JPH0688873A - Method and device for evaluating distribution of radiation dosage rate - Google Patents

Method and device for evaluating distribution of radiation dosage rate

Info

Publication number
JPH0688873A
JPH0688873A JP23846392A JP23846392A JPH0688873A JP H0688873 A JPH0688873 A JP H0688873A JP 23846392 A JP23846392 A JP 23846392A JP 23846392 A JP23846392 A JP 23846392A JP H0688873 A JPH0688873 A JP H0688873A
Authority
JP
Japan
Prior art keywords
radiation
distribution
dose rate
radiation dose
rate distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23846392A
Other languages
Japanese (ja)
Inventor
Masahiro Kondo
正弘 近藤
Tatsuo Izumida
龍男 泉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23846392A priority Critical patent/JPH0688873A/en
Publication of JPH0688873A publication Critical patent/JPH0688873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To quickly measure and evaluate the distribution of radiation dosage rates in a working space which is in a radiation environment and in which a radiation source changes. CONSTITUTION:By installing radiation detectors 2 around equipment 7 which is a radiation source, the radiation distribution caused by the equipment 7 is measured with the detectors 2. The radiation distribution and the data regarding the structure, material, etc., of the detectors 2 installed to the location for evaluating the distribution of radiation dosage rates are read out from a storage device 5 and, even when the constitution of the equipment 7 changes due to demolition, etc., a signal processor 4 calculates and evaluates the distribution of radiation dosage rates and outputs the calculated and evaluates results through an output device 6 in the form of an output diagram 601. Therefore, the distribution of radiation dosage rates can be evaluated with high accuracy, since the configuration in the working space can be taken into account at the time of measuring and evaluating the radiation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力施設の放射線管
理を行う放射線線量率分布評価方法及びその装置に係
り、特に、原子力施設の解体の進行に伴う放射線線量率
分布の変化に対しても迅速,高精度に評価することがで
きる放射線線量率分布評価方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation dose rate distribution evaluation method and apparatus for radiation control of a nuclear facility, and particularly to a change in the radiation dose rate distribution due to the progress of dismantling of a nuclear facility. The present invention relates to a radiation dose rate distribution evaluation method and apparatus capable of performing quick and highly accurate evaluation.

【0002】[0002]

【従来の技術】例えば、原子力発電所においては、廃炉
解体に伴って、原子炉機器の除染,建屋コンクリート剥
離等の作業が発生する。これらの作業の大半が放射線環
境場であり、作業者の放射線被曝量と廃炉解体費用との
最適化を図った作業工程を立案する必要がある。この作
業工程を立案するためには、作業場所の正確な放射線線
量率分布を迅速かつ高精度に得る必要がある。
2. Description of the Related Art For example, in a nuclear power plant, work such as decontamination of nuclear reactor equipment and demolition of building concrete occurs with the dismantling of a decommissioned reactor. Most of these operations are in a radiation environment field, and it is necessary to plan a work process that optimizes the radiation exposure of workers and the cost of dismantling the decommissioning furnace. In order to plan this work process, it is necessary to obtain an accurate radiation dose rate distribution at the work place quickly and with high accuracy.

【0003】従来、原子力施設作業場所の放射線線量率
分布を測定する装置として、例えば特開昭60-165570号
公報記載のものがある。この従来技術では、測定対象評
価点に於ける放射線源強度と放射線源に起因する放射線
線量率との相関関係を予め求めておき、放射線線量率測
定値から放射線源強度算出し、この算出結果と遮蔽デー
タに基づいて放射線線量率分布を評価している。
Conventionally, as a device for measuring the radiation dose rate distribution at the work site of a nuclear facility, there is, for example, the one described in JP-A-60-165570. In this conventional technique, the correlation between the radiation source intensity at the measurement target evaluation point and the radiation dose rate caused by the radiation source is obtained in advance, the radiation source intensity is calculated from the radiation dose rate measurement value, and this calculation result The radiation dose rate distribution is evaluated based on the shielding data.

【0004】[0004]

【発明が解決しようとする課題】上述した従来技術で
は、放射線源強度と放射線源に起因する放射線線量率と
の相関関係を予め求めておくことで、放射線線量率分布
を求めている。これは、放射線源の機器構成が変化しな
いことを前提としている。つまり、原子力発電所の定期
検査のような場合を前提としており、放射線線量率分布
の変化の少ない作業場所の評価に適している。従って、
廃炉解体のように、解体の進行に伴って、放射線源とな
る機器の構成が激しく変化し放射線の減衰・散乱量が変
動する場所に適用しても、正確な放射線線量率分布を得
ることができないという問題がある。また、放射線検出
器に放射線線量率計を用いているため、機器内の放射線
源の核種強度比率が変化した場合、放射線源強度と放射
線源に起因する放射線線量率との相関関係が変化してし
まうという問題もある。即ち、予め求めておいた相関関
係と異なるため、正確な放射線線量率分布を求めること
ができない。
In the above-mentioned conventional technique, the radiation dose rate distribution is obtained by previously obtaining the correlation between the radiation source intensity and the radiation dose rate caused by the radiation source. This presupposes that the equipment configuration of the radiation source does not change. In other words, it is premised on the case of periodic inspections of nuclear power plants, and is suitable for evaluating work sites where the radiation dose rate distribution changes little. Therefore,
An accurate radiation dose rate distribution can be obtained even when applied to a location where the composition of the radiation source changes drastically with the progress of demolition and the attenuation / scattering amount of radiation fluctuates as the demolition progresses. There is a problem that you can not. Also, since a radiation dose rate meter is used for the radiation detector, when the nuclide intensity ratio of the radiation source in the equipment changes, the correlation between the radiation source intensity and the radiation dose rate due to the radiation source changes. Another problem is that That is, since the correlation is different from the correlation obtained in advance, an accurate radiation dose rate distribution cannot be obtained.

【0005】本発明の第1の目的は、原子力施設の廃炉
解体を伴って、放射線源を含有している機器等の構成す
る作業場所の放射線線量率分布を迅速に測定・評価で
き、且つ、機器内の放射線源の核種の強度比率が変化し
た場合でも正確な放射線線量率分布を求めることができ
る放射線線量率分布評価方法及びその装置を提供するこ
とにある。
A first object of the present invention is to rapidly measure and evaluate the radiation dose rate distribution of a work place that constitutes equipment including a radiation source, along with the decommissioning of a nuclear power plant decommissioning furnace, and The object of the present invention is to provide a radiation dose rate distribution evaluation method and apparatus capable of obtaining an accurate radiation dose rate distribution even when the intensity ratio of the nuclide of the radiation source in the device changes.

【0006】本発明の第2の目的は、上記放射線線量率
分布から廃炉解体作業者の被曝量と解体費用の最適化を
図った廃炉解体作業工程の立案・支援評価方法及びその
装置を提供することにある。
A second object of the present invention is to provide a method and apparatus for planning / supporting a decommissioning work process, which optimizes the radiation dose and demolition cost of a demolition workman from the radiation dose rate distribution. To provide.

【0007】[0007]

【課題を解決するための手段】上記第1の目的は、機器
内の核種インベントリを第1手段でモニタし、該機器の
線量率を第2手段でモニタし、これらのモニタ結果と、
原子力施設の機器等の構造,形状,材質などのプラント
情報を格納したデータベース(第3手段)から、機器構
成変化毎に放射線線量率分布を求めることで、達成され
る。
The first object is to monitor the nuclide inventory in the equipment by the first means, monitor the dose rate of the equipment by the second means, and monitor these results.
This is achieved by obtaining the radiation dose rate distribution for each equipment configuration change from a database (third means) that stores plant information such as the structure, shape, and material of the equipment of the nuclear facility.

