JP2007333463A - Radiation measuring apparatus - Google Patents

Radiation measuring apparatus Download PDF

Info

Publication number
JP2007333463A
JP2007333463A JP2006163395A JP2006163395A JP2007333463A JP 2007333463 A JP2007333463 A JP 2007333463A JP 2006163395 A JP2006163395 A JP 2006163395A JP 2006163395 A JP2006163395 A JP 2006163395A JP 2007333463 A JP2007333463 A JP 2007333463A
Authority
JP
Japan
Prior art keywords
radiation
moving
measurement
detector
cross direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006163395A
Other languages
Japanese (ja)
Other versions
JP4637794B2 (en
Inventor
Hiroshi Shiomi
大志 潮見
Kenichi Mogi
健一 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006163395A priority Critical patent/JP4637794B2/en
Publication of JP2007333463A publication Critical patent/JP2007333463A/en
Application granted granted Critical
Publication of JP4637794B2 publication Critical patent/JP4637794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acquire a radiation measuring apparatus capable of reducing the labor required for measurements, and of shortening the measuring time. <P>SOLUTION: In the radiation measuring apparatus, a pipe 31 is inserted in a pipe 21 of a mobile base 20 supported at wheels 26 to fix the pipe 31 with screws (not shown). A driving device 5 drives via a wire 9, detector-supporting plates 41 and 42 each of which is mounted with four radiation detectors 1, 2 in a row in a side and above a height-adjustable supporting frame 30 for measuring the radiation distributions of a wall surface 91 and a ceiling 92. Since the driving device 5 drives the detector-supporting plates 41 and 42 is mounted with a plurality of the radiation detectors 1, 2 to measure radiation, the labor required for measurements can be reduced and the measuring time can be shortened. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば壁面や天井等の放射線を検出する放射線測定装置に関するものである。   The present invention relates to a radiation measuring apparatus that detects radiation on, for example, a wall surface or a ceiling.

従来の放射線測定装置として、駆動機構が設けられ走行可能な基台と、基台上に設けられた昇降機構と、この昇降機構のワイヤに接続された放射線検出装置とを備え、床または天井または壁面に沿って上記放射線検出装置のγ線検出器を移動させながら放射線計測を行うものがある(例えば、特許文献1参照)。   As a conventional radiation measuring device, a driving base is provided and a traveling base, a lifting mechanism provided on the base, and a radiation detecting device connected to a wire of the lifting mechanism, a floor or ceiling or There is one that performs radiation measurement while moving the γ-ray detector of the radiation detection apparatus along the wall surface (see, for example, Patent Document 1).

特開平2−259588号公報(第2頁右上欄第12行〜左下欄第13行及び第1図)JP-A-2-259588 (page 2, upper right column, line 12 to lower left column, line 13 and FIG. 1)

上記のような従来の放射線測定装置においては、測定対象はγ線であり、γ線検出器の周りに遮蔽体が必要となるため、γ線検出器をあまり大きくできず、小さなγ線検出器にて大面積を対象に位置分解能良く測定するのに多大な時間を要する。この発明はこのような問題点を解決するためになされたものであり、測定の労力を軽減できるとともに測定時間も短縮できる放射線測定装置を得ることを目的とする。   In the conventional radiation measuring apparatus as described above, the object to be measured is γ-ray, and a shield is required around the γ-ray detector. Therefore, the γ-ray detector cannot be made very large, and a small γ-ray detector is used. It takes a lot of time to measure a large area with good positional resolution. The present invention has been made to solve such problems, and an object of the present invention is to obtain a radiation measuring apparatus that can reduce the measurement effort and the measurement time.

この発明における放射線測定装置は、移動台車、移動台車の所定位置からの距離を調整しうるようにして支持された支持部材、支持部材に移動部材を介して支持された放射線検出器、移動台車に搭載され移動部材を所定方向に駆動する移動部材駆動装置を備えたものである。   The radiation measuring apparatus according to the present invention includes a moving carriage, a supporting member supported so as to be able to adjust a distance from a predetermined position of the moving carriage, a radiation detector supported by the supporting member via the moving member, and a moving carriage. A moving member driving device that is mounted and drives the moving member in a predetermined direction is provided.

以上のように、この発明における放射線測定装置は、移動台車、この移動台車に伸縮支持装置を介して支持された支持部材と、支持部材に設けられた移動部材と、移動部材に固着され放射線を測定する放射線検出器と、移動台車に搭載され移動部材を所定方向に駆動する移動部材駆動装置とを備えたので、測定の労力を軽減できるとともに測定時間も短縮できる。   As described above, the radiation measuring apparatus according to the present invention includes a moving carriage, a supporting member supported by the moving carriage via an expansion / contraction support device, a moving member provided on the supporting member, and a radiation fixed to the moving member. Since the radiation detector to be measured and the moving member driving device that is mounted on the moving carriage and drives the moving member in a predetermined direction are provided, the measurement effort can be reduced and the measurement time can be shortened.

