JPS6144385A - Detection of radiation absorber in structure - Google Patents

Detection of radiation absorber in structure

Info

Publication number
JPS6144385A
JPS6144385A JP59164226A JP16422684A JPS6144385A JP S6144385 A JPS6144385 A JP S6144385A JP 59164226 A JP59164226 A JP 59164226A JP 16422684 A JP16422684 A JP 16422684A JP S6144385 A JPS6144385 A JP S6144385A
Authority
JP
Japan
Prior art keywords
film
radiation
buried
radiation absorber
irradiation surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59164226A
Other languages
Japanese (ja)
Other versions
JPH0357432B2 (en
Inventor
Yukio Mori
幸夫 森
Shoichi Tashiro
田代 正一
Hiroshi Otani
博 大谷
Kiyoshi Kato
潔 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON X SEN KENSA KK
Tokyu Construction Co Ltd
Original Assignee
NIPPON X SEN KENSA KK
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON X SEN KENSA KK, Tokyu Construction Co Ltd filed Critical NIPPON X SEN KENSA KK
Priority to JP59164226A priority Critical patent/JPS6144385A/en
Publication of JPS6144385A publication Critical patent/JPS6144385A/en
Publication of JPH0357432B2 publication Critical patent/JPH0357432B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To make it possible to rapidly and simply measure an accurate position and to enable detection without receiving the limit due to the thickness of a structure, by irradiating the structure with radioactive rays and measuring the position and shape of the radiation absorber embedded in the structure from the projection chart projected to a film. CONSTITUTION:A radiation absorber 2 such as reinforcement is embedded in a structure 1 such as a concrete wall body. A marking wire 3 such as a lead wire material is horizontally adhered to the radioactive ray irradiation surface A of the structure 1 and an insert hole 4 is horizontally provided to the side surface of the structure 1 crossing the irradiation surface A at right angles at the same height Z as the marking line 3 and the film cassette, wherein a film F1 is inserted in a container F2, is inserted in said hole 4. When X-rays are irradiated from the X-ray source 5 on the extension from the center point of the marking line 3, the projection chart of the embedded object 2 and marking line 3 can be formed on the film F1. By this method, the position or shape of the embedded object 2 can be detected.

Description

【発明の詳細な説明】 く工〉産業上の利用分野 本発明は構造物内の配管や鉄筋などを放射線の照射によ
ってその位置等を探査する、構造物内の放射線吸収体の
探査方法に関するものであり、特に放射線の透過限界を
越えた厚さの構造物を対象にしたものである。
[Detailed description of the invention] Industrial field of application The present invention relates to a method for detecting radiation absorbers in a structure, which detects the position of pipes, reinforcing bars, etc. in a structure by irradiating them with radiation. This method is particularly aimed at structures whose thickness exceeds the radiation transmission limit.

<37>従来の技術 既設コンクリート建築物のFf4震診断や建築物の改築
の際に、コンクリート壁や柱、梁の内部等に配設された
鉄筋や配管の位4を事前に正lIπに把握する必要があ
る。
<37> Conventional technology When diagnosing an Ff4 earthquake of an existing concrete building or renovating a building, it is possible to ascertain in advance the positive lIπ position of reinforcing bars and piping placed inside concrete walls, columns, beams, etc. There is a need to.

そこで従来から建築物のコンクリート壁体、を主内部等
に埋設された埋設物の位置を、いわゆる非破壊的に検知
する方法として電磁誘導方式や放射線照射方式が工夫さ
れている。
Therefore, conventionally, electromagnetic induction methods and radiation irradiation methods have been devised as methods for non-destructively detecting the position of buried objects buried inside concrete walls of buildings.

電磁誘導方式では、電磁コイルを収納した測定器を被検
査壁体の表面に当接しながら移動さヒ、磁力の埋設物に
対する反応を感知する/テ法である。
In the electromagnetic induction method, a measuring device containing an electromagnetic coil is moved while touching the surface of the wall to be inspected, and the reaction of the magnetic force to the buried object is sensed.