【0008】上記第2の目的は、第1の目的を達成する
発明で得た結果である放射線線量率分布と、原子力施設
の廃炉解体に於ける作業内容のデータベースを有する第
4手段により、作業工程の立案,支援を行うことで、達
成される。
The above-mentioned second object is achieved by the fourth means having a database of the radiation dose rate distribution, which is the result obtained by the invention for achieving the first object, and the work contents in decommissioning the decommissioning nuclear facility. This is achieved by planning and supporting the work process.

【0009】[0009]

【作用】機器による放射線の遮蔽・散乱量は該機器の構
造,材質等の密度分布と機器内に存在する核種の放射能
強度及び分布によって変化する。このため、放射線線量
率分布を正確に求めるために、機器内に存在する放射能
強度及び核種を把握し、且つ、機器の構造、材質等によ
る放射線の遮蔽・散乱量を放射能核種毎に同定する必要
がある。
The amount of radiation shielding / scattering by a device changes depending on the density distribution of the structure and material of the device and the radioactivity intensity and distribution of nuclides present in the device. Therefore, in order to accurately obtain the radiation dose rate distribution, the radioactivity intensity and nuclides existing in the equipment are grasped, and the radiation shielding / scattering amount due to the equipment structure and material is identified for each radioactivity nuclide. There is a need to.

【0010】本発明では、第1手段で、放射能の種別と
強度を同時に求める。即ち、放射線エネルギ分布を測定
する。例えば、第1手段を機器の周囲に配置する。現
在、原子力施設の設計等は計算機で実施されており、原
子力施設内に設置されている機器の構造,材質等の各種
情報は、計算機内にデータベース化されている。そこ
で、このデータベース(第3手段)を利用して機器構成
変化毎に放射線線量率分布を求める。
In the present invention, the first means simultaneously determines the type and intensity of radioactivity. That is, the radiation energy distribution is measured. For example, the first means is arranged around the device. Currently, the design of nuclear facilities is performed by a computer, and various information such as the structure and material of the equipment installed in the nuclear facility is stored in the computer as a database. Therefore, using this database (third means), the radiation dose rate distribution is obtained for each device configuration change.

【0011】機器内に存在する放射能強度を核種毎に測
定し、その核種に対する該機器の放射線吸収分布に基づ
く応答関数Rijを該機器等の形状,構造,材質などのプ
ラント情報から求め、さらに、測定して得た核種の放射
線計数率分布Ciから、次式5
The radioactivity intensity existing in the equipment is measured for each nuclide, and a response function Rij based on the radiation absorption distribution of the equipment with respect to the nuclide is obtained from plant information such as the shape, structure and material of the equipment. From the radiation count rate distribution Ci of the nuclide obtained by measurement,

【0012】[0012]

【数5】 [Equation 5]

【0013】で機器内に存在する放射能分布Ajを評価
する。また、放射線線量率分布Diは、該放射能分布Aj
と該応答関数Rijから測定効率に関する情報を取り除い
た応答関数R’ij及び線量率変換係数αを用いて、次式
The radioactivity distribution Aj existing in the equipment is evaluated by. In addition, the radiation dose rate distribution Di is the radioactivity distribution Aj
And the response function R′ij obtained by removing the information on the measurement efficiency from the response function Rij and the dose rate conversion coefficient α,

【0014】[0014]

【数6】 [Equation 6]

【0015】で求めことができる。It can be obtained by

【0016】機器内の核種インベントリを測定する第1
手段は、一般に設備が大がかりであり、これを原子力施
設の機器の周囲に全て配置すると、設備費用および設置
時間が大幅にアップする。この問題点を回避するため
に、該機器の周囲に、線量率を測定する第2手段を設置
する。この第2手段は放射線のエネルギを識別測定する
ことは不可能であるが、第1手段と第2手段の間には、
次式7の関係が成り立つ。
The first to measure the nuclide inventory in the equipment
The means is generally large-scale equipment, and if all of the means are arranged around the equipment of the nuclear facility, the equipment cost and installation time increase significantly. In order to avoid this problem, a second means for measuring the dose rate is installed around the device. This second means is not capable of discriminating and measuring the energy of radiation, but between the first and second means,
The following expression 7 holds.

【0017】[0017]

【数7】 [Equation 7]

【0018】また、一系統の機器内の核種強度比率はほ
ぼ等しいと云うことを用いて、第2手段で得た結果から
第1手段で得る放射能の種別と強度を評価することが可
能となる。即ち、原子力施設の各系統の機器の周囲に配
置する第1手段の数を低減することができ、簡易な装置
構成で第1の目的が達成できる。
Further, it is possible to evaluate the type and intensity of radioactivity obtained by the first means from the result obtained by the second means by using the fact that the nuclide intensity ratios in the equipment of one system are almost equal. Become. That is, the number of the first means arranged around the equipment of each system of the nuclear facility can be reduced, and the first object can be achieved with a simple device configuration.

【0019】次に、応答関数Rijの求め方を述べる。放
射線には、α,β,γ,X線及び中性子線がある。一般
的に非破壊で測定可能なものはγ線及びX線である。こ
のγ線に於ける応答関数Rijを評価する方法として、例
えば、機器群をいくつかの微小体積に分割し、その各々
を点線源とみなして、放射能の減衰を指数減衰及び距離
の逆二乗減衰で評価し、また、散乱量をビルドアップフ
ァクタで近似する方法(点減衰核積分法)がある。体積
dvの微小要素からエネルギEのγ線が放出されている
とき、任意の点に於けるdvからの応答関数dRを次式
8で評価する。
Next, how to obtain the response function Rij will be described. Radiation includes α, β, γ, X-rays and neutron rays. Generally, non-destructive and measurable are γ rays and X rays. As a method of evaluating the response function Rij in this γ-ray, for example, the equipment group is divided into several minute volumes, each of which is regarded as a point source, and the attenuation of the radioactivity is exponential attenuation and the inverse square of the distance. There is a method of evaluating by attenuation and approximating the amount of scattering by a build-up factor (point attenuation nuclear integration method). When γ-rays of energy E are emitted from the minute element of volume dv, the response function dR from dv at an arbitrary point is evaluated by the following expression 8.

【0020】[0020]

【数8】 [Equation 8]

【0021】これを全微小要素に対して積分すれば、応
答関数Rijを求めることができる。以上のことから、簡
易な装置構成で第1の目的が達成可能となる。
The response function Rij can be obtained by integrating this with respect to all the minute elements. From the above, the first object can be achieved with a simple device configuration.

【0022】次に、第4手段について述べる。原子力施
設での作業者の体外被曝は、作業場所の放射線線量率分
布と作業時間と作業内容及び作業方法で評価することが
できる。また、原子力施設の作業は被曝量及び作業時間
が法律による規制を受けるため、作業者の被曝量が予め
求まれば、作業費用を踏まえた最適化した作業工程を立
案・支援することが可能となる。従って、作業内容、作
業方法等の放射線作業に関するデータベースと、前記第
1〜第3手段で得る原子力施設の作業場所の放射線線量
率分布データとをリンクし、線量率と被曝量と作業費用
の最適化問題を解くことで、この作業工程の立案・支援
することができる。
Next, the fourth means will be described. The external exposure of workers at nuclear facilities can be evaluated by the radiation dose rate distribution at the work site, work time, work content, and work method. In addition, since the radiation dose and working time of nuclear facilities are regulated by law, it is possible to plan and support an optimized work process based on work costs if the radiation dose of workers is obtained in advance. Become. Therefore, by linking a database related to radiation work such as work content and work method with the radiation dose rate distribution data of the work place of the nuclear facility obtained by the first to third means, the dose rate, exposure dose, and work cost are optimized. By solving the optimization problem, it is possible to plan and support this work process.

