JPH01195395A - Mobile radiation measuring instrument - Google Patents

Mobile radiation measuring instrument

Info

Publication number
JPH01195395A
JPH01195395A JP63017125A JP1712588A JPH01195395A JP H01195395 A JPH01195395 A JP H01195395A JP 63017125 A JP63017125 A JP 63017125A JP 1712588 A JP1712588 A JP 1712588A JP H01195395 A JPH01195395 A JP H01195395A
Authority
JP
Japan
Prior art keywords
radiation
vehicle body
measuring device
wall surface
radiation measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63017125A
Other languages
Japanese (ja)
Inventor
Masato Takahashi
正人 高橋
Toru Fujita
徹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Atomic Industry Group Co Ltd filed Critical Nippon Atomic Industry Group Co Ltd
Priority to JP63017125A priority Critical patent/JPH01195395A/en
Publication of JPH01195395A publication Critical patent/JPH01195395A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To safely and surely measure the radiation on a vertical or ceiling wall surface with the remote control by providing wall surface attractors, a driving mechanism which drives a device longitudinally and transversely, and an analyzer which analyzes measured data from a radiation measurer. CONSTITUTION:A mobile radiation measuring instrument is provided with wall surface attractors 4 which attracts the device to the wall surface, a driving mechanism 2 which drives a vehicle body 1 longitudinally and transversely, and an analyzer 5 which analyzes measured data from a radiation measurer 3. Both sides of a caterpillar tread consisting of an endless body 8 stretched around wheels 7a, 7b, 7c, and 7d are rotated and driven to advance the vehicle body, and the driving force to right or left wheels from a motor is cut off by a clutch to turn the vehicle body 1 right or left. Therefore, the vehicle body is controlled forward or backward without steering devices. Thus, the radiation on the vertical or intrapipe wall surface which is difficult to measure in a conventional method is safely and surely measured.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、原子炉を廃棄処分する際に原子炉構造材をそ
の放射能汚染量を測定し放射能汚染度に応じて分別する
場合の放射線測定装置に係り、特に操作者の遠隔操作に
より自走する自走式放射線測定装置に関するものである
[Detailed Description of the Invention] "Industrial Application Field" The present invention is useful for measuring the amount of radioactive contamination of reactor structural materials and separating them according to the degree of radioactive contamination when disposing of a nuclear reactor. The present invention relates to a radiation measuring device, and particularly to a self-propelled radiation measuring device that is self-propelled by remote control by an operator.

「従来の技術」 一般に、原子炉を廃棄する場合に原子炉構造材の放射能
汚染度に応じて分別しその処理を能率的に行うために、
原子炉構造物の放射能量を測定する必要がある。しかし
、これらの構造物は大型であるとともに種々の形態を有
しているためその測定は困難である。例えば、原子炉構
造物は垂直壁や天井内壁面を有しているため通常行われ
ている吊り下げ式では不可能である。そこで、従来は原
子炉格納容器内に足場を組み放射能量を測定していた。
``Prior art'' In general, when disposing of a nuclear reactor, in order to efficiently separate the reactor structural materials according to the degree of radioactive contamination,
It is necessary to measure the amount of radioactivity in the reactor structures. However, since these structures are large and have various shapes, it is difficult to measure them. For example, a nuclear reactor structure has vertical walls and inner wall surfaces of the ceiling, so it is not possible to use the normal hanging method. Therefore, in the past, scaffolding was installed inside the reactor containment vessel to measure the amount of radioactivity.

「発明が解決しようとする課題」 ところで、上述した従来の放射能装置にあってはその都
度、原子炉内に足場を組み原子炉構造物内の放射能量を
測定していたため、作業が困難であるとともに危険なも
のであった。特に、原子炉構造物は複雑な形態をしてい
るため足場作業も熟練を要するものであった。
``Problem to be solved by the invention'' By the way, with the conventional radioactivity equipment mentioned above, each time a scaffold was set up inside the reactor to measure the amount of radioactivity inside the reactor structure, the work was difficult. It was dangerous at the same time. In particular, since the reactor structure has a complex shape, scaffolding work required skill.

本発明の目的は上述した欠点に鑑みなされたもので、大
型でかつ複雑な形態をしている原子炉構遺物内に足場を
組むことなく容易に放射能量を測定することのできる自
走式放射線測定装置を提供することにある。
The object of the present invention has been made in view of the above-mentioned drawbacks, and is a self-propelled radiation therapy system that can easily measure the amount of radioactivity without building scaffolding inside a large and complex nuclear reactor structure. The purpose of this invention is to provide a measuring device.