実施の形態1.
図1〜図4は、この発明を実施するための実施の形態1を示すものであり、図1は放射線測定装置の構成を示す構成図、図2は放射線測定装置の設置例を示す設置図、図3は測定手順を示すフローチャート、図4は測定結果の表示例を示す説明図である。図1において、放射線測定装置は次のように構成されている。基台20に支持枠30が上下移動可能に支持されている。基台20は、2本のL状のパイプ21をパイプ22で図1の左右方向に連結し、パイプ21,22で四角形の枠23を形成し、当該四角形の枠23に載置板24を固定したものであり、底部に4個の車輪26が取り付けられ、左方に2個のストッパ25が固定されている。なお、4個の車輪26に移動可能に支持された基台20がこの発明における移動台車である。
Embodiment 1 FIG.
1 to 4 show a first embodiment for carrying out the present invention. FIG. 1 is a configuration diagram showing a configuration of a radiation measurement apparatus, and FIG. 2 is an installation diagram showing an installation example of the radiation measurement apparatus. FIG. 3 is a flowchart showing a measurement procedure, and FIG. 4 is an explanatory diagram showing a display example of a measurement result. In FIG. 1, the radiation measuring apparatus is configured as follows. A support frame 30 is supported on the base 20 so as to be vertically movable. The base 20 connects two L-shaped pipes 21 in the horizontal direction of FIG. 1 with pipes 22, forms a rectangular frame 23 with the pipes 21 and 22, and mounts a mounting plate 24 on the rectangular frame 23. Four wheels 26 are attached to the bottom, and two stoppers 25 are fixed to the left. The base 20 that is supported by the four wheels 26 so as to be movable is the movable carriage in the present invention.

支持枠30は、パイプ21の径よりも小さい径のL状の別の2本のパイプ31を同様に連結パイプ32で連結し、連結した水平部分を支持部材としての上部水平部34とし、図1における左方に2個のストッパ35が固着され、上部に4個のストッパ36が固着されている。このパイプ31の端部31aを上記L状のパイプ21の端部21aに挿入し、パイプの各端部21a,31aを入れ込み構造に構成し、内側のパイプ31の端部31aをスライドさせて伸縮した後、外側のパイプ21の端部21aに設けた図示しないねじ穴にネジ(図示しない)をねじ込み、ネジを締めることにより内側のパイプ31を所定の位置で固定できるようにしている。また、パイプ32の中央部には滑車37が取り付けられている。なお、外側のパイプ21の端部21aとこの端部21aに挿入されたパイプ31の端部31a及び図示しないネジがこの発明における伸縮支持装置である。また、パイプ31の端部31aがこの発明における交差方向支持部材である。   In the support frame 30, two other L-shaped pipes 31 having a diameter smaller than that of the pipe 21 are similarly connected by a connection pipe 32, and the connected horizontal portion is used as an upper horizontal portion 34 as a support member. 1, two stoppers 35 are fixed to the left side, and four stoppers 36 are fixed to the upper part. The end portion 31a of the pipe 31 is inserted into the end portion 21a of the L-shaped pipe 21, the end portions 21a and 31a of the pipe are configured to be inserted, and the end portion 31a of the inner pipe 31 is slid to expand and contract. After that, a screw (not shown) is screwed into a screw hole (not shown) provided at the end 21a of the outer pipe 21, and the inner pipe 31 can be fixed at a predetermined position by tightening the screw. A pulley 37 is attached to the center of the pipe 32. The end 21a of the outer pipe 21, the end 31a of the pipe 31 inserted into the end 21a, and a screw (not shown) are the telescopic support device in the present invention. Moreover, the end part 31a of the pipe 31 is a cross direction support member in this invention.