また対象物のコンクリ−1〜壁体に放射線を照射して構
造物内に埋設された埋設物の探査を行う15法も近時開
発されている。
In addition, a method 15 has recently been developed in which the concrete 1 to wall of the object is irradiated with radiation to search for buried objects buried within a structure.

すなわち、鉄筋等の埋設物が埋設されている構造物の照
射面に寸法既知の標識線を貼付し、一方裏面に放射線の
透過強度を感受するフィルムを装着しておき、線源側か
ら放射線を照射して、上記フィルム上に投影された標識
線とj![!設物の投影図の相対位1ffflJr係と
寸法を実測して埋設物の位置を算出する方法である。
In other words, a marker line with known dimensions is pasted on the irradiation surface of a structure where buried objects such as reinforcing bars are buried, and a film that senses the transmitted intensity of radiation is attached to the back surface, and radiation is emitted from the source side. The marker lines and j! [! This is a method of calculating the position of a buried object by actually measuring the relative position and dimensions of the projected view of the object.

<[[>本発明が解決しようとする問題点上記のような
方法には次のような問題点が存在する。
<[[>Problems to be Solved by the Present Invention The above method has the following problems.

(イ)電磁誘導方式では、まず埋設の深さ、大きさがわ
からないこと、更に測定誤差が大きいという欠点があり
、又埋設物が壁体内に複雑に埋設されている場合には測
定値の判断に14度の熟練技術を必要とする。
(b) The electromagnetic induction method has the disadvantage that the depth and size of the buried object cannot be determined, and the measurement error is large.Also, when the buried object is buried in a complicated manner within the wall, it is difficult to judge the measured value. requires 14 degrees of skill.

(ロ)放射線を照射する方法では、照射する対象の構造
物の厚さに限界がある。
(b) In the method of irradiating with radiation, there is a limit to the thickness of the structure to be irradiated.

つまり放射線には透過できる距離に限界がある。In other words, there is a limit to the distance that radiation can penetrate.

従ってそれ以上の厚さを持った構造物では線源側と反対
の裏面に装着したフィルムまで放射線が届かずフィルム
に投影図が写らない。
Therefore, if the structure is thicker than this, the radiation will not reach the film attached to the back side opposite to the radiation source side, and no projection will appear on the film.

本発明は上記の欠点を解決し、より正111fな位置を
迅速簡単に測定でき、しかも構造物の厚さによる制限を
受けずに探査が可能な、構造物内の放射線吸収体の探査
方法を提供することを目的とり−る。
The present invention solves the above-mentioned drawbacks, and provides a method for searching for radiation absorbers inside a structure, which enables quick and easy measurement of a more positive 111f position, and allows exploration without being limited by the thickness of the structure. The purpose is to provide.

< IV >問題点を解決するための手段本発明では、
対象の構造物に、照射する放射線に交差する方向で放射
線の透過限界よりも手前にフィルム挿入空間として挿入
孔を開設し、そこに放射線用のフィルムを内蔵したカセ
ットを8着した後、構造物に放射線を照射し、フィルム
に投影した投影図から放射線吸収体の埋設物の位置や形
状を測定するという手段を採用することによって、透過
限界より厚い構造物内の埋設物の探査も可能にした。
<IV>Means for solving the problems In the present invention,
An insertion hole is opened in the target structure as a film insertion space in the direction intersecting the radiation to be irradiated and before the radiation transmission limit, and after eight cassettes containing radiation film are placed there, the structure is inserted. By employing a method of irradiating radiation to the area and measuring the position and shape of buried objects in the radiation absorber from the projection image projected on film, it has become possible to search for buried objects in structures that are thicker than the penetration limit. .

くV:〉実施例 次に本発明の一実施例について図面をもとに説明する。KU V:〉Example Next, one embodiment of the present invention will be described based on the drawings.

