a photoetching method. Therefore, a metal such as aluminum was deposited to form a gate electrode 300 and a cathode electrode 400. The portions of the main surface of the semiconductor substrate that are not covered with the above-mentioned electrodes are covered with a SiO 2 film 500 (h). When measured after completion, the thickness of the gate region 113 was approximately 40 μm.
The mutual spacing d was approximately 6 μm.

上述の製造方法において重要な点はp型ゲート
領域113の拡散に先立つてp型アノード領域1
11の拡散を実施している点である。p型ゲート
領域113相互の間隔dはこの種半導体装置のス
イツチング特性を決定する上で重要な数値であ
り、所期の特性を得るためには精密に制御する必
要がある。しかるに、仮にこれらの工程が逆であ
つたならば、p型ゲート領域113形成後p+
アノード領域111を形成するための長時間熱処
理を受けるので上述の間隔dにばらつきが生じ易
くなる。なお、p+型アノード領域114および
n+型カソード領域115形成時の熱処理時間は
これら領域が高々数μmと薄いので比較的短く、
上述の間隔dに及ぼす影響は無視でき得る。
An important point in the above manufacturing method is that prior to the diffusion of the p-type gate region 113, the p-type anode region 1 is
The point is that 11 diffusions are being carried out. The distance d between the p-type gate regions 113 is an important value in determining the switching characteristics of this type of semiconductor device, and must be precisely controlled in order to obtain the desired characteristics. However, if these steps were reversed, the above-mentioned distance d would be likely to vary because a long heat treatment would be required to form the p + -type anode region 111 after the formation of the p-type gate region 113. Note that the p + type anode region 114 and
The heat treatment time when forming the n + type cathode region 115 is relatively short because these regions are thin, at most several μm.
The effect on the spacing d mentioned above can be ignored.

本発明者等の実験によれば、上述の本実施例製
法に従つた場合、間隔dのばらつきはd=6μm
の設計値に対して約10%であつたが、p+型アノ
ード領域111を後から形成した場合は30%であ
つた。
According to experiments by the present inventors, when the manufacturing method of this embodiment described above is followed, the variation in the distance d is d = 6 μm.
It was about 10% of the design value, but it was 30% when the p + type anode region 111 was formed later.

上述した本発明の一実施例製法と同様の効果
は、更に次の製法によつても享受できる。すなわ
ち、例えばn型シリコン基板を用意し、このシリ
コン基板の一方の主表面側に第5図に示すと同様
にp型ゲート領域113、n型カソード領域11
6、n+型カソード領域115および凹部118
を形成する。次に、凹部118の底部でp型ゲー
ト領域113の露出部に選択的に、およびシリコ
ン基板の他方の主表面全体に同時に同じ厚さ(数
μm)のp+型半導体層を拡散法により形成す
る。凹部118の底部のp+型半導体層はp+型ゲ
ート領域114であり、他方の主表面のp+型半
導体層はp+型アノード領域111である。
Effects similar to those obtained by the manufacturing method of the embodiment of the present invention described above can also be obtained by the following manufacturing method. That is, for example, an n-type silicon substrate is prepared, and a p-type gate region 113 and an n-type cathode region 11 are formed on one main surface side of the silicon substrate as shown in FIG.
6. n + type cathode region 115 and recess 118
form. Next, a p + -type semiconductor layer of the same thickness (several μm) is formed selectively on the exposed portion of the p-type gate region 113 at the bottom of the recess 118 and simultaneously over the entire other main surface of the silicon substrate by a diffusion method. do. The p + -type semiconductor layer at the bottom of the recess 118 is the p + -type gate region 114 , and the p + -type semiconductor layer at the other main surface is the p + -type anode region 111 .