支持枠30に交差方向移動部材としての検出器支持板41及び移動部材としての検出器支持板42がそれぞれ上下方向及び水平方向に移動可能に取り付けられており、検出器支持板41に図1における左右方向すなわち検出器支持板41の移動方向と交差する方向である直角方向に4台の交差方向放射線検出器としての放射線検出器1が一列に固定され、検出器支持板42に図1における左右方向にすなわち検出器支持板42の移動方向と直角方向に4台の放射線検出器2が一列に固定されている。なお、放射線検出器1,2はβ線を検出するものである。また、基台20の載置板24上に放射線測定器4、駆動装置5、信号処理装置6、操作表示装置11が載置され、上述した放射線検出器1と放射線測定器4は検出器信号ケーブル61にて接続されている。   A detector support plate 41 as a cross direction moving member and a detector support plate 42 as a moving member are attached to the support frame 30 so as to be movable in the vertical direction and the horizontal direction, respectively. In the left-right direction, that is, the direction perpendicular to the direction of movement of the detector support plate 41, four radiation detectors 1 as cross-direction radiation detectors are fixed in a row, and the detector support plate 42 has left and right in FIG. Four radiation detectors 2 are fixed in a row in the direction, that is, in the direction perpendicular to the moving direction of the detector support plate 42. The radiation detectors 1 and 2 detect β rays. In addition, the radiation measuring instrument 4, the driving device 5, the signal processing device 6, and the operation display device 11 are placed on the mounting plate 24 of the base 20, and the radiation detector 1 and the radiation measuring device 4 described above detect the detector signal. They are connected by a cable 61.

検出器支持板41,42はワイヤ9により滑車37を介して連結されるとともにワイヤ9にて交差方向移動部材駆動装置及び移動材駆動装置としての駆動装置5により上下方向及び水平方向にそれぞれ駆動される。放射線測定装置4は、放射線検出器1で検出した放射線から放射線の分布を求める。信号処理装置6は、駆動装置5からの放射線検出器1の位置情報及び放射線測定装置4からの放射線情報を受け取り、位置に対応した放射線密度を演算処理により求める。操作表示装置11は、信号処理装置6の演算結果の表示を行う。   The detector support plates 41 and 42 are connected by a wire 9 via a pulley 37 and are driven by the wire 9 in the up-down direction and the horizontal direction by a cross-direction moving member driving device and a driving device 5 as a moving material driving device, respectively. The The radiation measuring device 4 obtains a radiation distribution from the radiation detected by the radiation detector 1. The signal processing device 6 receives the position information of the radiation detector 1 from the driving device 5 and the radiation information from the radiation measuring device 4, and obtains the radiation density corresponding to the position by arithmetic processing. The operation display device 11 displays the calculation result of the signal processing device 6.

次に、放射線測定装置の設置手順について、図2の設置例を用いて説明する。車輪26にて本装置を測定地点まで移動させ、壁面91側となるストッパ25,35が壁面91に当接するように本装置を設置する。次に、パイプ31を上方に移動させ天井92側となるストッパ36が天井92に当接するように設置して、パイプ31の端部31aをパイプ21の端部21aにネジで固定する。パイプ31を上下に移動させる際はワイヤ9の長さに過不足が生じるため駆動装置5にてワイヤの引き出し巻き取りを行う。   Next, the installation procedure of the radiation measuring apparatus will be described using the installation example of FIG. The apparatus is moved to the measurement point by the wheel 26 and the apparatus is installed so that the stoppers 25 and 35 on the wall surface 91 side come into contact with the wall surface 91. Next, the pipe 31 is moved upward and installed so that the stopper 36 on the ceiling 92 side contacts the ceiling 92, and the end portion 31 a of the pipe 31 is fixed to the end portion 21 a of the pipe 21 with a screw. When the pipe 31 is moved up and down, the length of the wire 9 becomes excessive and insufficient, so that the wire is drawn and wound by the driving device 5.

壁面91側となるストッパ25,35及び天井92側となるストッパ36は、放射線検出器1と壁面91あるいは天井92との距離が一定となるよう調整されており、表面汚染検出の際に、検出感度を容易に一定とすることができる。壁面91の放射線を測定する場合は、壁面91に対応する位置に設置している放射線検出器1によって測定し、天井92の放射線を測定する場合は、天井92に対応する位置に設置している放射線検出器2によって測定する。   The stoppers 25 and 35 on the wall surface 91 side and the stopper 36 on the ceiling 92 side are adjusted so that the distance between the radiation detector 1 and the wall surface 91 or the ceiling 92 is constant, and is detected when surface contamination is detected. Sensitivity can be easily made constant. When measuring the radiation of the wall surface 91, it is measured by the radiation detector 1 installed at a position corresponding to the wall surface 91, and when measuring the radiation of the ceiling 92, it is installed at a position corresponding to the ceiling 92. Measurement is performed by the radiation detector 2.