「課題を解決するための手段」 本発明に係る自走式放射線測定装置は、種々の壁面上を
足場を必要とすることなく自刃で走行し放射線測定を行
うために、放射線測定器と装置を壁面に吸着させる壁面
吸着器と装置を前後左右に駆動する駆動機構とを有し放
射線測定器を壁面に自由に吸着させ、放射線測定器から
の測定データを解析する解析機からの遠隔操作により垂
直壁面あるいは天井壁面の放射線測定を行う構成とした
ものである。
"Means for Solving the Problems" The self-propelled radiation measuring device according to the present invention uses a radiation measuring device and a device in order to run on various wall surfaces with its own blade and measure radiation without requiring a scaffold. It has a wall suction device that adsorbs to the wall and a drive mechanism that drives the device back and forth and left and right.The radiation measuring device can be freely adsorbed to the wall and can be moved vertically by remote control from the analyzer that analyzes the measurement data from the radiation measuring device. It is configured to measure radiation on walls or ceiling walls.

「作用」 このように本発明に係る自走式放射線測定装置は、電磁
石を車体の一部に備えているので任意に傾斜した磁性体
壁面を自走し放射線を測定することが可能となる。
"Function" As described above, since the self-propelled radiation measuring device according to the present invention is equipped with an electromagnet in a part of the vehicle body, it is possible to self-propel along an arbitrarily inclined magnetic wall surface and measure radiation.

「実施例」 以下、添付図面に従って本発明の一実施例を説明する。"Example" An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例を示す自走式放射線測定装置
の側面図である。同図において、自走式放射線測定装置
は車体1と、この車体1を前後左右に駆動する駆動機構
2と、この車体1に搭載された放射線測定器3と、装置
を壁面に吸着させる壁面吸着器4と、放射線測定器3か
らの測定データを解析する解析機5と放射線測定器3と
解析器5との測定データを授受するためのケーブル6等
から構成されている。
FIG. 1 is a side view of a self-propelled radiation measuring device showing an embodiment of the present invention. In the figure, the self-propelled radiation measuring device includes a vehicle body 1, a drive mechanism 2 that drives the vehicle body 1 back and forth, left and right, a radiation measuring device 3 mounted on the vehicle body 1, and a wall adsorption device that attaches the device to the wall. The radiation measuring device 4 includes an analyzer 5 for analyzing measurement data from the radiation measuring device 3, and a cable 6 for exchanging measurement data between the radiation measuring device 3 and the analyzer 5.

ここで、駆動機構2は車体lの両側にそれぞれ左右対象
に設けられた車輪7a、7b、7c。
Here, the drive mechanism 2 includes wheels 7a, 7b, and 7c provided symmetrically on both sides of the vehicle body l.

7dに張架された無端体8からなるキャタピラと前記し
た車輪の一部あるいは全部を回転駆動するモータ9等か
ら構成されている。また、キャタピラは図外のクラッチ
により車体1の片側あるいは両側を回転駆動することが
できる。従って、キャタピラの両側を回転駆動すれば車
体は前進し、クラッチによりモータからの駆動を左右の
いずれか一方のみ遮断すると駆動を遮断した方へ車体1
は回転する。このため、操舵装置を用いることなく車体
の前進あるいは後退方向を制御することができる。そし
て車体1上のモータ9へはケーブル6を介して電流が供
給さ′れる。また、車体1を後退させる場合にはモータ
9を逆転させるか、歯車を介して車輪を逆転させればよ
い。更に、車体重量を軽くするためにモータ9への電源
は外部からケーブル6を介して供給する。
It is composed of a caterpillar consisting of an endless body 8 stretched over a shaft 7d, a motor 9 for rotationally driving part or all of the wheels mentioned above, and the like. Further, the caterpillar can rotate one or both sides of the vehicle body 1 by means of a clutch (not shown). Therefore, if both sides of the caterpillar are driven to rotate, the vehicle will move forward, and if the clutch cuts off the drive from the motor to either the left or right, the vehicle will move toward the direction where the drive is cut off.
rotates. Therefore, the forward or backward direction of the vehicle body can be controlled without using a steering device. Current is supplied to the motor 9 on the vehicle body 1 via the cable 6. Further, when the vehicle body 1 is to be moved backward, the motor 9 may be reversed, or the wheels may be reversed via gears. Further, in order to reduce the weight of the vehicle, power is supplied to the motor 9 from the outside via the cable 6.