(イ)本発明に使用する各装置の位置関係[構造物及び
8X識線] 第1図において、構造物1はコンクリート等による壁体
または柱、梁等でその内部に鉄筋等の放射線吸収体の埋
設物2が埋設されている。
(B) Positional relationship of each device used in the present invention [Structure and 8X line] In Fig. 1, structure 1 is a wall made of concrete, etc., or a column, a beam, etc., and has radiation absorbing material such as reinforcing steel inside. Buried object 2 is buried.

又、3は鉛またはタングステン等による線材の標識線3
であり構造物1の照射面Aに水平に貼付する。
In addition, 3 is a marker line 3 made of lead or tungsten, etc.
and is attached horizontally to the irradiation surface A of the structure 1.

(照射線源] 5は放射線照射線源として例えばX線源5を使用するが
X線以外の放射線を使用することも勿論可能である。
(Irradiation Source) For example, the X-ray source 5 is used as the radiation irradiation source, but it is of course possible to use radiation other than X-rays.

そしてその位置は構造物1の標識線3を三等分した点か
ら垂直にのびた線上の任意の距離の地点とする。
The position is a point at an arbitrary distance on a line extending perpendicularly from a point that divides the marker line 3 of the structure 1 into three equal parts.

[フィルム挿入空間] 構造物1に、放射線を照r8する側の照射面Aに直交す
る側面Bからフィルム挿入空間として例えば挿入孔4を
囲設する。
[Film Insertion Space] In the structure 1, for example, an insertion hole 4 is surrounded as a film insertion space from a side surface B perpendicular to the irradiation surface A on the side where radiation is irradiated r8.

挿入孔4は後述するフィルムカセットFを挿入する孔で
ある。
The insertion hole 4 is a hole into which a film cassette F, which will be described later, is inserted.

その位置と方向は次の通りである。Its position and direction are as follows.

(1)挿入孔4の中心は標識線3と同じ高さZの位置。(1) The center of the insertion hole 4 is at the same height Z as the marker line 3.

(2)照射する放射線に交わる方向。(2) Direction intersecting the irradiating radiation.

(3)照射面Aの標識線3に平行で水平。(3) Parallel and horizontal to marker line 3 on irradiation surface A.

さらに挿入孔4の構造物1照射而Aからの深さはそのと
きに使用する放射線が透過できる範囲とする。
Furthermore, the depth of the insertion hole 4 from the structure 1 irradiation point A is set to a range through which the radiation used at that time can pass through.

なお挿入孔4を、照射する放射線に交わる方向で、(1
α躬面Aの標識線3に平行に、構造物1の縦方向に斜め
に17il HQ ”jることも考えられる。
Note that the insertion hole 4 should be aligned with (1
It is also conceivable that 17il HQ "j be parallel to the marker line 3 on the α plane A and diagonally in the longitudinal direction of the structure 1.

そして標識線を縦方向に二本平行に貼付すれば主筋のよ
うな縦方向の埋設物の探査と同時にフープ筋のような横
方向の埋設物の探査も可能となる。
If two marker lines are pasted in parallel in the vertical direction, it becomes possible to simultaneously search for buried objects in the vertical direction such as main reinforcements and at the same time to search for buried objects in the horizontal direction such as hoop reinforcements.

本実施例では挿入孔4は1゛°Jル几どし、乙の大きさ
は、ノイルムカセットFが挿入できる範囲で、できるだ
け小さいものとする。
In this embodiment, the insertion hole 4 is 1°J wide, and the size of the insertion hole 4 is as small as possible within the range in which the Noilm cassette F can be inserted.

なJ5ドリル孔以外にスリット等を刻設する場合もある
In some cases, slits etc. may be carved in addition to the J5 drill hole.

この場合は後述するフィルムカセットFの容器は円筒型
ではなく、通常使用されている板状のフィルムカセット
の使用が可能である。 。
In this case, the container for the film cassette F, which will be described later, is not cylindrical, but a commonly used plate-shaped film cassette can be used. .

