JPH06102354A - Display of radiation intensity - Google Patents

Display of radiation intensity

Info

Publication number
JPH06102354A
JPH06102354A JP25255892A JP25255892A JPH06102354A JP H06102354 A JPH06102354 A JP H06102354A JP 25255892 A JP25255892 A JP 25255892A JP 25255892 A JP25255892 A JP 25255892A JP H06102354 A JPH06102354 A JP H06102354A
Authority
JP
Japan
Prior art keywords
radiation
radiation intensity
display
measuring
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25255892A
Other languages
Japanese (ja)
Inventor
Takashi Takada
孝 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP25255892A priority Critical patent/JPH06102354A/en
Publication of JPH06102354A publication Critical patent/JPH06102354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To save labor for radiation measurement and clearly display radiation intensity distribution by automatizing measurement and display of the radiation intensity. CONSTITUTION:Radiation generating sources A, B, a radiation measuring means 2, a position detecting means 3, a moving means 4, a computing means 5 and a display means 6 are provided. The radiation measuring means 2 and the position detecting means 3 constitute a measuring part 9, where a transmitter is provided to transmit a positional signal and a radiation detection signal. The measuring part 9 can be moved to any direction or to any position in a preset area by the moving means. The computing means 5 computes the radiation intensity at such a position in accordance with the positional signal from the position detecting means 3 mounted in the measuring part 9 and a measurement signal from the radiation measuring means 2. The result of computation is displayed on a display means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射線計測手段により
計測される放射線強度(または単位時間当たりの放射線
量を表わす放射線量率;Sv(シーベルト)/H(時
間)、mSv(ミリシーベルト)/H(時間))をマイ
クロコンピュータ等を用いてデジタル処理し、所定時間
内における放射線強度の平均値または最大値を表示する
ようにした放射線強度の表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation intensity (or a radiation dose rate representing a radiation dose per unit time; Sv (sievert) / H (hour), mSv (millisievert) measured by radiation measuring means. ) / H (time)) is digitally processed using a microcomputer or the like to display the average value or the maximum value of the radiation intensity within a predetermined time.

【0002】[0002]

【従来の技術】一般に、原子力発電所等においては、機
器または配管等より発せられる放射線(特にγ線)から
その漏洩方向や強度または線量当量率等を検出し、線量
当量率マップ等を作成することにより作業者の被ばく管
理を行なうことが必要とされる。
2. Description of the Related Art Generally, in a nuclear power plant or the like, the radiation direction, intensity, dose equivalent rate, etc. of radiation (especially γ-rays) emitted from equipment or piping etc. are detected, and a dose equivalent rate map etc. Therefore, it is necessary to manage the exposure of workers.

【0003】従来のこの種の被ばく管理は、作業エリア
内の放射強度線雰囲気を人為的に測定し、作表または表
示することにより行なっているため、測定作業者の被ば
くという大きな問題があるばかりでなく、作業が煩雑で
しかも長時間を要するという難点がある。また、一定の
放射線強度以上の箇所に作業者が立ち入ることは危険で
あるため、所定区域内の任意の位置の放射線強度を計測
し表示し、あらかじめ作業者に危険区域の範囲を告知す
ることができれば便利である。
Conventionally, this kind of exposure control is performed by artificially measuring the radiation intensity line atmosphere in the work area and plotting or displaying it, so that there is a major problem of exposure of the measurement operator. However, there is a drawback that the work is complicated and takes a long time. Since it is dangerous for an operator to enter a place with a certain radiation intensity or more, it is possible to measure and display the radiation intensity at any position within the prescribed area and notify the operator of the range of the dangerous area in advance. It would be convenient if possible.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような観
点のもとになされたもので、放射線強度等を計測、表示
する作業を自動化することにより放射線測定作業の省力
化を図るとともに、放射線強度の分布を明確に表示する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made based on such a point of view. The labor of radiation measurement work is reduced by automating the work of measuring and displaying radiation intensity and the like, and The purpose is to clearly display the intensity distribution.