【0023】[0023]

【実施例】以下、本発明の一実施例を図1〜図3を参照
して説明する。先ず、最初に本発明の一実施例に係る放
射線線量率分布測定(評価)装置の全体構成とその動作
について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. First, the overall configuration and operation of a radiation dose rate distribution measuring (evaluating) apparatus according to an embodiment of the present invention will be described.

【0024】図1は、放射線線量率分布測定(評価)装
置の概念図である。原子力施設に於ける放射線線量率分
布評価場所1内の放射線線量率分布の影響因子の一つで
ある放射線源となりうる機器7の周囲に、放射線検出器
2(●で示す。)を、2次元的に複数個(図示の例では
8個)配置する。放射線検出器2をこのように機器7の
周囲に複数個配置し、放射線源となる機器7から放出さ
れる放射線を検出する。この放射線検出器2で検出した
放射線信号は、信号伝送器3にて信号処理装置4まで伝
送される。
FIG. 1 is a conceptual diagram of a radiation dose rate distribution measuring (evaluating) device. A radiation detector 2 (shown by ●) is two-dimensionally arranged around a device 7 which can be a radiation source which is one of the influencing factors of the radiation dose rate distribution in the radiation dose rate distribution evaluation place 1 in a nuclear facility. A plurality (eight in the illustrated example) are arranged. A plurality of radiation detectors 2 are thus arranged around the device 7 to detect the radiation emitted from the device 7 which is a radiation source. The radiation signal detected by the radiation detector 2 is transmitted to the signal processing device 4 by the signal transmitter 3.

【0025】信号処理装置4は、機器7に存在する放射
能強度及び核種を評価・同定する他、信号処理装置4に
接続されている磁気記憶装置5から、原子力施設の放射
線線量率分布評価場所1内に存在する機器7の構造,材
質,配置等のデータを呼出し、機器7内での放射線の減
衰・散乱量を核種毎に評価し、先に求めた機器7に存在
する核種毎の放射能強度と合わせて演算評価すること
で、放射線線量率分布評価場所1の放射線線量率分布を
求める。
The signal processing device 4 evaluates and identifies the radioactivity intensity and the nuclide existing in the equipment 7, and from the magnetic storage device 5 connected to the signal processing device 4, the radiation dose rate distribution evaluation place of the nuclear facility. The data of the structure, material, arrangement, etc. of the equipment 7 existing in 1 is called, the attenuation / scattering amount of radiation in the equipment 7 is evaluated for each nuclide, and the radiation for each nuclide existing in the equipment 7 obtained previously is evaluated. The radiation dose rate distribution at the radiation dose rate distribution evaluation place 1 is obtained by performing a calculation evaluation together with the activity intensity.

【0026】なお、この演算処理方法については後述す
る。ここで求めた放射線線量率分布は、強度別に色彩化
され、線量率分布評価場所1内の構成機器の断面図上に
オーバーライトし、出力装置6によって画面出力または
図面出力される。出力装置6の出力例601を図1に合
わせて示す。
The arithmetic processing method will be described later. The radiation dose rate distribution obtained here is colorized according to intensity, overwritten on the cross-sectional view of the constituent devices in the dose rate distribution evaluation place 1, and output by the output device 6 on a screen or as a drawing. An output example 601 of the output device 6 is shown together with FIG.

【0027】一般に放射線線量率分布は、放射線源の放
出するγ線エネルギとその線源強度と線源の分布形状、
放射線源と放射線検出器間の相互作用(放射線の遮蔽、
減衰、散乱)から決定される。これら放射線線量率を決
定する因子の測定方法及び評価方法を図2と図3を用い
て説明する。
In general, the radiation dose rate distribution is defined as the γ-ray energy emitted by the radiation source, the intensity of the radiation source and the distribution shape of the radiation source,
Interaction between radiation source and radiation detector (radiation shielding,
Attenuation, scattering). A method of measuring and a method of evaluating the factors that determine the radiation dose rate will be described with reference to FIGS. 2 and 3.

【0028】図2は、本実施例に係る放射線線量率分布
測定(評価)装置のブロック図(図1に示す信号処理装
置の詳細構成図)であり、信号処理装置4は、放射線検
出信号を処理する測定器8,9と、測定結果を演算処理
する演算処理部4aからなる。
FIG. 2 is a block diagram of the radiation dose rate distribution measuring (evaluating) apparatus according to this embodiment (detailed configuration diagram of the signal processing apparatus shown in FIG. 1). The signal processing apparatus 4 outputs the radiation detection signal. The measuring instruments 8 and 9 for processing and the arithmetic processing unit 4a for arithmetically processing the measurement result.

【0029】放射線線量率分布評価場所1内の放射線線
量率分布に影響を与える機器7の内部に、図示されてい
ない放射性物質が存在する。この放射性物質は、放射線
を放出している。機器7の周囲に配置された放射線検出
器201,202でこの機器7を透過してくる放射線を
測定する。なお、機器7のような物質を透過することが
できる放射線はγ線である。
The radiation dose rate distribution evaluation place 1 has a radioactive substance (not shown) inside the device 7 which affects the radiation dose rate distribution. This radioactive material emits radiation. Radiation detectors 201 and 202 arranged around the device 7 measure the radiation transmitted through the device 7. The radiation that can penetrate a substance such as the device 7 is γ-ray.

【0030】放射線検出器201は、放射能の種別と強
度を同時に測定することができるものであり、NaI
(Tl)シンチレーション検出器、高純度Ge半導体検
出器等を用いることができる。一方、放射線検出器20
2は線量率を測定するものであり、電離箱、PN接合型
Si半導体検出器等を用いることができる。検出器20
1には、測定領域以外からの放射線、つまり、妨害とな
る放射線(バックグランド放射線)を削除するコリメー
タ10が配置されている。なお、検出器202にもバッ
クグランド放射線を削除するため、図示は省力したが、
同様のコリメータが具備されている。
The radiation detector 201 is capable of simultaneously measuring the type and intensity of radioactivity, and NaI
A (Tl) scintillation detector, a high-purity Ge semiconductor detector, or the like can be used. On the other hand, the radiation detector 20
2 is for measuring the dose rate, and an ionization chamber, a PN junction type Si semiconductor detector or the like can be used. Detector 20
A collimator 10 that removes radiation from outside the measurement region, that is, radiation that interferes (background radiation) is disposed at 1. Although the background radiation is deleted also in the detector 202, although illustration is omitted,
A similar collimator is provided.

【0031】機器7から放出したγ線は放射線検出器2
01で検出され、その検出信号が図1に示す信号伝送器
3によって、γ線エネルギ分布測定器8に入力され、γ
線エネルギ分布測定器8は、機器7に於ける放射線検出
器201が見込む領域のγ線エネルギ分布を得る。この
γ線エネルギ分布とは、γ線エネルギに対する計数値分
布のことであり、γ線放出核種は核種毎に決まったエネ
ルギのγ線を放出するため、このγ線エネルギ分布を解
析することで核種を同定することができる。
The γ-ray emitted from the device 7 is the radiation detector 2
01, the detection signal is input to the γ-ray energy distribution measuring device 8 by the signal transmitter 3 shown in FIG.
The line energy distribution measuring device 8 obtains the γ-ray energy distribution in the region where the radiation detector 201 in the device 7 is expected. This γ-ray energy distribution is a count value distribution for γ-ray energy, and γ-ray emitting nuclides emit γ-rays of a fixed energy for each nuclide, so by analyzing this γ-ray energy distribution Can be identified.