[フィルムカセットコ フィルムカセットFは矩形の細長いフィルムF1をプラ
スチックやアルミ等による円筒型の容器F2に挿入した
ものであり、上述の挿入孔4に挿入できるサイズとする
[Film Cassette Co Film cassette F is a film cassette F in which a rectangular and elongated film F1 is inserted into a cylindrical container F2 made of plastic, aluminum, etc., and is sized so that it can be inserted into the above-mentioned insertion hole 4.

そしてフィルムカセットFの挿入孔4への挿入はフィル
ムF1の感光面をX線源5側に向けておこなう。
The film cassette F is inserted into the insertion hole 4 with the photosensitive surface of the film F1 facing the X-ray source 5 side.

(ロ)X線の照射 次にXI[5からX線を構造物1の照射面Aに向かって
照射する。
(b) Irradiation of X-rays Next, X-rays are irradiated from XI[5 toward the irradiation surface A of the structure 1.

フィルムF1は放射線の透過限界を越えない深さの位置
にl7fl設された挿入孔4内に位置している。
The film F1 is located in the insertion hole 4, which is provided at a depth 17fl that does not exceed the radiation transmission limit.

従って構造物1を透過したX線によって挿入孔4内のフ
ィルムF1には埋設物2と標識113の投影図ができる
Therefore, a projected view of the buried object 2 and the marker 113 is formed on the film F1 in the insertion hole 4 by the X-rays transmitted through the structure 1.

(ハ)Wlfr原理 次にフィルムFに投影された投影図から埋設物2の位置
や形状を探査する解析原理を説明づる。
(c) Wlfr principle Next, the analysis principle for searching the position and shape of the buried object 2 from the projection view projected on the film F will be explained.

L実測及び計暮] 埋設物2ど標識線3の二つの投影図を実測しIC値を、
照射面A及び挿入孔4とX線源5との距離、標識線の寸
法等とともに、三角形の比例公式によって埋設物2の位
置を知ることが出来る。
L actual measurement and measurement] Measure the two projections of buried object 2 and marker line 3 and find the IC value,
The position of the buried object 2 can be determined from the irradiation surface A, the distance between the insertion hole 4 and the X-ray source 5, the dimensions of the marker line, and the like based on the triangular proportionality formula.

第2図においてDは直径dの埋設物2がフィルムF1に
投影された時の直径を示し、しは民さβの標識線3がフ
ィルムF1に投影された時の長さである。
In FIG. 2, D indicates the diameter of the buried object 2 having a diameter d projected onto the film F1, and D indicates the length of the marker line 3 of the diameter β projected onto the film F1.

更にFWDはXPA源5から構造物1の照射面Aまでの
距離であり、F F DはX線源5からフィルムF1ま
での距離である。
Furthermore, FWD is the distance from the XPA source 5 to the irradiation surface A of the structure 1, and F F D is the distance from the X-ray source 5 to the film F1.

又、XはフィルムF1に投影された埋設物2と標識線3
のそれぞれの中心間の距離である。
Also, X indicates the buried object 2 and the marker line 3 projected on the film F1.
is the distance between the respective centers of .

埋設物2の直径dは規格品であるので構造物の施工時の
図面やあるいは一部をはつり出すことによって知ること
ができる。
Since the buried object 2 is a standard product, the diameter d of the buried object 2 can be determined from drawings at the time of construction of the structure or by projecting a part of it.

ここで第2図に見るように構造物1の照射面Aから埋設
物2までの距離をy、標識線3の三笠分点から構造物1
の照射面上における埋設物2の中心までの水平方向の距
離をXとすれば、Xとyの距離を求めることによって構
造物1内の埋設物2の位置がわかる。
Here, as shown in Figure 2, the distance from the irradiation surface A of the structure 1 to the buried object 2 is y, and from the Mikasa equinox of the marker line 3 to the structure 1
Letting X be the horizontal distance to the center of the buried object 2 on the irradiation surface, the position of the buried object 2 within the structure 1 can be determined by finding the distance between X and y.