次に、測定手順について図3のフローチャートを用いて説明する。操作表示部11より測定開始信号を入力すると(ステップS11)、演算処理装置6から駆動装置5に移動信号が送られ検出器支持板2が初期位置まで移動することにより放射線検出器1が測定初期位置に位置し(ステップS12)、表面の放射線すなわち放射線汚染の測定を開始する(ステップS13)。測定終了後、測定値を演算処理し、測定結果を画面に表示する(ステップS14)。次に、演算処理装置6からの移動命令により、検出器支持板41,42を駆動装置5を用いて次の測定位置まで自動で移動させ(ステップS15)、放射線検出器1,2が測定終了位置にあるか否か、すなわち所定位置までの測定を終えたか否かを判定し(ステップS16)、測定終了位置にない場合はステップS13へ戻りステップS13以降を繰り返して測定を行う。ステップS16において、測定終了位置まで移動していたら測定終了とする(ステップS17)。その後、放射線測定装置を次の測定場所へ移動する。   Next, the measurement procedure will be described with reference to the flowchart of FIG. When a measurement start signal is input from the operation display unit 11 (step S11), a movement signal is sent from the arithmetic processing unit 6 to the drive unit 5, and the detector support plate 2 moves to the initial position, whereby the radiation detector 1 starts the measurement. Positioned at the position (step S12), measurement of surface radiation, that is, radiation contamination is started (step S13). After the measurement is completed, the measured value is processed and the measurement result is displayed on the screen (step S14). Next, the detector support plates 41 and 42 are automatically moved to the next measurement position using the driving device 5 in accordance with a movement command from the arithmetic processing unit 6 (step S15), and the radiation detectors 1 and 2 are finished measuring. It is determined whether or not it is at a position, that is, whether or not the measurement up to a predetermined position has been completed (step S16). If it has been moved to the measurement end position in step S16, the measurement is ended (step S17). Thereafter, the radiation measuring apparatus is moved to the next measurement location.

次に、測定結果の表示について図4を用いて説明する。図4は、50cm×50cmサイズの検出器を4台並べた本装置にて、壁面91の高さ300cm、天井92の位置0〜200cmの範囲の放射線の測定を行った場合の放射線の測定値の表示例である。壁面91を下から上へ順次測定を行い、各位置での測定結果を移動部材位置情報発信装置としての駆動装置5から得た検出器支持板41,42の位置情報と組み合わせて、図4(a)のように逐次表示する。設定した複数のしきい値を超えた場合は、各しきい値に対応した色(図4ではハッチングで示す)をつける。また、現在測定中の位置については測定中の旨を表示する。また、天井92についても、同様に図4(b)に示すように位置に対応して放射線の測定値を表示する。   Next, display of measurement results will be described with reference to FIG. FIG. 4 shows measured values of radiation when measuring radiation in the range of 300 cm in height of the wall surface 91 and 0 to 200 cm in the position of the ceiling 92 with this apparatus in which four 50 cm × 50 cm size detectors are arranged. Is a display example. The wall surface 91 is sequentially measured from the bottom to the top, and the measurement results at each position are combined with the position information of the detector support plates 41 and 42 obtained from the driving device 5 as the moving member position information transmitting device, as shown in FIG. Display sequentially as in a). When the set threshold values are exceeded, colors corresponding to the respective threshold values (indicated by hatching in FIG. 4) are attached. In addition, a message indicating that measurement is in progress is displayed for the position currently being measured. Similarly, for the ceiling 92, as shown in FIG. 4B, radiation measurement values are displayed corresponding to the positions.

本放射線測定装置により、信号処理部6に送信された放射線検出器1の位置情報と表面汚染密度情報である放射線の測定値を組み合わせて表面汚染密度の分布を自動測定することが可能となり、測定に要する労力を軽減できる。また、放射線検出器1,2として、大面積の例えばβ線表面汚染検出器を複数台並べて測定することにより、広い面積を短時間で測定することが可能となる。なお、放射線検出器1,2のサイズ、台数、測定位置のピッチ及び各測定位置での測定時間を変えることにより、位置分解能、測定時間、精度が調整可能であることは言うまでもない。   With this radiation measuring apparatus, it becomes possible to automatically measure the distribution of the surface contamination density by combining the position information of the radiation detector 1 transmitted to the signal processing unit 6 and the measured value of the radiation as the surface contamination density information. Can reduce the labor required. Further, as the radiation detectors 1 and 2, by measuring a plurality of large-area β-ray surface contamination detectors side by side, for example, a wide area can be measured in a short time. Needless to say, the position resolution, measurement time, and accuracy can be adjusted by changing the size, number of radiation detectors 1 and 2, the pitch of the measurement positions, and the measurement time at each measurement position.