【0032】このγ線エネルギ分布の解析方法の一例を
以下に示す。γ線エネルギ分布測定器8内にはγ線エネ
ルギに対応したデータ格納番地があり、該データ格納番
地に対応するγ線エネルギの放射線量(計数値)が格納
されている。即ち、該データ格納番地の内容である計数
値の数が統計的変動に対して優位であれば、そのデータ
格納番地のγ線エネルギが測定されていることになる。
そこで、放射線源が放出するγ線エネルギのテーブルを
線源毎に用意しておき、γ線テーブル内容に対するデー
タ格納番地の内容の計数値の有無を判別することで核種
を同定でき、且つ、その計数値より強度が分かる。
An example of the method of analyzing the γ-ray energy distribution will be shown below. The γ-ray energy distribution measuring device 8 has a data storage address corresponding to the γ-ray energy, and the radiation dose (count value) of the γ-ray energy corresponding to the data storage address is stored. That is, if the number of count values, which is the content of the data storage address, is superior to the statistical fluctuation, it means that the γ-ray energy of the data storage address is measured.
Therefore, a table of the γ-ray energy emitted by the radiation source is prepared for each radiation source, and the nuclide can be identified by determining the presence or absence of the count value of the contents of the data storage address with respect to the contents of the γ-ray table. The intensity can be known from the count value.

【0033】また、機器7から放出したγ線は放射線検
出器202でも検出される。その検出信号が、同様に信
号伝送器3によって、γ線グロス計数値測定器9に入力
され、γ線グロス計数値測定器9は、機器7に於ける放
射線検出器202が見込む領域のγ線グロス計数値を得
る。このγ線グロス計数値に放射線検出202の線量率
変換係数を乗じて機器7の表面線量率を求めることがで
きる。また、放射線検出器201と放射線検出器202
の間に次の関係式9が成立する。
The γ rays emitted from the device 7 are also detected by the radiation detector 202. The detection signal is similarly input to the γ-ray gross count value measuring device 9 by the signal transmitter 3, and the γ-ray gross count value measuring device 9 detects the γ-rays in the region expected by the radiation detector 202 in the device 7. Get the gross count. The surface dose rate of the device 7 can be obtained by multiplying the gamma ray gross count value by the dose rate conversion coefficient of the radiation detection 202. Further, the radiation detector 201 and the radiation detector 202
The following relational expression 9 is established during the period.

【0034】[0034]

【数9】 [Equation 9]

【0035】上記の関係が成立する他、一系統の機器内
の核種強度比率はほぼ等しいと想定される。つまり、一
系統の機器において、異なる測定場所でも該機器の構造
・材質が同じであれば、計測される放射能分布の形状は
相似になる。このことは、線量率に応じて放射能分布の
高さが全体的に変化するだけであり、放射線検出器20
2で得た結果から、放射線検出器201で得る放射能の
種別と強度を評価することが可能となる。即ち、高価で
あり、且つ、大規模計測器となる放射線検出器201の
設置台数を低減でき、簡易なシステム構成となる。
In addition to the above relationship being established, it is assumed that the nuclide intensity ratios in the equipment of one system are almost equal. That is, if the structure and material of the equipment of one system are the same at different measurement locations, the shapes of the measured radioactivity distributions will be similar. This means that the height of the radioactivity distribution is entirely changed according to the dose rate, and the radiation detector 20
From the result obtained in 2, it is possible to evaluate the type and intensity of radioactivity obtained by the radiation detector 201. That is, the number of the radiation detectors 201, which are expensive and large-scale measuring instruments, can be reduced, and the system configuration becomes simple.

【0036】機器7に存在する放射性物質の形状は、上
記放射線測定に於ける誤差要因となる。しかし、原子力
施設の機器7は円筒の配管群が圧倒的に多く、放射性物
質のほとんどが機器7の内表面に面状に分布し、且つ、
放射線検出器201,202が見込む微小領域は均一と
仮定できるので、この放射性物質の形状による誤差は無
視できる。
The shape of the radioactive substance existing in the device 7 causes an error in the above radiation measurement. However, the equipment 7 of the nuclear facility has an overwhelmingly large number of cylindrical pipe groups, most of the radioactive materials are distributed in a plane on the inner surface of the equipment 7, and
Since it can be assumed that the minute regions expected by the radiation detectors 201 and 202 are uniform, the error due to the shape of the radioactive substance can be ignored.

【0037】以上の方法で得た、γ線エネルギ分布測定
器8及びγ線グロス計数値測定器9の出力情報を演算処
理部4aに引き渡すと、演算処理部4aは、機器7内の
放射能核種別強度及び表面線量率データと、信号処理装
置4に接続された磁気記憶装置5に有している原子力施
設の機器7等のプラント情報とから、画像処理して放射
線線量率分布評価場所1内の機器構成の断面図を作成す
るほか、後述する方法で演算処理することで、放射線線
量率分布評価場所1内の放射線線量率分布を求め、該機
器構成断面図上に放射線線量率分布をオーバーライト
し、その結果を出力装置6から出力する。
When the output information of the γ-ray energy distribution measuring instrument 8 and the γ-ray gross count measuring instrument 9 obtained by the above method is passed to the arithmetic processing section 4a, the arithmetic processing section 4a will detect the radioactivity in the equipment 7. Radiation dose rate distribution evaluation place 1 by image processing from nuclear type intensity and surface dose rate data and plant information such as equipment 7 of a nuclear facility held in the magnetic storage device 5 connected to the signal processing device 4. In addition to creating a cross-sectional view of the device configuration inside, the radiation dose rate distribution in the radiation dose rate distribution evaluation location 1 is obtained by performing arithmetic processing using the method described below, and the radiation dose rate distribution is displayed on the cross-sectional view of the device configuration. Overwriting is performed, and the result is output from the output device 6.

【0038】引き続き、図3を用いて放射線線量率分布
及び作業工程の評価手法について説明する。図3は評価
手順を示すフローチャートである。機器7内部に存在す
る放射性物質の核種は、上述したγ線エネルギ分布測定
器8の核種テーブルを参照する方法で知ることができ
る。しかし、機器7の内部に存在する放射能量(強度)
を核種別に定量するためには、機器7の構造及び材質を
知らなければならない。何故ならば、γ線は機器7を透
過する際に、機器7の構造及び材質により透過量と散乱
量が変化するためである。この透過量と散乱量を正確に
把握するために、本実施例では、放射線検出器201の
計数効率と幾何学的効率と核種が放出するγ線エネルギ
と機器7の構造・材質によって定まる量である応答関数
Rijを評価する。これは、機器7の構造・材質を、設計
図面等のデータベース(磁気記憶装置5)より引き出
し、演算処理部4aで計算することにより行う。この応
答関数Rijの求め方について以下に記述する。
Next, the method of evaluating the radiation dose rate distribution and the work process will be described with reference to FIG. FIG. 3 is a flowchart showing the evaluation procedure. The nuclide of the radioactive substance existing inside the device 7 can be known by the method of referring to the nuclide table of the γ-ray energy distribution measuring instrument 8 described above. However, the amount of radioactivity (intensity) existing inside the device 7
In order to quantify the number of nuclei, it is necessary to know the structure and material of the device 7. This is because when the γ-ray passes through the device 7, the amount of transmission and the amount of scattering change depending on the structure and material of the device 7. In order to accurately grasp the transmission amount and the scattering amount, in this embodiment, the amount determined by the counting efficiency and geometric efficiency of the radiation detector 201, the γ-ray energy emitted by the nuclide, and the structure and material of the device 7 is used. Evaluate a certain response function Rij. This is performed by extracting the structure / material of the device 7 from a database (magnetic storage device 5) of design drawings and the like and calculating it by the arithmetic processing unit 4a. How to obtain the response function Rij will be described below.