【0005】[0005]

【課題を解決するための手段】本発明の放射線強度の表
示装置は、原子力発電所等の所定の区域内に配設された
放射線発生源から発生する放射線強度を計測する放射線
計測手段と、この放射線計測手段を搭載し、床平面に対
して水平なX軸方向とY軸方向ならびに床平面に対して
垂直なZ軸方向の少なくとも一方向に自在に移動可能で
ある移動手段と、この移動手段の位置を検出する位置検
出手段と、この位置検出手段と前記放射線計測手段によ
り得られる所定の区域内の所定点近傍の放射線強度を演
算する演算手段と、前記演算処理の結果を表示する表示
手段とを備えてなることを特徴とする。
A radiation intensity display device of the present invention is a radiation measuring means for measuring the radiation intensity generated from a radiation source disposed in a predetermined area such as a nuclear power plant, and the like. A moving means that is equipped with a radiation measuring means and is movable in at least one of the X-axis direction and the Y-axis direction horizontal to the floor plane and the Z-axis direction perpendicular to the floor plane, and the moving means. Position detecting means for detecting the position of the radiation detecting means, calculating means for calculating the radiation intensity near a predetermined point in a predetermined area obtained by the position detecting means and the radiation measuring means, and display means for displaying the result of the calculation processing. It is characterized by comprising and.

【0006】ここで所定点近傍の放射線強度とは、所定
点および所定点を含む直線、平面、立体面の放射線強度
の平均値、最大値等の代表値をいう。
Here, the radiation intensity in the vicinity of a predetermined point means a representative value such as an average value or a maximum value of the radiation intensity of a predetermined point and a straight line, a plane or a three-dimensional surface including the predetermined point.

【0007】[0007]

【作用】本発明の放射線強度の表示装置によれば、任意
の点の放射線強度の代表値を表示手段に表示するため、
作業員に危険はないか、また機器の運転が正常に行われ
ているか等の判断が容易に行える。
According to the radiation intensity display device of the present invention, since the representative value of the radiation intensity at any point is displayed on the display means,
It is easy to determine whether the worker is at risk and whether the equipment is operating normally.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の第1実施例を示すブロック図、図
2は本発明の第1実施例を示すもので天井吊り下げ方式
の計測部を示す概略側面図、図3は天井吊り下げ方式の
計測部を示す概略平面図、図4は計測位置を示す斜視
図、図5は計測部の放射線検出部を示す断面図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a block diagram showing a first embodiment of the present invention, FIG. 2 is a schematic side view showing a measuring unit of a ceiling suspension system according to the first embodiment of the present invention, and FIG. 3 is a ceiling suspension system. FIG. 4 is a schematic plan view showing the measuring unit, FIG. 4 is a perspective view showing the measuring position, and FIG. 5 is a sectional view showing the radiation detecting unit of the measuring unit.

【0009】図1において、A、Bは放射線発生源、2
は放射線計測手段、3は位置検出手段、4は移動手段、
5は演算手段、6は表示手段である。ここで用いられる
位置検出手段3としては、移動手段4に取り付けられた
ステッピングモータ等を用いることができ、放射線計測
手段2としては、計数率計(レートメータ)を使用する
ことができる。放射線計測手段2の放射線検出部は、N
al(Tl)シンチレーション検出器またはSSD(半
導体検出器)等の放射線検出器22を設けて構成され
る。なお、放射線検出器22を鉛等の容器20により遮
蔽するのは、所定方向からの放射線のみを効果的に導入
するためである。容器20は、放射線検出器22で検出
する放射線方向角度範囲を拡張するため上下、左右の首
降り作動可能である。23は放射線検出器22の出力信
号線である。
In FIG. 1, A and B are radiation sources, and 2
Is radiation measuring means, 3 is position detecting means, 4 is moving means,
Reference numeral 5 is a calculation means, and 6 is a display means. As the position detecting means 3 used here, a stepping motor or the like attached to the moving means 4 can be used, and as the radiation measuring means 2, a counting rate meter (rate meter) can be used. The radiation detecting unit of the radiation measuring unit 2 is N
A radiation detector 22 such as an al (Tl) scintillation detector or SSD (semiconductor detector) is provided. The radiation detector 22 is shielded by the container 20 made of lead or the like in order to effectively introduce only the radiation from a predetermined direction. The container 20 can be moved up and down and left and right in order to expand the radiation angle range detected by the radiation detector 22. Reference numeral 23 is an output signal line of the radiation detector 22.