実施の形態2.
図5は、この発明の実施の形態2を示す放射線測定装置の要部を示す要部構成図である。図5に示すように、検出器支持板2と放射線検出器1との間にγ線遮蔽体73を設けることにより、外部のγ線放射線によるノイズを低減させ、β線を検出する放射線検出器1の高感度化を図ることができる。なお、放射線検出器1及びγ線遮蔽体73にて、放射線検出装置を構成している。
Embodiment 2. FIG.
FIG. 5 is a main part configuration diagram showing the main part of the radiation measuring apparatus according to the second embodiment of the present invention. As shown in FIG. 5, by providing a γ-ray shield 73 between the detector support plate 2 and the radiation detector 1, a radiation detector that detects β-rays by reducing noise due to external γ-ray radiation. 1 high sensitivity can be achieved. The radiation detector 1 and the γ-ray shield 73 constitute a radiation detection device.

実施の形態3.
図6、図7は、この発明の実施の形態3を示すものであり、図6は放射線測定装置の構成及び設置を示す構成及び設置図、図7は測定手順を示すフローチャートである。上述の実施の形態1では基台20の移動は手動にて行うこととしていたが、図6のように基台20に走行用モータ44、移動台車位置情報発信装置としての移動距離測定装置45、及び近接センサ46を取り付け、信号処理装置56にて制御することにより、自動移動測定が可能となる。
Embodiment 3 FIG.
6 and 7 show the third embodiment of the present invention, FIG. 6 is a configuration and installation diagram showing the configuration and installation of the radiation measuring apparatus, and FIG. 7 is a flowchart showing the measurement procedure. In the first embodiment, the base 20 is moved manually. However, as shown in FIG. 6, the base 20 has a traveling motor 44, a moving distance measuring device 45 as a moving cart position information transmitting device, In addition, by attaching the proximity sensor 46 and controlling it by the signal processor 56, automatic movement measurement can be performed.

次に、図7のフローチャートにより、測定手順を説明する。図7において、放射線測定装置を初期位置に設置し、移動方向を2次元の(X,Y)方向に設定する(ステップS21)。ステップS22において移動方向をX方向とした場合、天井92の測定を実施し(ステップS23)、測定終了後X方向に測定範囲分(1ステップ)移動する(ステップS24)。その際、近接センサ46が動作していないかどうかすなわち近接センサ46にて壁面91からの距離が所定値以下でないか否かを監視する(ステップS25)。ステップS25において、壁面91からの距離が所定値以上あり移動する間に近接センサ46が作動しなければ、ステップS23へ戻り、次の測定を開始する。   Next, the measurement procedure will be described with reference to the flowchart of FIG. In FIG. 7, the radiation measuring apparatus is installed at the initial position, and the moving direction is set to a two-dimensional (X, Y) direction (step S21). When the moving direction is the X direction in step S22, the ceiling 92 is measured (step S23), and after the measurement is completed, the measuring range (one step) is moved in the X direction (step S24). At that time, it is monitored whether or not the proximity sensor 46 is operating, that is, whether or not the distance from the wall surface 91 is not less than a predetermined value by the proximity sensor 46 (step S25). In step S25, if the proximity sensor 46 does not operate while the distance from the wall surface 91 is greater than or equal to the predetermined value and moves, the process returns to step S23 and the next measurement is started.

ステップS25において、近接センサ46が作動すれば、移動を停止し(ステップS26)、測定を行う(ステップS27)。これにより、部屋のX方向の一列分の測定ができる。X方向及びY方向の全ての測定が終わって終了位置にあるか否かを判定し(ステップS28)、終わっていなければステップS22へ戻り、Y方向にフレーム幅分ずらして順次測定する(ステップS31〜S35)。ステップS28において、X方向及びY方向とも終了位置にあれば測定を終了する。測定値は測定の都度、移動台車位置情報発信装置としての移動距離測定装置45及び移動部材位置情報発信装置として駆動装置5からの放射線検出器1の位置情報に基づいて、天井全体の表面汚染測定(放射線の測定)が可能となる。なお、壁91についても、同様にして放射線の測定を行うことができる。   If the proximity sensor 46 is activated in step S25, the movement is stopped (step S26), and measurement is performed (step S27). Thereby, the measurement for the line of the X direction of a room is possible. It is determined whether or not all the measurements in the X direction and the Y direction are finished and are at the end position (step S28). If not finished, the process returns to step S22, and the measurement is sequentially performed by shifting the frame width in the Y direction (step S31). ~ S35). In step S28, if both the X direction and the Y direction are at the end positions, the measurement ends. The measured values are measured for the surface contamination of the entire ceiling based on the position information of the radiation detector 1 from the driving device 5 as the moving distance measuring device 45 and the moving member position information transmitting device as the moving cart position information transmitting device. (Measurement of radiation) becomes possible. The wall 91 can be similarly measured for radiation.