まずyについては次の数式がなり立ち、値が求(1)、
(2)よりFFDを消去すると、となり、この(3)の
数式にそれぞれの数値を代入することによりy、ずなわ
ち構造物1照射面Aから埋設物2の中心までの距離が判
明する。
First, for y, the following formula holds true, and the value is found (1),
If FFD is deleted from (2), then by substituting the respective numerical values into the equation (3), y, that is, the distance from the irradiation surface A of the structure 1 to the center of the buried object 2, is determined.

次にXについての数式は次のようになる。Next, the formula for X is as follows.

従って標識II!3を二等分した点から構造物1の照射
面A上に、l13ける埋設物2の中心までの距−Lが〒
11明する。
Therefore sign II! On the irradiation surface A of structure 1 from the point that bisects 3, the distance -L to the center of buried object 2 divided by l13 is 〒
11 dawn.

更に上記の数式から次の数式が導かれるので、照射面A
から挿入孔4内のフィルムE1までの距離を−[とした
ときそのTも下記の(5)式によって求めることが出来
る。
Furthermore, the following formula is derived from the above formula, so the irradiation surface A
When the distance from the film E1 in the insertion hole 4 to the film E1 is -[, the T can also be determined by the following equation (5).

[作図による位置確認] (第3図) 図面上に設定したX線源5をSとし、Sから、実測した
構造物1の照射面Aまでの距ill F l/V Dの
直線をのばしその一端を$−とし、直線SS″に直角に
交わる線上でその交点から左右それぞれ標識PA3の半
分の距離β/2の点をP、P′とする。
[Position confirmation by drawing] (Figure 3) Let the X-ray source 5 set on the drawing be S, and extend a straight line from S to the irradiation surface A of the actually measured structure 1 with a distance of ill F l/V D. Let one end be $-, and let P and P' be points on a line that intersects the straight line SS'' at right angles, and that are half the distance β/2 of the mark PA3 on the left and right from the intersection.

次にXFA源5とP、P−を結んだ線を引く。Next, draw a line connecting the XFA source 5 and P and P-.

心線sp、sp−の延長線上の点r、r’を結んだ直線
で、直線PP−に平行かつその長さが標識線3のフィル
ムF1に投影された長さl 1.:なる直線rr−が投
影された標識線部分となる。
A straight line connecting points r and r' on the extensions of the core wires sp and sp-, which is parallel to the straight line PP- and whose length is the length l projected onto the film F1 of the marker line 3.1. : The straight line rr- becomes the projected marker line portion.

次に上記で求められた標識線81S分に現われている埋
設物2の投影図の両端部CIQ−と照射源Sを結んだ直
線上の点11−を結んだ直線で、直線PP′に平行で埋
設物の直径距離dになる直線11′を直径とする円が埋
設物2の埋設位置となる。
Next, a straight line connecting the point 11- on the straight line connecting the irradiation source S and both ends CIQ- of the projected view of the buried object 2 appearing on the marker line 81S obtained above, and parallel to the straight line PP'. The buried position of the buried object 2 is a circle whose diameter is the straight line 11', which is the diameter distance d of the buried object.

(ホ)その他の実施例1 上記実施例では挿入空間を水平に開設したが、斜め方向
の削孔によるものでも上記の解析原理を応用できること
は勿論である。
(E) Other Embodiments 1 In the above embodiments, the insertion space was opened horizontally, but it goes without saying that the above analysis principle can also be applied to drilling holes in an oblique direction.

ここでの斜め方向とは平面図上及び側面図上の両方の斜
線方向を含むものである。
The diagonal direction herein includes diagonal directions in both a plan view and a side view.

また放射線の照射も直交方向に限定するものではない。Furthermore, the irradiation of radiation is not limited to the orthogonal direction.

(へ)その他の実施例2(第4図) 上記の実施例では標識線を水平方向に貼付したが鉛直方
向に二本平行に貼付し行うことも考えられる。
(v) Other Embodiment 2 (FIG. 4) In the above embodiment, the marker lines were attached horizontally, but it is also possible to attach two marker lines in parallel in the vertical direction.