この製法に従えば上述の効果に加えて次の効果
がある。第1のp+型アノード領域はp+型ゲート
領域と同時に形成されるので、半導体装置の製造
工程が簡略化される。第2のp+型アノード領域
の厚さはp+型ゲート領域と同程度に薄くなるの
で、半導体装置の順方向電圧降下が小さくなる効
果を有する。すなわち、p+型アノード領域11
1が薄い場合、p+型アノード領域111のアノ
ード電極200と接する部分での多数キヤリヤ濃
度はほぼ熱平衡値を保つから、p+型アノード領
域111内での多数キヤリヤ濃度勾配が大きくな
る。従つて、低い接合電位でかつ拡散電流が大き
くなり、他の電気特性を損なわずに順方向電圧降
下が小さくなる。
If this manufacturing method is followed, the following effects will be obtained in addition to the above-mentioned effects. Since the first p + type anode region is formed simultaneously with the p + type gate region, the manufacturing process of the semiconductor device is simplified. Since the thickness of the second p + type anode region is as thin as that of the p + type gate region, it has the effect of reducing the forward voltage drop of the semiconductor device. That is, the p + type anode region 11
1 is thin, the majority carrier concentration at the portion of the p + type anode region 111 in contact with the anode electrode 200 maintains approximately a thermal equilibrium value, so that the majority carrier concentration gradient within the p + type anode region 111 becomes large. Therefore, the diffusion current becomes large at a low junction potential, and the forward voltage drop becomes small without impairing other electrical characteristics.

更に、後述するようにp+型アノード領域の一
部をn+型半導体領域に置き換えて高速化を図る
場合、該n+型半導体領域を第5図eに示すn+
カソード領域の形成と同時に行なうことが可能で
ある。このようにすれば一層、製造工程が簡略化
されかつ高速化が達成される。
Furthermore, as will be described later, when replacing part of the p + type anode region with an n + type semiconductor region to increase speed, the n + type semiconductor region is replaced with the formation of the n + type cathode region shown in FIG. 5e. It is possible to do both at the same time. In this way, the manufacturing process can be further simplified and increased in speed.

次に本実施例半導体装置の効果を具体的に説明
する。第2図に示す半導体装置を第5図に示す製
法にて製造した場合、ゲート・カソード間耐圧か
は約150Vであり、選択拡散マスクに存在するピ
ンホール等に起因するゲート・カソード間耐圧の
低下は皆無であつた。これに対し、第1図に例示
した半導体装置では各半導体領域の不純物濃度、
寸法を略同じにした場合、そのゲート・カソード
間耐圧は約70Vであつた。
Next, the effects of the semiconductor device of this embodiment will be specifically explained. When the semiconductor device shown in Fig. 2 is manufactured by the manufacturing method shown in Fig. 5, the breakdown voltage between the gate and cathode is approximately 150V. There was no decrease at all. On the other hand, in the semiconductor device illustrated in FIG. 1, the impurity concentration of each semiconductor region,
When the dimensions were made approximately the same, the withstand voltage between the gate and cathode was approximately 70V.

なお、上述の各実施例において各半導体領域の
導電型は固定されるべきものではなく、必要に応
じpとnが適宜交換されてよいことは明らかであ
ろう。特に、アノード領域のうち、少なくともゲ
ート電極をアノード領域に投影して生ずる投影部
に含まれる部分をベース領域と同導電型とするこ
とにより、高速化が達成される(特願昭52−
86021号参照)。また、本発明は電界効果型サイリ
スタにおいて特に効果を発揮するものではある
が、類似のゲート構造を必要とする電界効果型ト
ランジスタにも適用でき得るものである。
It should be noted that in each of the above-described embodiments, the conductivity type of each semiconductor region is not to be fixed, and it is clear that p and n may be appropriately exchanged as necessary. In particular, speeding up can be achieved by making at least the portion of the anode region included in the projection part formed by projecting the gate electrode onto the anode region the same conductivity type as the base region (Japanese Patent Application No.
(See No. 86021). Further, although the present invention is particularly effective in field effect thyristors, it can also be applied to field effect transistors that require a similar gate structure.

更に、上述の実施例製法において、p+型アノ
ード領域111とp型ゲート領域113とは同時
に形成されても良く、この場合は製造工程が簡略
化されるという利点がある。
Furthermore, in the manufacturing method of the embodiment described above, the p + type anode region 111 and the p type gate region 113 may be formed at the same time, and in this case there is an advantage that the manufacturing process is simplified.