このように、駆動装置により走行用モータ44により基台20をX方向及びY方向に駆動し、移動距離測定装置45からの移動距離情報と駆動装置5からの放射線検出器1の位置情報と放射線検出器1あるいは放射線検出器2にて測定された測定対象面の放射線の測定値とに基づき、測定対象面の放射線汚染の分布状況を迅速かつ容易に知ることができる。   As described above, the driving device 44 drives the base 20 in the X direction and the Y direction by the traveling motor 44, the moving distance information from the moving distance measuring device 45, the position information of the radiation detector 1 from the driving device 5, and the radiation. Based on the measurement value of the radiation on the measurement target surface measured by the detector 1 or the radiation detector 2, the distribution state of radiation contamination on the measurement target surface can be quickly and easily known.

以上のように、この発明における放射線測定装置は、移動台車、この移動台車に伸縮支持装置を介して支持された支持部材と、支持部材に設けられた移動部材と、移動部材に固着され放射線を測定する放射線検出器と、移動台車に搭載され移動部材を所定方向に駆動する移動部材駆動装置とを備えたので、測定の労力を軽減できるとともに測定時間も短縮できる。   As described above, the radiation measuring apparatus according to the present invention includes a moving carriage, a supporting member supported by the moving carriage via an expansion / contraction support device, a moving member provided on the supporting member, and a radiation fixed to the moving member. Since the radiation detector to be measured and the moving member driving device that is mounted on the moving carriage and drives the moving member in a predetermined direction are provided, the measurement effort can be reduced and the measurement time can be shortened.

そして、支持部材と交差する方向に設けられた交差方向支持部材と、交差方向支持部材に設けられた交差方向移動部材と、交差方向移動部材に固着され放射線を測定する交差方向放射線検出器と、移動台車に搭載され交差方向移動部材を支持部材と交差する方向に駆動する交差方向移動部材駆動装置とを備えたものであることを特徴とするので、放射線検出器及び交差方向放射線検出器の双方により放射線の測定が可能であり、測定の労力を軽減できるとともに測定時間も短縮できる。   And a cross direction support member provided in a direction crossing the support member, a cross direction movement member provided in the cross direction support member, a cross direction radiation detector fixed to the cross direction movement member and measuring radiation, Since both the radiation detector and the cross-direction radiation detector are equipped with a cross-direction movement member driving device that is mounted on the movable carriage and drives the cross-direction movement member in a direction crossing the support member. The radiation can be measured by this, and the measurement effort can be reduced and the measurement time can be shortened.

さらに、放射線検出器は、所定方向と交差する方向に複数個配列されたものであることを特徴とするので、複数の放射線検出器により所定方向と交差する方向における所定の幅分の放射線を同時に測定可能であるので、測定時間を短縮できる。   Further, since the radiation detectors are arranged in a direction intersecting with the predetermined direction, the radiation detectors simultaneously emit radiation of a predetermined width in the direction intersecting the predetermined direction by the plurality of radiation detectors. Since measurement is possible, measurement time can be shortened.

また、放射線検出器はβ線を検出するものであり、支持部材は放射線検出器に入射するγ線を遮蔽するγ線遮蔽体が設けられたものであることを特徴とするので、外部放射線によるノイズを低減し、β線を検出する放射線検出器の高感度化を図ることができる。   The radiation detector is for detecting β-rays, and the support member is provided with a γ-ray shield for shielding γ-rays incident on the radiation detector. Noise can be reduced, and the sensitivity of the radiation detector that detects β rays can be increased.

そして、移動台車を駆動する移動台車駆動装置と、移動台車の位置情報を発信する移動台車位置情報発信装置と、移動部材の位置情報を発信する移動部材位置情報発信装置と、放射線検出器にて検出された放射線を移動台車及び移動部材の位置情報に対応させて表示する放射線分布表示装置とが設けられたものであることを特徴とするので、位置に対応させた放射線の値を容易に知ることができる。   And a mobile carriage driving device that drives the mobile carriage, a mobile cart position information transmission device that transmits position information of the mobile cart, a moving member position information transmission device that transmits position information of the moving member, and a radiation detector. Since the radiation distribution display device that displays the detected radiation corresponding to the position information of the moving carriage and the moving member is provided, the radiation value corresponding to the position can be easily known. be able to.