【0010】これらの放射線計測手段2及び位置検出手
段3によって計測部9が形成されるとともに、この計側
部9には、位置信号及び放射線検出信号を発信する発信
機が設けられている。また、この計側部9は、図2およ
び図3に示されるように、所定の区域内において移動手
段25によって任意の方向または任意の場所へ移動可能
になっている。
A measuring section 9 is formed by the radiation measuring means 2 and the position detecting means 3, and a transmitter for transmitting a position signal and a radiation detecting signal is provided on the measuring side portion 9. In addition, as shown in FIGS. 2 and 3, the measuring side portion 9 can be moved in a predetermined area by a moving means 25 in an arbitrary direction or an arbitrary place.

【0011】移動手段25は、放射線発生源A、Bのあ
る区域内の天井部に床面に平行に固定されるX軸方向レ
ール10とこれに直交するY軸方向レール11とを備
え、X軸方向レール10に対しY軸方向レール11がX
軸方向の任意の方向に移動可能になっており、この移動
可能なY軸方向レール11にYレール軸方向の任意の場
所に移動可能な搬送装置26が設けられ、この搬送装置
26に昇降自在のレール12が設けられ、その下端に計
測部9が取付けられている。計測部9は、昇降可能なレ
ール12により搬送装置26から下方のZ軸方向の任意
の上下高さ位置に設置されるように調節することができ
る。
The moving means 25 is provided with an X-axis direction rail 10 fixed to a ceiling portion in a region where the radiation sources A and B are located in parallel with the floor surface, and a Y-axis direction rail 11 orthogonal to the X-direction rail 10. The Y-axis rail 11 is X relative to the axial rail 10.
The movable Y-axis rail 11 is provided with a transfer device 26 that can be moved to any position in the Y-rail axial direction, and can be moved up and down. Rail 12 is provided, and the measuring unit 9 is attached to the lower end of the rail 12. The measuring unit 9 can be adjusted by the vertically movable rail 12 so as to be installed at an arbitrary vertical height position in the Z-axis direction below the transport device 26.

【0012】前記放射線発生源A、Bがある区域外に設
けられる監視室には前記発信機からの信号を受信する受
信機が設けられる。監視室内に設置されるコンピュータ
内では、受信機で受信された放射線強度信号と位置信号
をパルス信号の形で演算手段5に入力し、演算手段5
は、計測部9に搭載される位置検出手段3からの位置信
号および放射線計測手段2からの計測信号に基づいてそ
の位置における放射線強度を演算する。
A receiver for receiving a signal from the transmitter is provided in a monitoring room provided outside the area where the radiation sources A and B are located. In the computer installed in the monitoring room, the radiation intensity signal and the position signal received by the receiver are input to the calculation means 5 in the form of pulse signals, and the calculation means 5 is input.
Calculates the radiation intensity at that position based on the position signal from the position detection unit 3 mounted on the measurement unit 9 and the measurement signal from the radiation measurement unit 2.

【0013】演算の結果は表示手段に表示される。この
表示手段の表示態様は例えば平面表示と立体表示とがあ
り、例えば次のようなものがある。 、床平面に対して、平行な面座標を取り、この面座標
内の放射線強度を表示する。表示方法は、単に数値を記
載するか、危険な状態は色付けて表示してもよい。放射
線強度レベルに対応させ、濃淡をつけて色付けて表示し
てもよい。等高線上に図面で表示してもよい。
The result of the calculation is displayed on the display means. The display mode of this display means includes, for example, a two-dimensional display and a three-dimensional display. , The plane coordinates parallel to the floor plane are taken, and the radiation intensity within the plane coordinates is displayed. As a display method, numerical values may be simply described, or dangerous states may be colored and displayed. It may be displayed in a shaded color corresponding to the radiation intensity level. You may display by drawing on a contour line.

【0014】、床平面に対して、垂直な面座標を取
り、この面座標内の放射線強度を表示する。表示方法
は、単に数値を記載するか、危険な状態は色付けて表示
してもよい。放射線強度レベルに対応させ、濃淡をつけ
て色付けて表示してもよい。等高線上に図面で表示して
もよい。 、立体的に(水平および垂直)に放射線強度を表示す
る表示してもよい。この場合、コンピュータグラフィッ
クで立体的に濃淡をつけて色付けて表示してもよい。
次に動作について説明する。
Then, plane coordinates perpendicular to the floor plane are taken, and the radiation intensity within the plane coordinates is displayed. As a display method, numerical values may be simply described, or dangerous states may be colored and displayed. It may be displayed in a shaded color corresponding to the radiation intensity level. You may display by drawing on a contour line. Alternatively, the radiation intensity may be displayed three-dimensionally (horizontally and vertically). In this case, a computer graphic may be displayed in three-dimensional shades and colored.
Next, the operation will be described.