【0039】放射線には、α,β,γ,X線及び中性子
線がある。一般的に非破壊で測定可能なものはγ線及び
X線である。このγ線に於ける応答関数Rijを評価する
方法として、例えば、機器群をいくつかの微小体積に分
割し、その各々を点線源とみなして放射能の減衰を指数
減衰及び距離の逆二乗減衰で評価し、また、散乱量をビ
ルドアップファクターで近似する方法(点減衰核積分
法)がある。体積dvの微小要素からエネルギEのγ線
が放出されているとき、任意の点に於けるdvからの応
答関数dRを次式10で評価する。
Radiation includes α, β, γ, X-rays and neutron rays. Generally, non-destructive and measurable are γ rays and X rays. As a method of evaluating the response function Rij in this γ-ray, for example, the equipment group is divided into several minute volumes, each of which is regarded as a point source, and the attenuation of the radioactivity is exponential attenuation and the inverse square attenuation of distance. There is also a method (point-decay kernel integral method) that evaluates with and approximates the amount of scattering with a build-up factor. When γ-rays of energy E are emitted from the minute element of volume dv, the response function dR from dv at an arbitrary point is evaluated by the following expression 10.

【0040】[0040]

【数10】 [Equation 10]

【0041】これを全微小要素に対して積分すれば、応
答関数Rijを求めることができる。即ち、機器7群の構
造、材質情報を磁気記憶装置5から呼出し、該機器7群
をメッシュ分割し各メッシュに対して上記演算処理を施
すことになる(図3のステップ1)。また、実際の計算
では、γ線が透過する空間を分割(i,j)を行い、さ
らに、線源を多数の線源要素に分割し、γ線エネルギの
離散化を実施する必要がある。
The response function Rij can be obtained by integrating this with respect to all the minute elements. That is, the structure and material information of the device 7 group is called from the magnetic storage device 5, the device 7 group is divided into meshes, and the above-mentioned arithmetic processing is performed on each mesh (step 1 in FIG. 3). Further, in the actual calculation, it is necessary to divide (i, j) the space through which γ-rays are transmitted, further divide the radiation source into a large number of radiation source elements, and implement the discretization of γ-ray energy.

【0042】従って、機器7から放出されるγ線を機器
7の周囲で測定し、γ線エネルギ分布測定器8でγ線エ
ネルギ(E)とγ線(E)の計数値を得、γ線(E)の
計数値を測定時間で除することで、γ線(E)の計数率
分布Ciを求めると(ステップ2)、次式11
Therefore, the γ-rays emitted from the equipment 7 are measured around the equipment 7, and the γ-ray energy distribution measuring device 8 obtains the count values of the γ-ray energy (E) and the γ-rays (E) to obtain the γ-rays. By dividing the count value of (E) by the measurement time to obtain the count rate distribution Ci of γ-rays (E) (step 2), the following equation 11

【0043】[0043]

【数11】 [Equation 11]

【0044】の関係があり、この式11の逆行列演算を
施すことにより、機器7内の放射能分布Ajを求めるこ
とが可能となる(ステップ3)。
There is a relation of (2), and by performing the inverse matrix calculation of this equation 11, the radioactivity distribution Aj in the equipment 7 can be obtained (step 3).

【0045】また、放射線線量率分布評価場所1内の放
射線線量率分布Diは、機器7に存在する放射能分布Aj
によって決定することから、上記演算手法と同様に放射
線線量率分布Diは、次式12で求めることができる。
The radiation dose rate distribution Di in the radiation dose rate distribution evaluation place 1 is the activity distribution Aj existing in the device 7.
Therefore, the radiation dose rate distribution Di can be obtained by the following equation 12 as in the above calculation method.

【0046】[0046]

【数12】 [Equation 12]

【0047】前述した式5の応答関数Rijと比較して、
式6に於ける応答関数R’ijの相違点は、放射線測定上
の因子である幾何学的効率等を含む放射線検出器の測定
効率が含まれていないだけである。この測定効率の影響
は、使用する放射線検出器の特性とコリメータ10の形
状と機器7に於ける放射線検出器2の設置状態で評価で
きる。これら因子は放射線測定上のハード的な固有値で
あるため、測定効率は予め求めておくことができる。以
上のことから、機器7の放射能強度を測定すれば放射線
線量率分布を求めることができる(ステップ4)。
Compared with the response function Rij of the above equation 5,
The difference of the response function R'ij in Expression 6 is only that the measurement efficiency of the radiation detector including the geometric efficiency, which is a factor in radiation measurement, is not included. The influence of this measurement efficiency can be evaluated by the characteristics of the radiation detector used, the shape of the collimator 10 and the installation state of the radiation detector 2 in the device 7. Since these factors are eigenvalues in terms of hardware in radiation measurement, the measurement efficiency can be obtained in advance. From the above, the radiation dose rate distribution can be obtained by measuring the radioactivity intensity of the device 7 (step 4).

【0048】次に、作業工程の評価方法について記述す
る。作業者の体外被曝は、吸収線量,線質係数及び修正
係数の積で定義される。γ線において、線質係数及び修
正係数は一定値であることから、吸収線量を評価すれ
ば、作業者の被曝量を求めることができる。さらに、こ
の吸収線量は近似的に作業場所の放射線線量率とその場
所での作業時間の積で表わせる。即ち、原子力施設内で
作業する作業者の被曝量は、作業場所の放射線線量率と
作業時間と作業内容、及び作業方法で求めることができ
る。また、原子力施設内の作業は作業時間及び被曝量が
法律により規制されており、例えば、作業時間は10時
間以内、被曝量は、眼の水晶体が0.15Sv/年、水
晶体以外の組織では0.5Sv/年などである。従っ
て、作業者の被曝量が予め推定できれば、作業費用等を
含めた最適化した作業工程を立案することが可能とな
る。以下、その内容を記す。
Next, a method of evaluating the work process will be described. The external exposure of workers is defined as the product of absorbed dose, quality factor and correction factor. Since the quality factor and the correction factor for γ-rays are constant, it is possible to obtain the dose of the worker by evaluating the absorbed dose. Furthermore, this absorbed dose can be approximately represented by the product of the radiation dose rate at the work place and the work time at that place. That is, the radiation dose of a worker who works in a nuclear facility can be determined by the radiation dose rate of the work place, the work time, the work content, and the work method. Further, the work time and exposure dose of the work in the nuclear facility are regulated by law. For example, the work time is within 10 hours, the exposure dose is 0.15 Sv / year for the eye lens, and 0 for tissues other than the lens. For example, 5 Sv / year. Therefore, if the exposure dose of the worker can be estimated in advance, it is possible to plan an optimized work process including work cost and the like. The contents will be described below.

【0049】原子力発電所の場合、一定期間毎に機器の
点検(定期検査)を実施しており、その定期検査に関す
る作業のデータベース(作業内容、作業方法、作業時間
等)を有している。つまり、作業内容を決定さえすれ
ば、作業場所,作業時間等を求めることは意図も簡単で
ある。ここで、上述した方法で得た放射線線量率分布デ
ータを作業のデータベースとリンクさせることで、作業
者の被曝量を評価できる。以上のことから、被曝量と期
間及び費用との最適化の問題を信号処理装置で解くこと
により作業工程の最適化が図れる。原子力施設の廃炉解
体の作業方法は定期検査の工法の延長上であり、大半の
作業データベースが利用可能と想定されるため、廃炉解
体時でも作業工程の最適化が図れる(図3のステップ
5)。
In the case of a nuclear power plant, the equipment is inspected (periodic inspection) at regular intervals, and it has a database of the operations related to the periodic inspection (work contents, work method, work time, etc.). That is, as long as the work content is determined, it is easy to obtain the work place, work time, and the like. Here, by linking the radiation dose rate distribution data obtained by the above-mentioned method with the work database, the exposure dose of the worker can be evaluated. From the above, the work process can be optimized by solving the problem of optimization of the exposure dose, period and cost with the signal processing device. The work method for dismantling the decommissioning facility at a nuclear facility is an extension of the method for regular inspections, and it is assumed that most work databases are available, so the work process can be optimized even when dismantling the decommissioning plant (steps in Fig. 3). 5).