以上詳細に説明したように、本発明はゲート・
カソード間耐圧が改善され、均一性に優れた電界
効果型半導体装置を得るのに効果がある。
As explained in detail above, the present invention
This is effective in improving the cathode-to-cathode breakdown voltage and obtaining a field-effect semiconductor device with excellent uniformity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電界効果型サイリスタの一例を
製作する一工程を示す図、第2図は本発明の一実
施例電界効果型サイリスタを示す断面図、第3図
は本発明の一実施例電界効果型サイリスタの要部
断面図、第4図は本発明の他の実施例電界効果型
サイリスタの要部断面図、第5図は本発明の一実
施例電界効果型サイリスタの一製法の工程を示す
図である。 100……半導体基体、111……p+型アノ
ード領域、112……n-型ベース領域、113
……p型ゲート領域、114……p+型ゲート領
域、115……n+型ゲート領域、116……n
型カソード領域、200……アノード電極、30
0……ゲート電極、400……カソード電極。
Fig. 1 is a diagram showing one process of manufacturing an example of a conventional field effect thyristor, Fig. 2 is a sectional view showing a field effect thyristor according to an embodiment of the present invention, and Fig. 3 is an embodiment of the present invention. FIG. 4 is a cross-sectional view of a main part of a field-effect thyristor according to another embodiment of the present invention, and FIG. 5 is a manufacturing process of a field-effect thyristor according to an embodiment of the present invention. FIG. 100... Semiconductor substrate, 111... P + type anode region, 112... N - type base region, 113
... p type gate region, 114 ... p + type gate region, 115 ... n + type gate region, 116 ... n
type cathode region, 200... anode electrode, 30
0...gate electrode, 400...cathode electrode.

Claims (1)

【特許請求の範囲】 1 一対の主表面を有し一方の主表面に複数の溝
が形成された一方導電型の半導体基体と、半導体
基体の相隣る溝間に形成されるメサ頂部に形成さ
れ上記半導体基体よりも高不純物濃度を有する一
方導電型の第1の半導体領域と、半導体基体内に
形成され上記溝底部に露出し溝底部から上記半導
体基体の一対の主表面と略平行に上記第1の半導
体領域を上記半導体の他方の主表面に投影して生
ずる投影部に含まれるまで延び、上記半導体基体
との間に露出端部が正ベベルとなるようなpn接
合を形成する他方導電型の複数の第2の半導体領
域と、上記半導体基体の他方の主表面に露出し上
記半導体基体よりも高不純物濃度を有する第3の
半導体領域と、上記第1の半導体領域および第3
の半導体領域の露出表面に形成された一対の主電
極と、上記溝底部に露出する第2の半導体領域表
面に形成され上記一対の主電極の一方との間に上
記半導体基体と第2の半導体基体との間に形成さ
れるpn接合を逆バイアスする電圧を印加し上記
半導体基体内に空乏層を形成することによつて上
記一対の主電極間を流れる主電流を制御する制御
電極とを具備することを特徴とする半導体装置。 2 特許請求の範囲第1項において、上記第3の
半導体領域のうち、少なくとも上記第1の半導体
領域を上記半導体基体の他方の主表面に投影して
生じる投影部に含まれる部分が他方導電型半導体
であることを特徴とする半導体装置。 3 一対の主表面を有する一方導電型の半導体基
体の一方の主表面から他方導電型を与える不純物
を拡散し他方導電型の高不純物濃度領域を形成す
る工程と、該工程と同時あるいはそれに引続いて
上記半導体基体の他方の主表面から他方導電型を
与える不純物を選択的に拡散し他方導電型のゲー
ト領域を形成する工程と、上記他方の主表面上に
気相成長方法によつて一方導電型のエピタキシヤ
ル半導体層を堆積する工程と、上記一方導電型の
エピタキシヤル半導体層の露出主表面から上記他
方導電型のゲート領域に達し、上記エピタキシヤ
ル半導体層と上記ゲート領域間に形成されるpn
接合がその側面に正ベベルをなして露出するよう
な複数の溝を形成する工程とを少なくとも有する
ことを特徴とする半導体装置の製造方法。
[Scope of Claims] 1. A semiconductor substrate of one conductivity type having a pair of main surfaces and a plurality of grooves formed on one main surface, and a semiconductor substrate formed at the top of a mesa formed between adjacent grooves of the semiconductor substrate. a first semiconductor region of one conductivity type which has an impurity concentration higher than that of the semiconductor substrate; The other conductive portion extends until it is included in a projected portion formed by projecting the first semiconductor region onto the other main surface of the semiconductor, and forms a p-n junction with the semiconductor substrate such that the exposed end has a positive bevel. a third semiconductor region exposed on the other main surface of the semiconductor substrate and having a higher impurity concentration than the semiconductor substrate;
between a pair of main electrodes formed on the exposed surface of the semiconductor region and one of the pair of main electrodes formed on the surface of the second semiconductor region exposed at the bottom of the groove, the semiconductor substrate and the second semiconductor and a control electrode that controls the main current flowing between the pair of main electrodes by applying a voltage that reverse biases a pn junction formed between the semiconductor substrate and the semiconductor substrate to form a depletion layer within the semiconductor substrate. A semiconductor device characterized by: 2. In claim 1, at least a portion of the third semiconductor region included in a projection portion formed by projecting the first semiconductor region onto the other main surface of the semiconductor substrate is of the other conductivity type. A semiconductor device characterized by being a semiconductor. 3 A step of diffusing an impurity imparting the other conductivity type from one main surface of a semiconductor substrate of one conductivity type having a pair of main surfaces to form a high impurity concentration region of the other conductivity type, and simultaneously with or subsequent to said step. selectively diffusing impurities imparting the other conductivity type from the other main surface of the semiconductor substrate to form a gate region of the other conductivity type; a step of depositing an epitaxial semiconductor layer of a type, from an exposed main surface of the epitaxial semiconductor layer of one conductivity type to a gate region of the other conductivity type, and forming an epitaxial semiconductor layer between the epitaxial semiconductor layer and the gate region; pn
1. A method of manufacturing a semiconductor device, comprising at least the step of forming a plurality of grooves such that a junction is exposed with a regular bevel on the side surface thereof.
JP7683479A 1979-06-20 1979-06-20 Semiconductor device and manufacture thereof Granted JPS562667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7683479A JPS562667A (en) 1979-06-20 1979-06-20 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7683479A JPS562667A (en) 1979-06-20 1979-06-20 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS562667A JPS562667A (en) 1981-01-12
JPS6145395B2 true JPS6145395B2 (en) 1986-10-07

Family

ID=13616699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7683479A Granted JPS562667A (en) 1979-06-20 1979-06-20 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS562667A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166075A (en) * 1981-04-07 1982-10-13 Hitachi Ltd Semiconductor device
JPS62117370A (en) * 1985-11-15 1987-05-28 Semiconductor Res Found Manufacture of double-gate electrostatic induction thyristor
JPS634680A (en) * 1986-06-24 1988-01-09 Matsushita Electric Works Ltd Electrostatic induction type semiconductor device
US5825092A (en) * 1996-05-20 1998-10-20 Harris Corporation Integrated circuit with an air bridge having a lid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399879A (en) * 1977-02-14 1978-08-31 Hitachi Ltd Junction-type field effect thyristor
JPS53137675A (en) * 1977-05-07 1978-12-01 Mitsubishi Electric Corp Manufacture for semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399879A (en) * 1977-02-14 1978-08-31 Hitachi Ltd Junction-type field effect thyristor
JPS53137675A (en) * 1977-05-07 1978-12-01 Mitsubishi Electric Corp Manufacture for semiconductor device

Also Published As

Publication number Publication date
JPS562667A (en) 1981-01-12

Similar Documents

Publication Publication Date Title
US4145703A (en) High power MOS device and fabrication method therefor
KR0175277B1 (en) Apparatus and method for manufacturing power semiconductor device with a folding fieldplate structure
US4412242A (en) Planar structure for high voltage semiconductor devices with gaps in glassy layer over high field regions
US4399449A (en) Composite metal and polysilicon field plate structure for high voltage semiconductor devices
US4495513A (en) Bipolar transistor controlled by field effect by means of an isolated gate
US4779126A (en) Optically triggered lateral thyristor with auxiliary region
JP2968222B2 (en) Semiconductor device and method for preparing silicon wafer
US20010048131A1 (en) Semiconductor device
JP2002305304A (en) Power semiconductor device
JPH05347413A (en) Manufacture of semiconductor device
US4398339A (en) Fabrication method for high power MOS device
JPH1197716A (en) Mos control diode and manufacture of the same
KR100297703B1 (en) Power semiconductor device adopting a SIPOS and method for forming thereof
JP2950025B2 (en) Insulated gate bipolar transistor
JP7127389B2 (en) Silicon carbide semiconductor device
JPS6145395B2 (en)
US3988759A (en) Thermally balanced PN junction
JP2622521B2 (en) Gate cut-off thyristor and manufacturing method thereof
EP0064614A2 (en) Improved emitter structure for semiconductor devices
JPH0888357A (en) Lateral igbt
US5925899A (en) Vertical type insulated gate bipolar transistor having a planar gate structure
JPS60236265A (en) Conductive modulation type mosfet
JP2829026B2 (en) Self-extinguishing semiconductor device
US5264381A (en) Method of manufacturing a static induction type switching device
JPH05326930A (en) Gate-turnoff thyristor