【0015】計測部9に設けられる放射線計測手段2に
より検出される放射線強度は電波の形で発信機より発信
される。位置検出手段3は、図4に示すX軸、Y軸、Z
軸の座標における現在位置を検出し、この検出位置信号
は発信機より発信される。受信機で受信された放射線強
度信号と位置信号は、受信機からパルス信号の形で演算
手段5に与えられ、演算手段5は、位置検出手段3から
の位置信号および放射線計測手段2からの計測信号に基
づいて放射線強度を演算する。この演算手段5によって
演算処理の結果その位置の単位時間当たりの放射線強度
信号が得られる。なお、その現在位置での放射線強度の
測定は一回だけのサンプリングでは不充分なので複数回
のサンプリングを行なうことにより平均値または最大値
を得る。このようにして得られる放射線強度情報は、表
示手段6に与えられ表示される。 ここで、図4に示す
ように、放射線発生源:A、放射線発生源:B、P地点
の座標(X2、Y3、Z1)とすると、表示は立体的に
全箇所が表示されているのがベストであるが、P地点の
床平面に対して平行平面または、垂直平面の放射線強度
が常時図示されていればベターで、もっとも放射線の強
度の高いP地点の放射線強度が図示されているだけでも
よい。なお、機器、配管等の点検のため保守要員が立ち
入る特定の通路または場所がある場合、その特定の通路
または場所についてはその位置の放射線強度を常時表示
し、この場所が危険の場合には警報が鳴る警報機を取り
つけてもよい。
The radiation intensity detected by the radiation measuring means 2 provided in the measuring section 9 is transmitted from the transmitter in the form of radio waves. The position detecting means 3 includes X-axis, Y-axis, and Z-axis shown in FIG.
The current position in the coordinate of the axis is detected, and this detected position signal is transmitted from the transmitter. The radiation intensity signal and the position signal received by the receiver are given from the receiver to the calculating means 5 in the form of a pulse signal, and the calculating means 5 measures the position signal from the position detecting means 3 and the radiation measuring means 2. The radiation intensity is calculated based on the signal. As a result of the arithmetic processing by the arithmetic means 5, a radiation intensity signal per unit time at that position is obtained. It should be noted that the radiation intensity measurement at the current position is not sufficient if the sampling is performed only once, so that the average value or the maximum value is obtained by performing the sampling a plurality of times. The radiation intensity information obtained in this way is given to the display means 6 and displayed. Here, as shown in FIG. 4, assuming that the radiation source: A, the radiation source: B, and the coordinates of points P (X2, Y3, Z1), all the three-dimensional portions are displayed. Although it is the best, if the radiation intensity of the plane parallel to the floor plane of P point or the vertical plane is always shown, it is better, even if the radiation intensity of P point with the highest radiation intensity is shown. Good. If there is a specific passage or place where maintenance personnel enter to inspect equipment, piping, etc., the radiation intensity at that position will always be displayed for that specific passage or place, and an alarm will be issued if this place is dangerous. You may install an alarm that sounds.

【0016】前記実施例によれば、所定区域内の任意の
位置の放射線強度を計測し表示するので、あらかじめ作
業者に危険区域の有無を知らせ、危険区域の有の時はそ
の区域範囲を告知する。これにより、放射線強度等を計
測、表示する作業を自動化するため、放射線測定作業の
省力化を図るとともに、放射線強度の分布を明確に表示
する。
According to the above-mentioned embodiment, since the radiation intensity at any position in the predetermined area is measured and displayed, the operator is informed in advance of the existence of the dangerous area, and when the dangerous area is present, the area range is notified. To do. As a result, the work of measuring and displaying the radiation intensity and the like is automated, so that the labor of the radiation measurement work is reduced and the distribution of the radiation intensity is clearly displayed.