放射線測定器3は、例えばヨウ化ナトリウム(Nal)
放射線検出器を好適に使用することができる。ここでG
e(Li)検出器は液体窒素による冷却が必要であるた
め自走式の車体に搭載するには適さない。これに対し、
ヨウ化ナトリウム(NaI)放射線検出器は分解能はや
や劣るが冷却の必要がなく軽量で携帯に便利であること
より自走式の車体に搭載するには適している。
The radiation measuring device 3 uses sodium iodide (Nal), for example.
A radiation detector can be suitably used. G here
Since the e(Li) detector requires cooling with liquid nitrogen, it is not suitable for mounting on a self-propelled vehicle body. In contrast,
Although the resolution of sodium iodide (NaI) radiation detectors is slightly inferior, they do not require cooling and are lightweight and portable, making them suitable for mounting on self-propelled vehicles.

第2図はNal放射線検出器3およびプリアンプ10を
示す拡大した概略図である。図においてNal放射線検
出器3、光電子倍増管 (photomultiplier) 10およびプリ
アンプ11は車体1に搭載されておりNal放射線検出
器3からの測定結果はデータ転送用のケーブル6により
図外の解析器12へ送られ解析され記録される。
FIG. 2 is an enlarged schematic diagram showing the Nal radiation detector 3 and preamplifier 10. In the figure, a NAL radiation detector 3, a photomultiplier 10, and a preamplifier 11 are mounted on the vehicle body 1, and the measurement results from the NAL radiation detector 3 are sent to an analyzer 12 (not shown) via a data transfer cable 6. It is sent, analyzed and recorded.

ここで、原子炉容器からのT線はNal放射線検出器3
へ入射し、光子を発生させる。発生した光子は光電子倍
増管10により光電子に変換されパルス信号に変換され
る。パルス信号はプリアンプ11により増幅されたのち
ケーブル6により解析器12へ送られ、線量率の測定が
行われる。
Here, the T-rays from the reactor vessel are detected by the Nal radiation detector 3.
and generates photons. The generated photons are converted into photoelectrons by the photomultiplier tube 10 and converted into pulse signals. The pulse signal is amplified by a preamplifier 11 and then sent to an analyzer 12 via a cable 6, where the dose rate is measured.

次に、以上のように構成された自走式放射線測定装置の
具体的動作について説明する。まず、鉄製の原子炉格納
容器(PCV、RPV)13の内壁面に自走式放射線測
定装置を付着させ放射線(主にT線)をNal放射線検
出器3で測定しつつキャタピラを駆動して前進させる。
Next, the specific operation of the self-propelled radiation measuring device configured as above will be explained. First, a self-propelled radiation measuring device is attached to the inner wall surface of the iron reactor containment vessel (PCV, RPV) 13, and while radiation (mainly T-rays) is measured by the NAL radiation detector 3, the caterpillar is driven to move forward. let

このとき、自走式放射線測定装置は壁面吸着器4の磁力
により原子炉格納容器(PCV、RPV)13の内壁面
に吸着しているので落下することはない。また、自走式
放射線測定装置を右折させる場合にはキャタピラの右側
を停止し左側のみを駆動させればよい。また、車体1を
後退させる場合にはモータ9を逆転させるか、歯車を介
して車輪を逆転させればよい。ここで、壁面吸着器4の
磁力の強さは自走式放射線測定装置の重量を支えるのに
充分なものであればよい。
At this time, the self-propelled radiation measuring device does not fall because it is attracted to the inner wall surface of the reactor containment vessel (PCV, RPV) 13 by the magnetic force of the wall adsorber 4. Furthermore, when the self-propelled radiation measuring device is to turn right, it is sufficient to stop the right side of the caterpillar and drive only the left side. Further, when the vehicle body 1 is to be moved backward, the motor 9 may be reversed, or the wheels may be reversed via gears. Here, the strength of the magnetic force of the wall suction unit 4 may be sufficient as long as it can support the weight of the self-propelled radiation measuring device.

このように、本発明の自走式放射線測定装置はキャタピ
ラにより車体lを移動させるので原子炉格納容器13内
に多少の凹凸があっても円滑に移動することができる。
As described above, since the self-propelled radiation measuring device of the present invention moves the vehicle body l using caterpillars, it can move smoothly even if there are some irregularities in the reactor containment vessel 13.

また壁面吸着器4により壁面に吸着するので垂直壁面の
みならず天井部であっても落下することなく測定するこ
とができる。
In addition, since it is adsorbed to the wall surface by the wall suction device 4, it is possible to measure not only a vertical wall surface but also a ceiling portion without falling.