【0050】以上のように、本発明は簡易な放射能測定
装置と計算機等の信号処理装置で構成されるため、原子
力施設の廃炉解体に伴い、放射線線量率分布評価場所1
内の機器7群の構成が変化しても、その機器7群の変化
情報を信号処理装置4の磁気記憶装置5のプラントのデ
ータベースにキーボード等の入力手段でインプットし、
該データベースを更新することで、機器構成が変化して
いく原子力施設の廃炉解体時でも、容易に且つ精度良く
対応できる。また、放射線検出器2で連続的に放射線を
モニタし、且つ、毎回、応答関数Rijを評価するため、
放射線線量率分布を短時間でリフレッシュ可能であり、
原子力施設の廃炉解体のように放射線線量率の変化の激
しい場合でも、作業工程の支援、並びに、訂正が迅速に
できる。
As described above, since the present invention comprises a simple radioactivity measuring device and a signal processing device such as a computer, the radiation dose rate distribution evaluation place 1
Even if the configuration of the device 7 group in the inside changes, the change information of the device 7 group is input to the database of the plant of the magnetic storage device 5 of the signal processing device 4 by an input means such as a keyboard,
By updating the database, it is possible to easily and accurately cope with the decommissioning of a nuclear power facility whose equipment configuration is changing. Further, since the radiation detector 2 continuously monitors the radiation and the response function Rij is evaluated every time,
The radiation dose rate distribution can be refreshed in a short time,
Even when the radiation dose rate changes drastically like the decommissioning of a nuclear facility, the work process can be supported and corrected quickly.

【0051】さらに、原子力施設を廃炉解体する場合、
機器内に付着している放射性物質を除染する。この除染
作業においては、放射性廃棄物の発生量及び廃棄物の処
理処分費用の低減を図るため各種の除染手法を用いる。
このため除染効果を正確に評価する必要がある。そこ
で、本発明で、機器7が放出するγ線を放射線検出器2
で測定し、一定時間間隔、または除染作業の開始前と終
了後に機器7に存在する放射能強度及び核種を信号処理
装置4で求め、その変化率を評価することで除染効果が
正確に得られる。この除染効果が評価できると、以降の
除染に使用する除染液、除染時間等が推定でき除染作業
の計画作成と云う二次的な効果を得ることができる。
Furthermore, when dismantling a nuclear facility,
Decontaminate the radioactive substances adhering to the equipment. In this decontamination work, various decontamination methods are used in order to reduce the amount of radioactive waste generated and the cost of waste disposal.
Therefore, it is necessary to accurately evaluate the decontamination effect. Therefore, in the present invention, the γ ray emitted from the device 7 is used as the radiation detector 2
The radioactivity intensity and nuclide existing in the equipment 7 are measured by the signal processing device 4 at a fixed time interval or before and after the start of the decontamination work, and the decontamination effect is accurately evaluated by evaluating the rate of change. can get. If this decontamination effect can be evaluated, the decontamination liquid used for the subsequent decontamination, the decontamination time, etc. can be estimated, and a secondary effect called planning of decontamination work can be obtained.

【0052】以上の実施例では、バックグランド放射線
の影響を取り除くために放射線検出器2にコリメータ1
0を設けた。しかし、通常の放射線検出器201は大型
であるため、これを遮蔽するコリメータは大型・重量化
し、取付けが大変である。そこで、図4に示すように、
放射線検出器201の前方に移動シャッタ11を設け
る。この移動シャッタ11を矢印方向にsin移動制御
することで機器7から放出したγ線が移動シャッタ11
で減衰し、放射線検出器201で測定されるγ線強度が
sin変調(図5のbの波形)される。一方、バックグ
ランド放射線は一定な強度(図5のa)で放射線検出器
201に入射するため、図5のようなsin変調された
放射線信号をフーリエ変換等の周波数解析すればバック
グランド放射線の影響を取り除くことができる。
In the above embodiment, the radiation detector 2 is provided with the collimator 1 in order to remove the influence of background radiation.
0 is set. However, since the normal radiation detector 201 is large, the collimator that shields it is large and heavy, and it is difficult to mount it. Therefore, as shown in FIG.
The movable shutter 11 is provided in front of the radiation detector 201. By controlling the moving shutter 11 to move in the direction of the sin, the γ-rays emitted from the device 7 are moved by the moving shutter 11.
And the γ-ray intensity measured by the radiation detector 201 is sin-modulated (waveform b in FIG. 5). On the other hand, since the background radiation is incident on the radiation detector 201 with a constant intensity (a in FIG. 5), if the sin-modulated radiation signal as shown in FIG. Can be removed.

【0053】[0053]

【発明の効果】本発明によれば、原子力施設の放射線環
境下にある作業場所の機器構成の変化を把握した放射能
測定・評価が簡単な装置構成で可能となり、放射線線量
率分布を迅速、且つ、高精度で評価できる。また、作業
工程を最適化したものを立案及び支援することが可能と
なる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to measure and evaluate radioactivity with a simple device configuration by grasping changes in the device configuration of a work place under the radiation environment of a nuclear facility, and to quickly calculate the radiation dose rate distribution. Moreover, it can be evaluated with high accuracy. In addition, it is possible to plan and support an optimized work process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る放射線線量率分布評価
装置の全体構成図である。
FIG. 1 is an overall configuration diagram of a radiation dose rate distribution evaluation apparatus according to an embodiment of the present invention.

【図2】図1に示す信号処理装置の詳細構成図である。FIG. 2 is a detailed configuration diagram of the signal processing device shown in FIG.

【図3】放射線線量率分布の評価手順を示すフローチャ
ートである。
FIG. 3 is a flowchart showing a procedure for evaluating a radiation dose rate distribution.

【図4】放射線検出器の設置状態の変形を例を示す図で
ある。
FIG. 4 is a diagram showing an example of a modification of the installation state of the radiation detector.

【図5】γ線のsin変調を示すグラフである。FIG. 5 is a graph showing sin modulation of γ rays.

【符号の説明】[Explanation of symbols]