この発明の実施の形態1である放射線測定装置の構成を示す構成図である。It is a block diagram which shows the structure of the radiation measuring device which is Embodiment 1 of this invention. 放射線測定装置の設置例を示す設置図である。It is an installation figure which shows the example of installation of a radiation measuring device. 測定手順を示すフローチャートである。It is a flowchart which shows a measurement procedure. 測定結果の表示例を示す説明図である。It is explanatory drawing which shows the example of a display of a measurement result. この発明の実施の形態2である放射線測定装置の要部を示す要部構成図である。It is a principal part block diagram which shows the principal part of the radiation measuring device which is Embodiment 2 of this invention. この発明の実施の形態3である放射線測定装置の構成及び設置を示す構成及び設置図である。It is the structure and installation figure which show the structure and installation of the radiation measuring device which is Embodiment 3 of this invention. 測定手順を示すフローチャートである。It is a flowchart which shows a measurement procedure.

符号の説明Explanation of symbols

1,2 放射線検出器、4 放射線測定装置、5 駆動装置、6 信号処理装置、
11 操作表示装置、12 車輪、20 基台、21a パイプの端部、30 支持枠、
31a パイプの端部、41,42 検出器支持板、44 走行用モータ、
45 移動距離測定装置、46 近接センサ、73 γ線遮蔽体。
1, 2 radiation detector, 4 radiation measuring device, 5 driving device, 6 signal processing device,
11 operation display device, 12 wheels, 20 base, 21a end of pipe, 30 support frame,
31a pipe end, 41, 42 detector support plate, 44 travel motor,
45 moving distance measuring device, 46 proximity sensor, 73 gamma ray shield.

Claims (5)

移動台車、この移動台車に伸縮支持装置を介して支持された支持部材と、上記支持部材に設けられた移動部材と、上記移動部材に固着され放射線を測定する放射線検出器と、上記移動台車に搭載され上記移動部材を所定方向に駆動する移動部材駆動装置とを備えた放射線測定装置。 A moving carriage, a supporting member supported by the moving carriage via an expansion / contraction support device, a moving member provided on the supporting member, a radiation detector fixed to the moving member and measuring radiation, and the moving carriage A radiation measurement apparatus comprising: a moving member driving device that is mounted and drives the moving member in a predetermined direction. 上記支持部材と交差する方向に設けられた交差方向支持部材と、上記交差方向支持部材に設けられた交差方向移動部材と、上記交差方向移動部材に固着され放射線を測定する交差方向放射線検出器と、上記移動台車に搭載され上記交差方向移動部材を上記支持部材と交差する方向に駆動する交差方向移動部材駆動装置とを備えたものであることを特徴とする請求項1記載の放射線測定装置。 A cross direction support member provided in a direction crossing the support member; a cross direction movement member provided on the cross direction support member; a cross direction radiation detector fixed to the cross direction movement member and measuring radiation; The radiation measuring apparatus according to claim 1, further comprising a cross direction moving member driving device mounted on the movable carriage and driving the cross direction moving member in a direction crossing the support member. 上記放射線検出器は、上記所定方向と交差する方向に複数個配列されたものであることを特徴とする請求項1記載の放射線測定装置。 The radiation measuring apparatus according to claim 1, wherein a plurality of the radiation detectors are arranged in a direction intersecting the predetermined direction. 上記放射線検出器はβ線を検出するものであり、上記支持部材は上記放射線検出器に入射するγ線を遮蔽するγ線遮蔽体が設けられたものであることを特徴とする請求項1記載の放射線測定装置。 2. The radiation detector according to claim 1, wherein the radiation detector detects β-rays, and the support member is provided with a γ-ray shield for shielding γ-rays incident on the radiation detector. Radiation measurement equipment. 上記移動台車を駆動する移動台車駆動装置と、上記移動台車の位置情報を発信する移動台車位置情報発信装置と、上記移動部材の位置情報を発信する移動部材位置情報発信装置と、上記放射線検出器にて検出された放射線を上記移動台車及び移動部材の位置情報に対応させて表示する放射線分布表示装置とが設けられたものであることを特徴とする請求項1記載の放射線測定装置。 A mobile cart drive device for driving the mobile cart, a mobile cart location information transmitter for transmitting location information of the mobile cart, a mobile member location information transmitter for transmitting location information of the mobile member, and the radiation detector The radiation measurement apparatus according to claim 1, further comprising a radiation distribution display device that displays the radiation detected in step 1 in correspondence with position information of the movable carriage and the movable member.
JP2006163395A 2006-06-13 2006-06-13 Radiation measurement equipment Expired - Fee Related JP4637794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163395A JP4637794B2 (en) 2006-06-13 2006-06-13 Radiation measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163395A JP4637794B2 (en) 2006-06-13 2006-06-13 Radiation measurement equipment