第3図は本発明の自走式放射線測定装置の使用状態を示
す説明図である。同図において、鉄製である原子炉格納
容器内に解析器12を設置し操作者が自走式放射線測定
装置を下から操作する。原子炉格納容器には下部口や配
管口あるいは上部口が設けられているためこれらの開口
部を避けて自走式放射線測定装置を操作しなければなら
ない。
FIG. 3 is an explanatory diagram showing how the self-propelled radiation measuring device of the present invention is used. In the figure, an analyzer 12 is installed in a reactor containment vessel made of iron, and an operator operates a self-propelled radiation measuring device from below. Since the reactor containment vessel has a lower opening, piping opening, or upper opening, the self-propelled radiation measuring device must be operated while avoiding these openings.

また、原子炉格納容器は大変に大きいため高所を測定す
る場合にはケーブルの長さが長くなり重量も大きくなる
ため壁面吸着器4の吸着力も大きくしなければならない
Furthermore, since the reactor containment vessel is very large, when measuring at high places, the length of the cable becomes long and the weight increases, so the suction force of the wall suction device 4 must also be increased.

なお、実施例では自走式放射線測定装置の測定したデー
タを増幅したのち、ケーブルで解析器へ転送する場合に
ついて説明したが、これに限ることなく無線で解析器へ
転送してもよい。このように無線で解析器へ転送する場
合には、ケーブルの重量を考慮する必要がないので壁面
吸着器4の磁力を一定のままであっても車体が落下する
おそれもない。
In the embodiment, a case has been described in which the data measured by the self-propelled radiation measuring device is amplified and then transferred to the analyzer via a cable, but the data is not limited to this and may be transferred to the analyzer wirelessly. When transmitting data to the analyzer wirelessly in this way, there is no need to take the weight of the cable into consideration, so there is no risk of the vehicle body falling even if the magnetic force of the wall adsorber 4 remains constant.

「発明の効果」 以上詳細に説明したように、本発明の自走式放射線測定
装置によれば原子炉構造物内に危険な足場を組むことな
く測定者は遠隔操作により下から操作することにより放
射線を測定することができる。したがって、従来の技術
では測定が困難であった垂直壁面や鏡板(天井内壁面)
あるいは、人間の入れない寸法の管内壁面等の放射線測
定を確実にかつ、安全に行うことができる。
"Effects of the Invention" As explained in detail above, according to the self-propelled radiation measuring device of the present invention, the measuring person can operate from below by remote control without setting up dangerous scaffolding inside the reactor structure. Radiation can be measured. Therefore, it is difficult to measure vertical walls and mirror panels (ceiling inner wall surfaces) using conventional techniques.
Alternatively, it is possible to reliably and safely perform radiation measurements on pipe inner wall surfaces, etc. that are too large for humans to enter.

また、人間が直接測定装置を手に持って測定することの
できない放射線量率の高い領域の放射線測定が可能とな
る。
Furthermore, it becomes possible to measure radiation in areas with high radiation dose rates that cannot be directly measured by a human holding a measuring device in hand.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す自走式放射線測定装置
の側面図、第2図は本発明の放射線測定器の概略構成を
示す説明図、第3図は本発明の自走式放射線測定装置の
使用状態を示す説明図である。 1・・・・・・車体、 2・・・・・・駆動機構、 3・・・・・・放射線測定器、 4・・・・・・壁面吸着器、 5・・・・・・解析器、 6・・・・・・ケーブル、 7 a、 7 b、 7 c、 7 d−・・−・−車
輪、8・・・・・・無端体、 9・・・・・・モータ、 10・・・・・・光電子倍増管、 11・・・・・・プリアンプ、 12・・・・・・解析器、 13・・・・・・原子炉格納容器。 出願人     日本原子力事業株式会社代理人   
  弁理士 山内梅雄 第1図 1臼に仁の検出部 第3図 旦
FIG. 1 is a side view of a self-propelled radiation measuring device showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the schematic configuration of the radiation measuring device of the present invention, and FIG. 3 is a self-propelled type of radiation measuring device of the present invention. FIG. 2 is an explanatory diagram showing how the radiation measuring device is used. 1... Vehicle body, 2... Drive mechanism, 3... Radiation measuring device, 4... Wall suction device, 5... Analyzer , 6... Cable, 7 a, 7 b, 7 c, 7 d-... Wheel, 8... Endless body, 9... Motor, 10. ...Photomultiplier tube, 11 ...Preamplifier, 12 ...Analyzer, 13 ...Reactor containment vessel. Applicant Japan Atomic Energy Corporation Agent
Patent attorney Umeo Yamauchi Fig. 1 Detection section of the miller Fig. 3 Dan

Claims (1)

【特許請求の範囲】 放射線測定器と、 装置を壁面に吸着させる壁面吸着器と、 装置を前後左右に駆動する駆動機構と、 放射線測定器からの測定データを解析する解析機とを具
備し前記解析機からの遠隔操作により原子炉格納容器等
の垂直壁面あるいは天井壁面の放射線測定を行うことを
特徴とする自走式放射線測定装置。
[Claims] The radiation measuring device comprises: a radiation measuring device; a wall suction device for adhering the device to a wall surface; a drive mechanism for driving the device back and forth and left and right; and an analyzer for analyzing measurement data from the radiation measuring device. A self-propelled radiation measurement device that measures radiation on vertical walls or ceiling walls of reactor containment vessels, etc., by remote control from an analyzer.
JP63017125A 1988-01-29 1988-01-29 Mobile radiation measuring instrument Pending JPH01195395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63017125A JPH01195395A (en) 1988-01-29 1988-01-29 Mobile radiation measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63017125A JPH01195395A (en) 1988-01-29 1988-01-29 Mobile radiation measuring instrument

Publications (1)

Publication Number Publication Date
JPH01195395A true JPH01195395A (en) 1989-08-07

Family

ID=11935313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63017125A Pending JPH01195395A (en) 1988-01-29 1988-01-29 Mobile radiation measuring instrument

Country Status (1)

Country Link
JP (1) JPH01195395A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333463A (en) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp Radiation measuring apparatus
JP2020071183A (en) * 2018-11-01 2020-05-07 株式会社スリー・アール Inspection device and method of surface contamination of used container
JP2020187048A (en) * 2019-05-16 2020-11-19 大成建設株式会社 In-pipe inspection device
CN113109854A (en) * 2021-03-23 2021-07-13 海南核康科技有限公司 Instrument for accurately detecting instantaneous radiation dose rate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333463A (en) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp Radiation measuring apparatus
JP4637794B2 (en) * 2006-06-13 2011-02-23 三菱電機株式会社 Radiation measurement equipment
JP2020071183A (en) * 2018-11-01 2020-05-07 株式会社スリー・アール Inspection device and method of surface contamination of used container
JP2020187048A (en) * 2019-05-16 2020-11-19 大成建設株式会社 In-pipe inspection device
CN113109854A (en) * 2021-03-23 2021-07-13 海南核康科技有限公司 Instrument for accurately detecting instantaneous radiation dose rate

Similar Documents

Publication Publication Date Title
JP3805254B2 (en) Container inspection equipment
EP0193937B1 (en) Method and apparatus for measuring the distribution of radioactivity
US4280580A (en) Proximity detector system for a medical diagnostic device
JPH02209132A (en) Ct device
JPH01195395A (en) Mobile radiation measuring instrument
CN117697775A (en) Reconnaissance sampling robot and sampling method thereof
CN210222272U (en) Empty container detection device
JP2977822B1 (en) In-situ plutonium measuring device
KR101998742B1 (en) Measurement system for detecting residual radioactivity in soil
US3949227A (en) Device for the panoramic radiography of weldings in metal pipings
CN206696204U (en) Device and radiation image-forming detecting system for automobile radiation image-forming detecting system
JP2020046327A (en) β RAY MEASUREMENT APPARATUS
RU2191408C2 (en) Portal radiation monitor
CN219695472U (en) Door-type radioactive contamination detection equipment
SU1716457A1 (en) Automatic radiator monitoring of environment in the region of object containing radioactive substances
CN113418943A (en) Compton back scattering wall hollowing detection system and detection method
JPS6061670A (en) Radiation source detector
JPH02259588A (en) Detecting device for radiation contaminated part
CN216310286U (en) Radiation detection door
JPS6076680A (en) Surface dose rate measuring apparatus
KR101998741B1 (en) Automatic Radioactivity Measurement System for Facility Surface Contamination
RU226224U1 (en) Self-propelled device for inspecting pipelines to detect sources of radioactive contamination and take samples
JPH01260389A (en) Radiation measuring apparatus
WO1998057194A1 (en) Neutron modulation-activation for fissile material flow velocity and fissile content measurement
CN109901212B (en) Platform system for radionuclide scanning measurement and decontamination