1…放射線線量率分布評価場所、2…放射線検出器、3
…信号伝送器、4…信号処理装置、4a…演算処理部、
5…磁気記憶装置、6…出力装置、7…機器、8…γ線
エネルギ分布測定器、9…γ線グロス計数値測定器、1
0…コリメータ、11…移動シャッタ。
1 ... Radiation dose rate distribution evaluation place, 2 ... Radiation detector, 3
... signal transmitter, 4 ... signal processing device, 4a ... arithmetic processing unit,
5 ... Magnetic storage device, 6 ... Output device, 7 ... Equipment, 8 ... γ-ray energy distribution measuring device, 9 ... γ-ray gloss count value measuring device, 1
0 ... Collimator, 11 ... Moving shutter.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 放射線環境下にある作業場所の放射線線
量率分布を測定・評価する方法において、放射線線量分
布測定領域内に存在する機器に対する核種の放射線吸収
分布と該機器自体から放出される放射線計数率分布とに
基づいて放射能分布を評価し、前記放射線吸収分布から
測定効率に関する情報を取り除いた分布と線量率変換係
数とを用いて放射線線量率分布を求めることを特徴とす
る放射線線量率分布評価方法。
1. A method for measuring and evaluating a radiation dose rate distribution of a work place in a radiation environment, wherein a radiation absorption distribution of a nuclide with respect to a device existing in a radiation dose distribution measurement region and radiation emitted from the device itself. A radiation dose rate characterized by evaluating a radioactivity distribution based on a count rate distribution, and obtaining a radiation dose rate distribution by using a distribution obtained by removing information on measurement efficiency from the radiation absorption distribution and a dose rate conversion coefficient. Distribution evaluation method.
【請求項2】 放射線環境下にある作業場所の放射線線
量率分布を測定・評価する方法において、 放射線線量分布測定領域内に存在する機器における核種
の放射線吸収分布に基づく応答関数Rijと該機器自体か
ら放出される放射線計数率分布Ciを求め、次式1 【数1】 から放射能分布Ajを評価し、前記応答関数Rijから測
定効率に関する情報を取り除いた応答関数R’ijと線量
率変換係数αを用いて、次式2 【数2】 から放射線線量率分布Diを求めることを特徴とする放
射線線量率分布評価方法。
2. A method for measuring and evaluating a radiation dose rate distribution of a work place in a radiation environment, wherein a response function Rij based on a radiation absorption distribution of a nuclide in a device existing in a radiation dose distribution measurement region and the device itself. From the radiation count rate distribution Ci emitted from the From the response function R'ij obtained by evaluating the radioactivity distribution Aj from the above and removing the information regarding the measurement efficiency from the response function Rij and the dose rate conversion coefficient α, the following equation 2 A radiation dose rate distribution evaluation method, characterized by obtaining a radiation dose rate distribution Di from the above.
【請求項3】 放射線環境下にある作業場所の放射線線
量率分布を測定・評価する方法において、 放射線源となる機器に起因する放射線を測定して放射線
エネルギ分布を評価し、その放射線エネルギ分布から該
機器に存在する放射能Aiの核種を同定し、放射線線量
分布測定領域内に存在する各機器の構造,材質,形状等
のプラントデータから該同定核種毎の放射線吸収分布に
基づく応答関数Rijを求めることを特徴とする放射線線
量率分布評価方法。
3. A method for measuring and evaluating a radiation dose rate distribution of a work place in a radiation environment, in which radiation caused by a device serving as a radiation source is measured to evaluate the radiation energy distribution, and the radiation energy distribution is calculated from the radiation energy distribution. The nuclide of the radioactivity Ai existing in the equipment is identified, and the response function Rij based on the radiation absorption distribution for each identified nuclide is determined from the plant data such as the structure, material, and shape of each equipment existing in the radiation dose distribution measurement region. A method for evaluating radiation dose rate distribution, characterized by obtaining.
【請求項4】 請求項3において、放射線線量分布測定
領域内に存在する一系統機器に存在する核種の強度比率
を等しいとおくことにより放射線エネルギ分布を測定す
る検出器の設置台数を減らし、減らした分の放射線デー
タを線量率を測定できる検出器で補完することを特徴と
する放射線線量率分布評価方法。
4. The number of detectors for measuring radiation energy distribution is reduced by reducing the intensity ratios of nuclides existing in one-system equipment existing in the radiation dose distribution measurement region to be equal in claim 3. A radiation dose rate distribution evaluation method, characterized in that the radiation data for each minute is supplemented by a detector capable of measuring the dose rate.
【請求項5】 放射線環境下にある作業場所の放射線線
量率分布を測定・評価する方法において、 請求項2で求めた放射線線量率分布Diと該放射線環境
下での作業内容等のデータとから作業工程の立案・支援
をすることを特徴とする作業工程評価方法。
5. A method for measuring and evaluating a radiation dose rate distribution of a work place under a radiation environment, wherein the radiation dose rate distribution Di obtained in claim 2 and data such as work contents in the radiation environment are measured. A work process evaluation method characterized by planning and supporting work processes.
【請求項6】 放射線環境下にある作業場所の放射線線
量率分布を測定・評価する装置において、 放射線線量分布測定領域内に存在する機器における核種
の放射線吸収分布に基づく応答関数Rijと該機器自体か
ら放出される放射線計数率分布Ciを求める手段と、次
式3 【数3】 から放射能分布Ajを評価する手段と、前記応答関数Ri
jから測定効率に関する情報を取り除いた応答関数R’i
jと線量率変換係数αを用いて次式4 【数4】 から放射線線量率分布Diを求める手段とを備えること
を特徴とする放射線線量率分布評価装置。
6. A device for measuring and evaluating a radiation dose rate distribution in a work place under a radiation environment, wherein a response function Rij based on a radiation absorption distribution of a nuclide in a device existing in a radiation dose distribution measurement region and the device itself. Means for obtaining the radiation count rate distribution Ci emitted from Means for evaluating the radioactivity distribution Aj from the above, and the response function Ri
Response function R'i with information on measurement efficiency removed from j
Using j and the dose rate conversion coefficient α, the following equation 4 And a means for obtaining the radiation dose rate distribution Di from the radiation dose rate distribution evaluation apparatus.
【請求項7】 放射線環境下にある作業場所の放射線線
量率分布を測定・評価する装置において、 放射線源となる機器に起因する放射線を測定して放射線
エネルギ分布を測定する手段と、その放射線エネルギ分
布から該機器に存在する放射能Aiの核種を同定する手
段と、放射線線量分布測定領域内に存在する各機器の構
造,材質,形状等のプラントデータから該同定核種毎の
放射線吸収分布に基づく応答関数Rijを求める手段とを
備えることを特徴とする放射線線量率分布評価装置。
7. A device for measuring and evaluating a radiation dose rate distribution of a work place in a radiation environment, a means for measuring radiation resulting from a device serving as a radiation source, and a radiation energy distribution thereof. Based on the means for identifying the nuclide of radioactivity Ai existing in the equipment from the distribution and the plant data such as the structure, material and shape of each equipment existing in the radiation dose distribution measurement area, based on the radiation absorption distribution for each identified nuclide A radiation dose rate distribution evaluation apparatus comprising: a means for obtaining a response function Rij.
【請求項8】 請求項7において、放射線線量分布測定
領域内に存在する一系統機器に存在する核種の強度比率
を等しいとおくことにより放射線エネルギ分布を測定す
る検出器の設置台数を減らし、減らした分の放射線デー
タを線量率を測定できる検出器で補完する手段を備える
ことを特徴とする放射線線量率分布評価装置。
8. The number of detectors for measuring radiation energy distribution is reduced by reducing the intensity ratios of nuclides existing in one-system equipment existing in the radiation dose distribution measurement region to be equal to each other. A radiation dose rate distribution evaluation device, comprising means for supplementing radiation data for a minute amount with a detector capable of measuring a dose rate.
【請求項9】 放射線環境下にある作業場所の放射線線
量率分布を測定・評価する装置において、 請求項6で求めた放射線線量率分布Diと該放射線環境
下での作業内容等のデータとから作業工程の立案・支援
をすることを特徴とする作業工程評価装置。
9. An apparatus for measuring and evaluating a radiation dose rate distribution of a work place under a radiation environment, wherein the radiation dose rate distribution Di obtained in claim 6 and data such as work contents in the radiation environment are measured. A work process evaluation device characterized by planning and supporting work processes.
【請求項10】 原子炉廃炉時の原子炉解体作業の進行
に伴って放射線源機器構成が変化したときの解体作業場
所の放射線線量率分布を評価する方法において、解体作
業場所に設置した検出器による放射線検出データと、解
体対象原子炉を構成する前記機器の予め蓄積されている
構造データとから、ある放射線源機器を取り除いた後の
前記解体作業場所における残りの放射線源機器による放
射線線量率分布を演算することを特徴とする放射線線量
率分布評価方法。
10. A method for evaluating a radiation dose rate distribution at a dismantling work place when a configuration of a radiation source changes as the reactor dismantling work progresses at the time of decommissioning a reactor Dose rate from the remaining radiation source equipment at the demolition work site after removing a certain radiation source equipment from the radiation detection data by the reactor and the pre-stored structural data of the equipment that constitutes the decommissioning target reactor A radiation dose rate distribution evaluation method characterized by calculating a distribution.
【請求項11】 原子炉廃炉時の原子炉解体作業の進行
に伴って放射線源機器構成が変化したときの解体作業場
所の放射線線量率分布を評価する装置において、解体作
業場所に設置した放射線検出器、解体対象原子炉を構成
する前記機器の構造データを予め格納したデータベース
と、前記放射線検出器の検出信号及び前記データベース
の蓄積データとからある放射線源機器を取り除いた後の
前記解体作業場所における残りの放射線源機器による放
射線線量率分布を演算して求める演算手段とを備えるこ
とを特徴とする放射線線量率分布評価装置。
11. An apparatus for evaluating a radiation dose rate distribution at a dismantling work place when a radiation source equipment configuration changes as the reactor dismantling work progresses at the time of decommissioning a nuclear reactor, the radiation installed at the dismantling work place. Detector, the dismantling work place after removing a radiation source device from a database in which structural data of the devices constituting the reactor to be dismantled is stored in advance, and a detection signal of the radiation detector and accumulated data in the database The radiation dose rate distribution evaluation apparatus according to claim 1, further comprising: a calculation unit that calculates and obtains a radiation dose rate distribution by the remaining radiation source equipment.
【請求項12】 請求項11記載の放射線線量率分布評
価装置と、該放射線線量率分布評価装置による放射線線
量率分布と作業員の被曝量及び作業期間並びに作業費用
との最適化の問題を解く手段とを備えることを特徴とす
る原子炉解体作業立案・支援装置。
12. A radiation dose rate distribution evaluation apparatus according to claim 11, and solving the problem of optimization of the radiation dose rate distribution by the radiation dose rate distribution evaluation apparatus and the exposure dose of workers, work period, and work cost. A reactor dismantling work planning / supporting device, comprising:
JP23846392A 1992-09-07 1992-09-07 Method and device for evaluating distribution of radiation dosage rate Pending JPH0688873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23846392A JPH0688873A (en) 1992-09-07 1992-09-07 Method and device for evaluating distribution of radiation dosage rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23846392A JPH0688873A (en) 1992-09-07 1992-09-07 Method and device for evaluating distribution of radiation dosage rate