この場合標識線は必ず挿入孔の高さの位置と交差する範
囲に貼付し、さらに照射源は両標識線の中間位置から照
射面に対して垂直線上の一定位置とすれば、上記実施例
と同じ解析原理で埋設物の探査を行うことができる。
In this case, the marker line must be pasted in a range that intersects the height position of the insertion hole, and the irradiation source is placed at a constant position on a line perpendicular to the irradiation surface from the midpoint between both marker lines. Exploration of buried objects can be performed using the same analytical principle.

< Vl >発明の効果 本発明は以上説明したようになるので次のよ゛)な効果
を期待することが出来る。
<Vl> Effects of the Invention Since the present invention has been described above, the following effects can be expected.

(イ)放射線用のフィルムを構造物の裏面に貼付するの
ではなく、放射線の透過限界以内の深さに開設した押入
孔内にフィルムを挿入して行った。
(b) Rather than attaching a radiation film to the back of the structure, the film was inserted into a penetration hole opened at a depth within the radiation penetration limit.

従って厚さの厚い構造物でも埋設物の探査が可能になっ
た。
Therefore, it has become possible to search for buried objects even in thick structures.

そして放射線百の少ない放射線を利用することが可能に
なるので、放)j線による影旨が少なくてすみ、作業の
安全性が向上する。
Since it becomes possible to use radiation with less radiation, shadows caused by radiation)j rays are reduced, and work safety is improved.

(0)フィルム挿入空間を構造物に削孔するが、仕上げ
材を剥がず必要がない等はつり作業の時程溝造物を傷め
ることがなく、最小限の削孔でよい。
(0) Holes are drilled into the structure for the film insertion space, but there is no need to remove the finishing material, so the trench structure will not be damaged during the lifting work, and the minimum number of holes can be drilled.

さらに作業終了後の補修は孔内にモルタル等を充填する
だけの簡単な作業でよい。
Furthermore, repairs after completion of the work can be as simple as filling the hole with mortar or the like.

(ハ)(14造物内の物体の位置がはっきりとした数値
で現われるので゛電磁誘導方式などに比べてはるかに正
確で、かつ熟練を要さずに埋設物の位置を知ることが出
来る。
(c) (14) Since the position of an object within a structure is displayed as a clear numerical value, it is much more accurate than methods such as electromagnetic induction, and the position of buried objects can be determined without the need for skill.

(ニ)本発明によって構造物内の鉄筋等の位置が事前に
測定出来るので例えばコンクリート住宅の増改築の際に
無駄な労力、時間、経費をかけなくてすむ。
(d) Since the present invention allows the positions of reinforcing bars and the like within a structure to be measured in advance, there is no need to waste effort, time, and expense when, for example, extending or renovating a concrete house.

(ホ)構造物内の配管、配筋等が数値で現われるので構
造物の配筋状態が明確にわかり耐震性能を!1を認する
検査等の作業性をたかめることが出来る。
(E) The piping, reinforcement, etc. inside the structure are displayed numerically, so you can clearly see the reinforcement condition of the structure and improve its earthquake resistance! It is possible to improve the workability of inspections etc. that recognize 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:本発明の一実施例の説明図 第2図:測定値の説明図 第3図二作図による位置確認の説明図 第4図:その他の実施例の説明図 1°構造物 2:埋設物 3:標識線 5:X線源 Fl:フィルム Figure 1: Explanatory diagram of one embodiment of the present invention Figure 2: Explanatory diagram of measured values Figure 3: Explanatory diagram of position confirmation by drawing two diagrams Figure 4: Explanatory diagram of other embodiments 1° Structure 2: Buried object 3: Sign line 5: X-ray source Fl: Film

Claims (1)