Publications (2)

Publication Number Publication Date
JP2007333463A true JP2007333463A (en) 2007-12-27
JP4637794B2 JP4637794B2 (en) 2011-02-23

Family

ID=38933084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163395A Expired - Fee Related JP4637794B2 (en) 2006-06-13 2006-06-13 Radiation measurement equipment

Country Status (1)

Country Link
JP (1) JP4637794B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102480A (en) * 2013-11-27 2015-06-04 サンレイズ工業株式会社 Radiation leakage inspection method and inspection device
DE102021134153A1 (en) 2021-12-21 2023-06-22 Safetec Gmbh Measuring system, measuring method and computer program product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412297A (en) * 1987-07-07 1989-01-17 Toshiba Corp Radioactive waste survey instrument
JPH01195395A (en) * 1988-01-29 1989-08-07 Nippon Atom Ind Group Co Ltd Mobile radiation measuring instrument
JPH02251784A (en) * 1989-03-25 1990-10-09 Toshiba Corp Measuring method of radioactive concentration of wall surface
JPH02259588A (en) * 1989-03-31 1990-10-22 Toshiba Corp Detecting device for radiation contaminated part
JPH0688874A (en) * 1992-09-07 1994-03-29 Toshiba Corp Contamination inspecting device
JPH06102354A (en) * 1992-09-22 1994-04-15 Ngk Insulators Ltd Display of radiation intensity
JP2004085414A (en) * 2002-08-28 2004-03-18 Toshiba Corp Inspection device
JP2005274367A (en) * 2004-03-25 2005-10-06 Atox Co Ltd Apparatus for inspecting pollution of elevated large area

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412297A (en) * 1987-07-07 1989-01-17 Toshiba Corp Radioactive waste survey instrument
JPH01195395A (en) * 1988-01-29 1989-08-07 Nippon Atom Ind Group Co Ltd Mobile radiation measuring instrument
JPH02251784A (en) * 1989-03-25 1990-10-09 Toshiba Corp Measuring method of radioactive concentration of wall surface
JPH02259588A (en) * 1989-03-31 1990-10-22 Toshiba Corp Detecting device for radiation contaminated part
JPH0688874A (en) * 1992-09-07 1994-03-29 Toshiba Corp Contamination inspecting device
JPH06102354A (en) * 1992-09-22 1994-04-15 Ngk Insulators Ltd Display of radiation intensity
JP2004085414A (en) * 2002-08-28 2004-03-18 Toshiba Corp Inspection device
JP2005274367A (en) * 2004-03-25 2005-10-06 Atox Co Ltd Apparatus for inspecting pollution of elevated large area

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102480A (en) * 2013-11-27 2015-06-04 サンレイズ工業株式会社 Radiation leakage inspection method and inspection device
DE102021134153A1 (en) 2021-12-21 2023-06-22 Safetec Gmbh Measuring system, measuring method and computer program product

Also Published As

Publication number Publication date
JP4637794B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
CN102138803A (en) Radiation imaging system and assist apparatus for the same
CN210426958U (en) Curved surface screen detection equipment
JP6106683B2 (en) Length measuring device
JP4637794B2 (en) Radiation measurement equipment
JP2013088231A (en) Powder layer volume measuring apparatus
JP2014010002A (en) Vehicle surface contamination monitor and vehicle surface contamination monitoring facility
CN104155322A (en) X-ray detector
JP5950015B2 (en) Radiation monitor
CN109682332A (en) A kind of electromagnetic wave automatic measuring thickness device
JP2018119372A (en) Management device of filling type steel pipe concrete column
US20070053499A1 (en) Support apparatus for X-ray detector
JP5356173B2 (en) Medical imaging system
JPH07280716A (en) Slump test measuring device
US5001841A (en) Apparatus for inspecting a profile of a rod
KR101949691B1 (en) Semi-auto radiation inspection apparatus of attachable and detachable type
JP7141613B2 (en) Condition evaluation device for inspection objects
KR101949690B1 (en) Radiation inspection apparatus of attachable and detachable type
JP2012047043A (en) Portable corn penetration testing device
JP2005218462A5 (en)
JPS6076680A (en) Surface dose rate measuring apparatus
KR20100088219A (en) Radioactivity detecting apparatus
JPH02259588A (en) Detecting device for radiation contaminated part
CN113048960B (en) Spatial position detection device and position adjustment method
KR20180099156A (en) X-ray spatial dose distribution measurement apparatus
KR101443151B1 (en) Portable test apparatus for motion sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4637794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees