JPH02251784A - Measuring method of radioactive concentration of wall surface - Google Patents

Measuring method of radioactive concentration of wall surface

Info

Publication number
JPH02251784A
JPH02251784A JP1072638A JP7263889A JPH02251784A JP H02251784 A JPH02251784 A JP H02251784A JP 1072638 A JP1072638 A JP 1072638A JP 7263889 A JP7263889 A JP 7263889A JP H02251784 A JPH02251784 A JP H02251784A
Authority
JP
Japan
Prior art keywords
wall surface
measurement
divided
determined
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1072638A
Other languages
Japanese (ja)
Inventor
Jiro Sakurai
次郎 櫻井
Tetsuo Goto
哲夫 後藤
Kuniyoshi Nemoto
邦義 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1072638A priority Critical patent/JPH02251784A/en
Publication of JPH02251784A publication Critical patent/JPH02251784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable execution of simple and accurate measurement, curtailment of time and labor and reduction of exposure by using for the result of measurement integrated values of a detection efficiency according to positions of a plurality of measuring points in a space and of a count efficiency inherent to a detector. CONSTITUTION:A pole 2 is fixed to a stage 4 having wheels 2 and being movable on a floor, and a construction is made so that a detector 1 can be fixed at a desired height to said pole and that three-dimensional measurement is executed at a desired position in a building 5 by moving the stage 4 and extending and contracting the pole 2. Each wall surface in the building 5 is divided hypothetically in a plurality, measurement is executed sequentially at each measuring position corresponding to each divided section, and radioactive concentration in each hypothetically divided surface of the wall surface is determined from its relation with a three-dimensional efficiency from each hypothetically divided surface of the wall to the measuring position. By selecting different measuring points at least being equal to or more than the hypothetically divided surfaces in number, one the occasion, a determinant is prepared and solved and thereby the distribution of radioactivity in the wall surface can be determined. According to this constitution, it is possible to determine the distribution of the radioactivity in the wall surface simply and accurately, to curtail time and labor for measurement and to reduce exposure.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は、原子力発電プラント等の核燃料あるいは放射
性物質取扱い施設における室内壁面(床、天井及び!り
の放射能濃度分布の評価に利用される壁面放射能濃度測
定方法に関する。 (従来の技術) 従来、原子力発電プラント等の核燃料あるいは放射性物
質取扱い施設において、建屋の壁面(床、天井及び壁)
の放射能含有量あるいは放射能汚染を測定する方法とし
ては、エリヤモニタによる方法、ダストサンプリングに
よるフィルタの放射線計測による方法、TLD素子を用
いた被曝線量評価による方法、サーベイメータを用いた
表面サーベイによる方法あるいは壁面を破壊してサンプ
リングした試料の含有放射能量定量による方法等があげ
られる。 (発明が解決しようとする課gA) しかしながら、上述した従来の方法では、次のような開
局がある。 すなわち、エリャモニ・りあるいはTLD素子を用いた
方法では、測定対象が壁面の場合には測定領域が狭い上
、得られる結果はその場所でのIl量であり、コンクリ
ート等の壁材の含有放射能量を評価するのは困難である