【特許請求の範囲】 放射線吸収体が埋設されている構造物の照射面に寸法既
知の標識線を貼付し、 構造物には、照射面から放射線の透過限界以内の深さの
位置にフィルム挿入空間を開設し、フィルム挿入空間内
に放射線の透過強度を感受するフィルムを挿入し、 構造物の外部から放射線を照射して、 上記フィルム上に投影された標識線と放射線吸収体の位
置と寸法を実測し、 前記埋設された放射線吸収体の位置を算出することを特
徴とする、 構造物内の放射線吸収体の探査方法。
[Claims] A marker line with known dimensions is affixed to the irradiated surface of a structure in which a radiation absorber is buried, and a film is inserted into the structure at a depth within the radiation penetration limit from the irradiated surface. A space is opened, a film that senses the intensity of transmitted radiation is inserted into the film insertion space, radiation is irradiated from outside the structure, and the position and dimensions of the marker line and radiation absorber projected on the film are determined. A method for detecting a radiation absorber in a structure, the method comprising: actually measuring and calculating the position of the buried radiation absorber.
JP59164226A 1984-08-07 1984-08-07 Detection of radiation absorber in structure Granted JPS6144385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59164226A JPS6144385A (en) 1984-08-07 1984-08-07 Detection of radiation absorber in structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164226A JPS6144385A (en) 1984-08-07 1984-08-07 Detection of radiation absorber in structure

Publications (2)

Publication Number Publication Date
JPS6144385A true JPS6144385A (en) 1986-03-04
JPH0357432B2 JPH0357432B2 (en) 1991-09-02

Family

ID=15789066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164226A Granted JPS6144385A (en) 1984-08-07 1984-08-07 Detection of radiation absorber in structure

Country Status (1)

Country Link
JP (1) JPS6144385A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217048A (en) * 1988-02-19 1990-01-22 Gensia Pharmaceut Inc Diagnosis, evaluation and curing of coronary artery disease utilizing closed system drug delivery of motion simulating substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217048A (en) * 1988-02-19 1990-01-22 Gensia Pharmaceut Inc Diagnosis, evaluation and curing of coronary artery disease utilizing closed system drug delivery of motion simulating substance

Also Published As

Publication number Publication date
JPH0357432B2 (en) 1991-09-02

Similar Documents

Publication Publication Date Title
CN101558293B (en) Method and arrangement for improving tomographic determinations, particularly suitable for inspection of steel reinforcement bars in concrete structures
CZ279171B6 (en) Method for documenting a device and apparatus for making the same
CN205981004U (en) Segmentation inspects that line and board mouth are with face degree deviation dipperstick
JPS6144385A (en) Detection of radiation absorber in structure
JPH0340839B2 (en)
Livingston Nondestructive testing of historic structures
JPS6150006A (en) Position measuring method of radiation absorbing body, which is embedded in structure
CN207007054U (en) A kind of big specification steel pipe caliber size checking tool
CA1216681A (en) Formation density logging while drilling
US4028545A (en) Method of simulating spherical voids for use as a radiographic standard
JPH0616102B2 (en) Method and apparatus for measuring the depthwise distribution of gamma ray emitting nuclides existing inside a wall such as concrete
JP2535159B2 (en) Method for exploring radiation absorbers buried in structures
JPH0242408B2 (en)
JPH0217048B2 (en)
JP2010078585A (en) Method for finding the location of buried magnetic object
CN217484222U (en) Concrete structure component internal reinforcement detecting system
JP2002532701A (en) A method for controlling the verticality of cylindrical elements such as nuclear fuel pellets
JPS59131101A (en) End face gauge
JP2023120655A (en) Radioactive contamination measuring device
JPH0522841B2 (en)
Katagiri et al. Nondestructive and quantitative method for measuring radioactivity from crud, liquids and gases in a contaminated pipe
Anton et al. Detection of reinforcement in the non-traditional building structures-historical statues
JPH0458915B2 (en)
JPS62124494A (en) Inspection device for radiation shielding concrete wall
JPH02251784A (en) Measuring method of radioactive concentration of wall surface

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term