【0017】次に、本発明を適用した第2実施例による
自走ロボット式の計測部を図6および図7に示す。自走
ロボット20は、台車31に垂直方向に伸縮可能なロッ
ド32が設けられており、このロッド32の頂部に計測
部32が取付けられている。計側部32は、放射線検出
部34とこの放射線検出部34を支持する伸縮可能なロ
ッド33からなる。ロッド33は図7に示す矢印のよう
に、台車31に対し360°任意の回転方向に回動可能
である。
Next, FIGS. 6 and 7 show a self-propelled robot type measuring unit according to a second embodiment of the present invention. In the self-propelled robot 20, a cart 31 is provided with a rod 32 that can extend and contract in the vertical direction, and a measuring unit 32 is attached to the top of the rod 32. The measuring side portion 32 includes a radiation detecting portion 34 and an extendable rod 33 that supports the radiation detecting portion 34. The rod 33 is rotatable in any rotation direction of 360 ° with respect to the carriage 31 as shown by the arrow in FIG. 7.

【0018】この第2の実施例においては、台車31が
床面を所定の箇所に走行し、その位置でロッド32を伸
縮させ高さ調節し、かつロッド33を任意の回転方向に
回転し、放射線検出部34をX軸、Y軸、Z軸の任意の
方向に向けることができる。従って、その位置における
任意方向からの放射線強度を測定可能である。
In the second embodiment, the trolley 31 travels to a predetermined position on the floor, the rod 32 is expanded and contracted at that position to adjust the height, and the rod 33 is rotated in an arbitrary rotation direction. The radiation detector 34 can be oriented in any direction of the X axis, Y axis, and Z axis. Therefore, it is possible to measure the radiation intensity from that direction at that position.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
放射線発生源のある特定区域内の特定の点における放射
線強度を自動的に測定し表示するるため、作業員が立ち
入る場所の放射線強度が常時表示されており、危険の場
合にはそれを表示するという効果がある。従って、放射
線強度分布の管理を行なえるという効果がある。また、
放射線発生源のある区域の任意の点の放射線強度を検知
できれば機器の異常を検知できるという効果もある。
As described above, according to the present invention,
In order to automatically measure and display the radiation intensity at a specific point in a specific area where the radiation source is located, the radiation intensity at the place where the worker enters is always displayed, and if it is dangerous, it is displayed. There is an effect. Therefore, there is an effect that the radiation intensity distribution can be managed. Also,
If the radiation intensity at any point in the area where the radiation source is located can be detected, there is also an effect that an abnormality of the device can be detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の第1実施例を示すもので天井吊下げ方
式計測部を有する放射線強度の表示装置を示す模式的側
面図である。
FIG. 2 is a schematic side view showing a radiation intensity display device having a ceiling suspension type measurement unit according to the first embodiment of the present invention.

【図3】図2の模式的平面図である。FIG. 3 is a schematic plan view of FIG.

【図4】計測部の位置を示す説明図である。FIG. 4 is an explanatory diagram showing a position of a measuring unit.

【図5】計測部の放射線検出部の構造を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing the structure of a radiation detection unit of the measurement unit.

【図6】本発明の第2実施例を示すもので自走ロボット
式計測部を有する放射線強度の表示装置を示す模式的側
面図である。
FIG. 6 is a schematic side view showing a radiation intensity display device having a self-propelled robot type measurement unit according to the second embodiment of the present invention.

【図7】図6の模式的平面図である。FIG. 7 is a schematic plan view of FIG.

【符号の説明】[Explanation of symbols]

1 放射線発生源 2 放射線計測手段 3 位置検出手段 4 移動手段 5 演算手段 6 表示手段 1 Radiation Source 2 Radiation Measuring Means 3 Position Detection Means 4 Moving Means 5 Computing Means 6 Display Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子力発電所等の所定の区域内に配設さ
れた放射線発生源から発生する放射線強度を計測する放
射線計測手段と、 この放射線計測手段を搭載し、床平面に対して水平なX
軸方向とY軸方向ならびに床平面に対して垂直なZ軸方
向の少なくとも一方向に自在に移動可能である移動手段
と、 この移動手段の位置を検出する位置検出手段と、 この位置検出手段と前記放射線計測手段により得られる
所定の区域内の所定点近傍の放射線強度を演算する演算
手段と、 前記演算処理の結果を表示する表示手段とを備えてなる
ことを特徴とする放射線強度の表示装置。
1. A radiation measuring means for measuring the radiation intensity generated from a radiation source arranged in a predetermined area such as a nuclear power plant, and the radiation measuring means is mounted and is horizontal to a floor plane. X
A moving unit that is movable in at least one of the axial direction, the Y-axis direction, and the Z-axis direction perpendicular to the floor plane, a position detecting unit that detects the position of the moving unit, and a position detecting unit. A radiation intensity display device comprising: a computation unit that computes the radiation intensity near a predetermined point within a predetermined area obtained by the radiation measurement unit; and a display unit that displays the result of the computation process. .
JP25255892A 1992-09-22 1992-09-22 Display of radiation intensity Pending JPH06102354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25255892A JPH06102354A (en) 1992-09-22 1992-09-22 Display of radiation intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25255892A JPH06102354A (en) 1992-09-22 1992-09-22 Display of radiation intensity