Publications (1)

Publication Number Publication Date
JPH0688873A true JPH0688873A (en) 1994-03-29

Family

ID=17030609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23846392A Pending JPH0688873A (en) 1992-09-07 1992-09-07 Method and device for evaluating distribution of radiation dosage rate

Country Status (1)

Country Link
JP (1) JPH0688873A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234727A (en) * 2005-02-28 2006-09-07 Toshiba Corp Radiation distribution photographing device, and radiation distribution photographing method
JP2013113594A (en) * 2011-11-25 2013-06-10 Hitachi-Ge Nuclear Energy Ltd Apparatus and method for evaluating spatial dose
KR101494783B1 (en) * 2013-08-05 2015-02-23 한국원자력연구원 Apparatus for detecting release amounts of radioactive source terms and method thereof
JP2015087300A (en) * 2013-10-31 2015-05-07 日立Geニュークリア・エナジー株式会社 Plant demolition plan support apparatus and plant demolition plan support method
JP2015230223A (en) * 2014-06-04 2015-12-21 日立Geニュークリア・エナジー株式会社 Support system of radioactive waste storage plan
JP2017096696A (en) * 2015-11-20 2017-06-01 日立Geニュークリア・エナジー株式会社 Demolition work operation simulation system
JP2017194289A (en) * 2016-04-18 2017-10-26 日立Geニュークリア・エナジー株式会社 Radioactivity distribution analysis system and radioactivity distribution analysis method
JP2017194274A (en) * 2016-04-18 2017-10-26 日立Geニュークリア・エナジー株式会社 Disposal process management device and disposal process management method
JP2020034318A (en) * 2018-08-28 2020-03-05 日立Geニュークリア・エナジー株式会社 Disassembly plan support system and program
JP2020193817A (en) * 2019-05-24 2020-12-03 三菱重工業株式会社 Radiation source evaluation method and radiation source evaluation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234727A (en) * 2005-02-28 2006-09-07 Toshiba Corp Radiation distribution photographing device, and radiation distribution photographing method
JP2013113594A (en) * 2011-11-25 2013-06-10 Hitachi-Ge Nuclear Energy Ltd Apparatus and method for evaluating spatial dose
KR101494783B1 (en) * 2013-08-05 2015-02-23 한국원자력연구원 Apparatus for detecting release amounts of radioactive source terms and method thereof
JP2015087300A (en) * 2013-10-31 2015-05-07 日立Geニュークリア・エナジー株式会社 Plant demolition plan support apparatus and plant demolition plan support method
JP2015230223A (en) * 2014-06-04 2015-12-21 日立Geニュークリア・エナジー株式会社 Support system of radioactive waste storage plan
JP2017096696A (en) * 2015-11-20 2017-06-01 日立Geニュークリア・エナジー株式会社 Demolition work operation simulation system
JP2017194289A (en) * 2016-04-18 2017-10-26 日立Geニュークリア・エナジー株式会社 Radioactivity distribution analysis system and radioactivity distribution analysis method
JP2017194274A (en) * 2016-04-18 2017-10-26 日立Geニュークリア・エナジー株式会社 Disposal process management device and disposal process management method
JP2020034318A (en) * 2018-08-28 2020-03-05 日立Geニュークリア・エナジー株式会社 Disassembly plan support system and program
JP2020193817A (en) * 2019-05-24 2020-12-03 三菱重工業株式会社 Radiation source evaluation method and radiation source evaluation device

Similar Documents

Publication Publication Date Title
JP6751331B2 (en) Radioactive waste measurement device, radioactive waste measurement method, and radioactive waste density distribution calculation device
JPH0688873A (en) Method and device for evaluating distribution of radiation dosage rate
Bae et al. Plastic scintillator beta ray scanner for in-situ discrimination of beta ray and gamma ray radioactivity in soil
JP6674836B2 (en) Waste measuring device and waste measuring method
KR20200054020A (en) System and method for derivation of radioactivity distribution according to depth of a concrete structure
JP7000264B2 (en) Radioactivity concentration evaluation system and radioactivity concentration evaluation method
JPS62282288A (en) Method and apparatus for measuring distribution of gamma-ray emitting nuclide present in wall body of concrete in depth direction
JPS61107183A (en) Method for measuring radioactive quantity of radioactive waste contained in receptacle
JP6718683B2 (en) Radioactive waste measurement system and method
US7564041B2 (en) Method of using self-positioning radiation counters
JP6987086B2 (en) Radioactivity measuring device
JP6871053B2 (en) Waste measuring device
Kalb et al. Deployment of in situ measurement techniques and the MARSSIM process for characterization of the Brookhaven Graphite Research Reactor
Kalb et al. Comparability of ISOCS instrument in radionuclide characterization at Brookhaven National Laboratory
JPH02222855A (en) Pollution depth discriminator
JPH0545467A (en) Radioactive contamination measuring system
Chiron et al. THE USE OF THREE DEDICATED NUCLEAR MEASUREMENT TOOLS FOR D & D OPERATIONS IN NUCLEAR FACILITIES
Potapov et al. A dip detector for in situ measuring of Cs-137 specific soil activity profiles
Creed et al. Radiometric characterization process for locating radioactivity hold-up and measuring non-uniformly distributed sources-15342
JP2008070309A (en) Method and device for measuring radioactivity of radioactive waste
Li et al. Detection Efficiency Fitting Method Research by Γ-Ray Spectroscopy for Quantitative Nuclear Material Holdup
Ensslin et al. Attribute and Semiquantitative Measurements
Stanga et al. Uncertainty assessment in the free release measurement by gamma spectrometry of rotating waste drums
Gillilan RCT 4th Quarter 2021 Continuing Training Presentation Transcript
Desimone et al. Gamma-Ray Hold-up Measurements and Results for Casa 2 and Casa 3 at TA-18