。 また、ダストサンプラーを用いた方法では、当然の・こ
とながらエアロゾル成分しか評価できないため、他の方
法との併用が必要となる。 また、サーベイメータを用いての放射線管理作業風の表
面サーベイによる方法では、汚染箇所、レベルを同定で
きる利点はあるものの、膨大な労力、時間が必要となり
、また、作業員の被曝の可能性も生じる。 さらに、壁面の表面をはつり、そのはつり片を破壊分析
あるいは非破壊分析による手法は、そのはつり片の代表
性の問題がついてまわるのみならず、相当の時間と労力
とが必要となる。 本゛発明は、かかる従来の事情に対処してなされたもの
で、従来に較べて簡易かつ正確に壁面放射能濃度分布を
求めることができ、測定に要する労力と時間の大幅な削
減および作業員の被曝低減を図ることのできる壁面放射
能濃度測定方法を提供しようとするものである。
[Purpose of the Invention] (Field of Industrial Application) The present invention is directed to the field of wall radiation used to evaluate the radioactivity concentration distribution on indoor walls (floors, ceilings, etc.) in facilities that handle nuclear fuel or radioactive materials such as nuclear power plants. Concerning a method for measuring energy concentration. (Conventional technology) Conventionally, in facilities handling nuclear fuel or radioactive materials such as nuclear power plants, the walls (floors, ceilings, and walls) of buildings
Methods for measuring radioactive content or radioactive contamination include area monitors, filter radiation measurements using dust sampling, exposure dose evaluation using TLD elements, and surface surveys using survey meters. Alternatively, there may be a method of quantifying the amount of radioactivity contained in a sample sampled by destroying the wall surface. (Issue gA to be solved by the invention) However, in the conventional method described above, the following openings occur. In other words, when the measurement target is a wall surface, the measurement area is narrow in the method using Ellamoni-Li or TLD elements, and the result obtained is the amount of Il at that location, and the amount of radioactivity contained in wall materials such as concrete. is difficult to evaluate. Furthermore, since the method using a dust sampler can only evaluate aerosol components, it must be used in combination with other methods. In addition, although surface surveys using survey meters, similar to radiation control work, have the advantage of being able to identify contamination locations and levels, they require a huge amount of labor and time, and also pose the possibility of worker exposure to radiation. . Furthermore, the method of chiseling the surface of a wall and performing destructive or non-destructive analysis of the chipped pieces not only involves problems with the representativeness of the chipped pieces, but also requires considerable time and effort. The present invention has been made in response to the above-mentioned conventional circumstances, and it is possible to obtain the wall surface radioactivity concentration distribution more easily and accurately than in the past, significantly reducing the labor and time required for measurement, and reducing the number of workers required. The purpose of the present invention is to provide a method for measuring wall surface radioactivity concentration that can reduce radiation exposure.

【発明の構成】 (alilを°解決するための手段) すなわち、本発明の壁面放射能濃度測定方法は、測定対
象壁面に対応した空間中の複数点で放射線検出器により
放射線束を測定し、前記壁面に対する前記放射線束n1
定位置の幾何学的な関係から求められる検出効率と前記
放射線検出器固有の計数効率との積として求められる計
数と、前記放射線束の測定結果とから前記壁面の放射能
濃度分布を求めることを特徴とする。 (作 用) 上記構成の本発明の壁面放射能濃度測定方法では、例え
ば車輪等を有し移動自在とされた基台上に設けられ、昇
降機構により上下動0在とされた放射線検出器等を用い
て、測定対象壁面に対応した空間中の複数点で放射線束
を測定する。 そして、壁面に対する放射線束測定位置の幾何学的な関
係から求められる検出効率と放射線検出器固有の計数効
率との積として求められる計数と、放射線束の測定結果
とから壁面の放射能濃度分布を求める。 したがって、従来に較べて簡易かつ正確に壁面放射能濃
度分布を求めることができ、測定に要する労力と時間の
大幅な削減および作業員の被曝低減を図ることができる
。 (実施例) 以下、本発明の一実施例の壁面放射能濃度測定方法を図
面を参照して説明する。 第1図は本発明の一実施例方法を実現するための壁面放
射能濃度測定装置の構成を示すもので、図において符号
1はγ線検出器を示している。 このγ線検出器1は、伸縮可能なポール2上に設けられ
ており、このポール2により所望の高さに固定可能に構
成されている。また、このポール2は、複数の車輪3を
備え床上を移動自在に構成された基台4上に固定されて
おり、この基台4を移動させ、ポール2を伸縮させるこ
とにより、γ線検出器1を建屋5内の所望の位置に設定
し、3次元的な放射線束分布を測定可能に構成されてい
る。 上記構成の壁面放射能濃度測定装置を用いて、この実施
例で゛は、次のようにして壁面放射能濃度測定を行う。 すなわち、第2図に示すように、測定を行う建ji5の
各壁面を仮想的に複数に分割し、この仮想分割数に応じ
て建屋内の幾何学的配置(構造)を考慮した上で必要と
される適当な測定位置で順次測定を重ね、各壁仮想分割
面からの規定位置への三次元的効率との関係から、壁面
の各仮想分割面単位での放射能濃度を求める。 すなわち、第2図に示した例では各壁面を4分割したも
のであるが、これらの24の分割面に対する求める放射
能濃度を、それぞれAt SA2 、・・・AI・・・
、A24、また測定された値をCI 、C2、・・・C
t・・・ C24とすると、AとCの間には以下の関係
が成りたつ。 あるいは、 (Cn  )  =  (a)  (An  )したが
って、求める放射能濃度は、 (An )= (a)(Cn ) となる。ここで(丁)は(α)の逆行列。 ここでαは各仮想分割面からの測定点に対する幾何学的
効率を示す。言い換えれば、ある測定値CIは6、各分
割面の真の放射能濃度に、それぞれの測定点に対する効
率を掛けたものの和で表わされる。そこで異なる測定点
を少なくとも仮想分割面以上選択することにより、行列
式を作成し、それを解くことにより、壁面での放射能分
布が求められる。なお、そのマトリクス(行列)の大き
さは、当然の事ながら仮想分割面の数に依存する。 また、効率aは、検出器固有の計数効率と壁面の大きさ
や分割数とから幾何学的に求められる効率との積の形で
表わされる。 なお、上記放射線束の測定点は、壁面からの情報をより
多ぐ′含む位置であることが好ましく、建屋図面及び室
内の壁面構成から適宜選択しておく。 すなわち、この実施例の壁面放射能濃度測定方法では、
建屋壁面といった非常に大きな測定対象に対しての放射
能濃度分布を簡易かつ正確に得ることができ、従来では
なし得なかったマクロ評価が可能となる。 したがって、放射性物質取扱い施設の管理区域解除ある
いは改築といった比較的大規模な汚染評価が必要とされ
る場合に有用であるばかりでな(、汚染壁面を的確に示
すことにより、効率的除染を行う上で非常に有用である
。 [発明の効果] 以上述べたように、本発明の壁面放射能濃度測定方法に
よれば、従来に較べて簡易かつ正確に壁面放射能濃度分
布を求めることができ、測定に要する労力と時間の大幅
な削減および作業員の被曝低減を図ることができる。
[Structure of the Invention] (Means for solving alil °) That is, the wall surface radioactivity concentration measuring method of the present invention measures radiation flux using a radiation detector at multiple points in a space corresponding to the wall surface to be measured, The radiation flux n1 to the wall surface
determining the radioactivity concentration distribution on the wall surface from a count determined as a product of a detection efficiency determined from a fixed position geometrical relationship and a counting efficiency specific to the radiation detector and a measurement result of the radiation flux; Features. (Function) In the wall surface radioactivity concentration measuring method of the present invention having the above-mentioned configuration, a radiation detector, etc., which is provided on a movable base having wheels or the like, and which is prevented from vertical movement by an elevating mechanism, etc. The radiation flux is measured at multiple points in the space corresponding to the wall surface to be measured. Then, the radioactivity concentration distribution on the wall surface is determined from the count obtained as the product of the detection efficiency obtained from the geometric relationship of the radiation flux measurement position with respect to the wall surface and the counting efficiency specific to the radiation detector, and the radiation flux measurement results. demand. Therefore, the wall surface radioactivity concentration distribution can be obtained more easily and accurately than in the past, and the labor and time required for measurement can be significantly reduced and the radiation exposure of workers can be reduced. (Example) Hereinafter, a method for measuring wall surface radioactivity concentration according to an example of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a wall surface radioactivity concentration measuring device for realizing a method according to an embodiment of the present invention, and in the figure, reference numeral 1 indicates a gamma ray detector. This γ-ray detector 1 is provided on a retractable pole 2, and can be fixed at a desired height by this pole 2. In addition, this pole 2 is fixed on a base 4 that has a plurality of wheels 3 and is configured to be movable on the floor, and by moving this base 4 and expanding and contracting the pole 2, gamma ray detection The device 1 is configured to be able to be set at a desired position within a building 5 and measure a three-dimensional radiation flux distribution. In this embodiment, using the wall surface radioactivity concentration measuring device having the above configuration, the wall surface radioactivity concentration is measured in the following manner. In other words, as shown in Figure 2, each wall surface of the building to be measured is virtually divided into multiple parts, and the necessary The radioactivity concentration for each virtual dividing surface of the wall is determined from the relationship with the three-dimensional efficiency from each virtual dividing surface of the wall to the specified position by sequentially repeating measurements at appropriate measurement positions. That is, in the example shown in Fig. 2, each wall surface is divided into four parts, and the radioactivity concentrations to be determined for these 24 divided faces are respectively At SA2 , ... AI ...
, A24, and the measured values as CI , C2,...C
t... Assuming C24, the following relationship holds between A and C. Alternatively, (Cn) = (a) (An) Therefore, the radioactivity concentration to be determined is (An) = (a) (Cn). Here, (Ding) is the inverse matrix of (α). Here, α represents the geometric efficiency for the measurement points from each virtual dividing plane. In other words, a certain measurement value CI is expressed as the sum of 6, the true radioactivity concentration of each split plane multiplied by the efficiency for each measurement point. Therefore, by selecting different measurement points at least on the virtual dividing plane, a determinant is created, and by solving it, the radioactivity distribution on the wall surface can be determined. Note that the size of the matrix naturally depends on the number of virtual dividing planes. Further, the efficiency a is expressed as the product of the counting efficiency specific to the detector and the efficiency geometrically determined from the size of the wall surface and the number of divisions. The measurement point of the radiation flux is preferably a position that includes more information from the wall surface, and is appropriately selected from the building drawing and the wall structure of the room. That is, in the wall surface radioactivity concentration measurement method of this example,
It is possible to easily and accurately obtain the radioactivity concentration distribution for a very large measurement target such as a building wall surface, making it possible to perform macroscopic evaluations that were not possible in the past. Therefore, it is not only useful when a relatively large-scale contamination assessment is required, such as deregulating or renovating the controlled area of a facility that handles radioactive materials. [Effects of the Invention] As described above, according to the wall surface radioactivity concentration measuring method of the present invention, the wall surface radioactivity concentration distribution can be determined more easily and accurately than before. , it is possible to significantly reduce the labor and time required for measurement and to reduce the radiation exposure of workers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の壁面放射能濃度測定方法を
説明するための装置構成を示す図、第2図は建屋壁面の
仮想断面を示す図である。 1・・・・・・・・・・・・γ線検出器2・・・・・・
・・・・・・伸縮可能なボール3・・・・・・・・・・
・・車輪 4・・・・・・・・・・・・基台 5・・・・・・・・・・・・建屋 出願人      日本原子力事業株式会社代理人 弁
理士  須 山 佐 − 第1図 !
FIG. 1 is a diagram showing the configuration of an apparatus for explaining a wall surface radioactivity concentration measuring method according to an embodiment of the present invention, and FIG. 2 is a diagram showing a virtual cross section of a building wall surface. 1...... Gamma ray detector 2...
・・・・・・Stretchable ball 3・・・・・・・・・・・・
...Wheel 4...Base 5...Building applicant Japan Atomic Energy Corporation Agent Patent attorney Sasu Suyama - Figure 1 !

Claims (1)

【特許請求の範囲】[Claims] (1)測定対象壁面に対応した空間中の複数点で放射線
検出器により放射線束を測定し、前記壁面に対する前記
放射線束測定位置の幾何学的な関係から求められる検出
効率と前記放射線検出器固有の計数効率との積として求
められる計数と、前記放射線束の測定結果とから前記壁
面の放射能濃度分布を求めることを特徴とする壁面放射
能濃度測定方法。
(1) Radiation flux is measured by a radiation detector at multiple points in the space corresponding to the wall surface to be measured, and the detection efficiency determined from the geometrical relationship of the radiation flux measurement position with respect to the wall surface and the characteristic of the radiation detector are determined. A method for measuring radioactivity concentration on a wall surface, characterized in that a radioactivity concentration distribution on the wall surface is determined from a count obtained as a product of a counting efficiency of the radiation flux and a measurement result of the radiation flux.
JP1072638A 1989-03-25 1989-03-25 Measuring method of radioactive concentration of wall surface Pending JPH02251784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072638A JPH02251784A (en) 1989-03-25 1989-03-25 Measuring method of radioactive concentration of wall surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1072638A JPH02251784A (en) 1989-03-25 1989-03-25 Measuring method of radioactive concentration of wall surface

Publications (1)

Publication Number Publication Date
JPH02251784A true JPH02251784A (en) 1990-10-09

Family

ID=13495129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072638A Pending JPH02251784A (en) 1989-03-25 1989-03-25 Measuring method of radioactive concentration of wall surface

Country Status (1)

Country Link
JP (1) JPH02251784A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274367A (en) * 2004-03-25 2005-10-06 Atox Co Ltd Apparatus for inspecting pollution of elevated large area
JP2007333463A (en) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp Radiation measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274367A (en) * 2004-03-25 2005-10-06 Atox Co Ltd Apparatus for inspecting pollution of elevated large area
JP2007333463A (en) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp Radiation measuring apparatus
JP4637794B2 (en) * 2006-06-13 2011-02-23 三菱電機株式会社 Radiation measurement equipment

Similar Documents

Publication Publication Date Title
US6518579B1 (en) Non-destructive in-situ method and apparatus for determining radionuclide depth in media
Boden et al. Determination of 137Cs contamination depth distribution in building structures using geostatistical modeling of ISOCS measurements
JPH02251784A (en) Measuring method of radioactive concentration of wall surface
JPH0688873A (en) Method and device for evaluating distribution of radiation dosage rate
Anspaugh In situ methods for quantifying specific radionuclides
Yokoyama et al. Development of clearance verification equipment for uranium-bearing waste
Kull et al. Guidelines for gamma-ray spectroscopy measurements of 235U enrichment
JP2023531502A (en) System for correlating alpha and gamma spectrometry measurements for in situ radiological characterization of samples
Nuccetelli In situ gamma spectroscopy in environmental research and monitoring
JPH02222855A (en) Pollution depth discriminator
Anh et al. Evaluation of performance of a new gamma technique for assay of radioactive waste
JP2635860B2 (en) Radioactivity evaluation method for solidified radioactive waste
JPH0545467A (en) Radioactive contamination measuring system
Creed et al. Survey and Remediation Project at the DOE Bannister Site-16280
Handy et al. APPLICATION OF AUTOMATED POSITIONING DURING THE SURVEY PROCESS
JP2736186B2 (en) Pollution / activation radioactivity identification device
Kalb et al. Deployment of in situ measurement techniques and the MARSSIM process for characterization of the Brookhaven Graphite Research Reactor
Anisimov et al. Proportional chamber device for thin-layer radiochromatogram analysis
CN118152941A (en) Residual radioactivity evaluation method for retired final-state building
Chesnokov et al. Surface activity distribution measurements and establishment of a dose rate map inside the destroyed Chernobyl reactor
Wachter et al. ISOCS Waste Measurement Applications at the Oak Ridge National Laboratory–14138
Whicker et al. MARSAME Release Report for TA46 Building 1
McKenzie Results of the Independent Radiological Verification Survey of Remediation at Building 14, Former Linde Urnaium Refinery, Tonawanda, New York (LI001V)
Chastenet et al. MARSAME Radiological Release Report for Weapons Facility Operations# 5 Decontamination and Demolition Project
Pavlov et al. Automation System for Neutron Activation Analysis at the Reactor IBR-2, Dubna, Russia