Publications (1)

Publication Number Publication Date
JPH06102354A true JPH06102354A (en) 1994-04-15

Family

ID=17239045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25255892A Pending JPH06102354A (en) 1992-09-22 1992-09-22 Display of radiation intensity

Country Status (1)

Country Link
JP (1) JPH06102354A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529741A (en) * 2004-03-17 2007-10-25 パク,ヨン−ウン Alpha track detector with retractable semicircular ring
JP2007333463A (en) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp Radiation measuring apparatus
JP2015219066A (en) * 2014-05-15 2015-12-07 国立研究開発法人農業・食品産業技術総合研究機構 Ground surface radiation measuring apparatus and radiation measuring method using the same
JP2016050843A (en) * 2014-08-29 2016-04-11 日立Geニュークリア・エナジー株式会社 Radiation measuring device
CN112426127A (en) * 2020-09-04 2021-03-02 华克医疗科技(北京)股份公司 Robot and method for determining radioactive intensity distribution of target object
KR20210025298A (en) * 2019-08-27 2021-03-09 현대제철 주식회사 Apparatus and method for measuring retention time of raw material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529741A (en) * 2004-03-17 2007-10-25 パク,ヨン−ウン Alpha track detector with retractable semicircular ring
JP2007333463A (en) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp Radiation measuring apparatus
JP4637794B2 (en) * 2006-06-13 2011-02-23 三菱電機株式会社 Radiation measurement equipment
JP2015219066A (en) * 2014-05-15 2015-12-07 国立研究開発法人農業・食品産業技術総合研究機構 Ground surface radiation measuring apparatus and radiation measuring method using the same
JP2016050843A (en) * 2014-08-29 2016-04-11 日立Geニュークリア・エナジー株式会社 Radiation measuring device
KR20210025298A (en) * 2019-08-27 2021-03-09 현대제철 주식회사 Apparatus and method for measuring retention time of raw material
CN112426127A (en) * 2020-09-04 2021-03-02 华克医疗科技(北京)股份公司 Robot and method for determining radioactive intensity distribution of target object

Similar Documents

Publication Publication Date Title
JP6427533B2 (en) Radioactive surface contamination density measuring device and radioactive surface contamination density measuring method using the measuring device
TWI705230B (en) Vehicle size measuring device and vehicle size measuring method
JP2008026185A (en) Radiation visualization system
CN103234464A (en) Dynamic automatic measuring device for overall dimension of vehicle
JPH06102354A (en) Display of radiation intensity
US5135706A (en) Device for measuring radioactive contamination on large pieces
CN116757350B (en) Unmanned forklift cluster scheduling processing system
JPS63151884A (en) Method and apparatus for remotely measuring surface dosage rate
CN107843209A (en) Profile scan system and method
CN209485698U (en) Dummy's positioning device for vehicle impact testing
JPH06102353A (en) Display of radiation intensity
JP2000065541A (en) Position detecting device
CN104891357B (en) lifting operation auxiliary system
KR101286691B1 (en) High level alpha/beta ray contamination remotely measuring method and using the system thereof
CN109613551B (en) Real-time monitoring method and device for trolley position under irradiation system beam
JP4330847B2 (en) Radiation management monitor and radiation management method
JPS6188174A (en) Device for displaying danger of radiant ray
FI20195848A1 (en) Spreader position control
CN205449055U (en) Spirit level for civil engineering
CN112033285A (en) Roadway section displacement measuring system and measuring method
CN115267872A (en) Method for measuring space gamma radiation dose and surface beta radioactivity in radiation region
CN113387274B (en) Alignment method and system for truck collection and container crane
CN114179851A (en) Railway equipment clearance detection device and method
KR101187647B1 (en) High level alpha/beta Contamination Visualization Method and System Thereof
JP7498205B2 (en) Radioactive contamination measuring device